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Manifold hypothesis
Pope et al 2021
Benjio Courville

Vincent 2013




Low-dimensional
absolutely continuous
structure — In the
physical sciences




Inherited low-dimensional structure in Bayesian
computation

 Bayesian inference/data
assimilation, denoising/
e ——— P y(x) conditional generation, flow
T matching — all involve some
dynamics/transport

* Only want to learn dynamics on
X

e Dimension reduction?




Data manifold (sometimes) unknown

pye F~ldxdp, o F~

E———————————— N (X) dp -
e ——————— Y 1 (“ V Fex” “ V Fey”) o F—l

. V _log p, : may be known/easy to compute in
some chaotic systems

* Factorization persists under transformation



Goal-oriented generative models

 Can GMs be used to learn the data manifold?

e |nevitable errors in GMs: how do they affect the predicted distribution?
Do some errors not matter for conditional sampling?

 (Generative models for priors used for posterior sampling?

* Errors in GMs for priors: can “important” directions still be preserved?

Dynamical erative modeling|



The support of diffusion models is robust to
learning errors




Robustness of the support
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Diffusion model Condit.ional Flow OT - Conditional Flow
matching matching

All models are incorrect, but some are usefully incorrect



Can inexact generative models learn data
manifold?
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Generative models: setup

» Given samples Xy, X5, ***, X, ~ Dyatar 9ENEIrate more samples

. X € R”, but support of p. .. is usually dimension d < D

o Typically achieved by learning a dynamical system so that Xo ~ Do
(usually with density) and X, ~ Py.¢a

» Dynamical system can be continuous, vector field x = v,(x)



Generative models: setup

» Learned vector field: x — v;(x) € T,R”

» |n score-based diffusion [ Anderson 1982; De Bortoli et al,
Song and Ermon 2019, Song et al 2020, Sohl-Dickstein et al
2015 ], v¢(x) = s(x, t), scores of densities of a noising
process Initialized with X; ~ pgata-

» |n conditional flow matching variants, stochastic interpolant
variants [ Liu 2022, Lipman et al 2023, Tong et al 2023, Albergo
et al 2023 ], flow of v;(x) transports probability densities from
Po (easy) to Pyata (target)

> £(0) = Et xp, || Vo.t(Xe) — ve(Xp)|I%,

> 0pt/0t = —div(v; pt), With pr = Pgata-




Random Dynamical Systems

FtW = F%. o...0 F/' is arandom dynamical system, where
at each time t, we choose FV ~ ;.

Discrete-time RDS: W = {W;!} iid standard normal RVs.

For SGM: FY(x) = x + (8t)s(x, T — t) + Vot W;,
W; ~ N(0O, Id).

One step flow map: can come from any integration scheme.

Classical field: Kifer, Young, Ledrappier, Pesin, Arnold ...



GM with learning errors

Fi ¢ (X) = Fi(x) + € xt(x), Probability space
map at time t with learning

errors. Perturbed evolution/-

pushforward operator:

Pt+1,e = Ft,eﬁpt,e

1 (F(x)) = VF(x) u x) + y,(x) When p; . has density py,

Pt+1,e = Lte Pte
.= Pt e © Ft,_€1/|detdFt,e‘ O Ft,_€1

Tracking infinitesimal errors
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The support appears robust




OT-CEM, eps = 0 Stoc. Interp., eps = 1.0
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The support is not robust



How do densities change under errors in the
dynamics?

aé’pe(-XT) — p(x’[) Z (dIV()(t) +)(t . St)(x —t)
<t

A bounded contiuous scalar field

« Assuming absolute continuity, and regularity of £,

 Most generative models should have robust support to
small perturbations



Stoc. Interp., eps = 1.0

CFM, eps = 1.0 01958 0.1697
0.1740 0.1508
0.1523 0.1320
. 0.1305 -0.1131
. 0.1088 -0.0943
. 0.0870 -0.0754
L 0.0653 -0.0566
0.0435 0.0377
0.0218 0.0189
0.0000 0.0000
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Does not explain lack of robustness

No directionality/control in analysis



Defining most sensitive subspaces

- Recall Jacobian map: VF, : R” — R”.
o Let £y(x) € RPX4 he a random subspace at each x
b R, = VF, E from a QR decomposition

e [1_: most sensitive subspace at time 7



.~ top d Lyapunov Vectors

T

. d: intrinsic dimension.
« =~ top deigenvectors of VF(VF T)T : Cauchy-Green deformation tensor in fluid mechanics



Alignment with support of p,....

«M: support of pj...
A GM is aligned if 1M is parallel to £ _




Learning the support

Informal: A convergent generative model learns the
support of the target if aligned

* Convergent: optimal transport map of small norm exists between

generated samples and the target samples; ||x; — ;|| ~ O(€°) (e.g., Lee,
Lu, Tan 2023)

o Support estimation = Learning one-class classifier

 Margin does not change under alignment, hence has same generalization
error
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Alignment In practice
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Alignment leads to learning the dimension of the
data manifold
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Alignment leads to learning ,
the data manifold

40 1

« The most sensitive subspaces £ are 0.

constructively defined; scalable
computation

* |s alignment preserved under 20-
perturbations? Yes, under smooth
perturbations.

 What kind of dynamics leads to alignment?

 How to ensure alignment?

—20 ~15 ~10 -5 0 5 10 15 20



Vector fields (scores) in diffusion models
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Sufficient conditions for alignment

Theorem (informal): If F* is compressive overall, v; is uni-
formly compressive for t close to T, and v; has small cross-

derivatives, alignment holds.

(St_|_1 Et—|—1) o Fy = 8t E; Rt_1 — tI‘((dFt_1 szt) Eth_1 .
» s_ 1 TM when target is singular

* EXxpansive dynamics leads to contraction above

 Compression can lead to alignment as well



Summary

» GMs can be viewed as random dynamical systems
* [his perspective explains their behavior under learning errors

* Alignment of the d most sensitive subspaces with the
tangent space of the d-dimensional data manifold leads to
robustness of the support

* Alighed generative models can learn the data manifold

C and de Clercqg, NeuRIPS 2025, https://arxiv.org/abs/2508.07581



Takeaways for digital twins

Probablility measures of interest to DA and DT often have a factorizable
low-dimensional structure.

We can use Oseledets theory for dynamical GMs to exploit this structure
How to produce alignment?

How to control GMs for rare events or regions of interest? Diffusion
guidance [Ho Salimans 2022, Song Shen Xing and Ermon 2021}



