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Manifold hypothesis 
Pope et al 2021 
Benjio Courville 

Vincent 2013



Low-dimensional 
absolutely continuous 

structure — in the 
physical sciences

The unstable subspaces on the Lorenz attractor



Inherited low-dimensional structure in Bayesian 
computation
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• Bayesian inference/data 
assimilation,  denoising/
conditional generation, flow 
matching — all involve some 
dynamics/transport 


• Only want to learn dynamics on 



• Dimension reduction?
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Data manifold (sometimes) unknown

•  : may be known/easy to compute in 
some chaotic systems


• Factorization persists under transformation 
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Goal-oriented generative models

• Can GMs be used to learn the data manifold?


• Inevitable errors in GMs: how do they affect the predicted distribution?


• Do some errors not matter for conditional sampling?


• Generative models for priors used for posterior sampling?


• Errors in GMs for priors: can “important” directions still be preserved?

Dynamical systems approach to generative modeling



The support of diffusion models is robust to 
learning errors 



Robustness of the support

Diffusion model Conditional Flow 
matching

OT - Conditional Flow 
matching

All models are incorrect, but some are usefully incorrect



Can inexact generative models learn data 
manifold?



• Given samples , generate more samples


• , but support of  is usually dimension 


• Typically achieved by learning a dynamical system so that  
(usually with density) and 


• Dynamical system can be continuous, vector field 

x1, x2, ⋯, xm ∼ pdata

X ∈ ℝD pdata d < D

X0 ∼ p0
Xτ ∼ pdata

x → vt(x)

Generative models: setup



Generative models: setup



Random Dynamical Systems

One step flow map: can come from any integration scheme.

Classical field: Kifer, Young, Ledrappier, Pesin, Arnold …



GM with learning errors




Tracking infinitesimal errors

ut+1(Ft(x)) = ∇Ft(x) ut(x) + χt(x)



The support appears robust



The support is not robust



How do densities change under errors in the 
dynamics?

∂ϵρϵ(xτ) = ρ(xτ) ∑
t<τ

(div(χt) + χt ⋅ st)(xτ−t)

A bounded continuous scalar field

• Assuming absolute continuity, and regularity of 


• Most generative models should have robust support to 
small perturbations

Ft



Does not explain lack of robustness
No directionality/control in analysis



Defining most sensitive subspaces

•Recall Jacobian map: 


• Let   be a random subspace at each 


•   from a QR decomposition


•  : most sensitive subspace at time 

∇Ft : ℝD → ℝD .

E0(x) ∈ ℝD×d x

Et+1Rt+1 := ∇Ft Et

Eτ τ



  top d Lyapunov VectorsEτ ≈
• d: intrinsic dimension. 

•  top d eigenvectors of  : Cauchy-Green deformation tensor in fluid mechanics≈ ∇Fτ(∇Fτ)⊤



Alignment with support of pdata
• : support of 


•A GM is aligned if  is parallel to 

M pdata

TM Eτ



Learning the support
Informal: A convergent generative model learns the 
support of the target if aligned 

• Convergent: optimal transport map of small norm exists between 
generated samples and the target samples;  (e.g., Lee, 
Lu, Tan 2023)


• Support estimation  Learning one-class classifier  


• Margin does not change under alignment, hence has same generalization 
error

∥xi − yi∥ ∼ 𝒪(ϵc)

≡



Alignment in practice

Noise image Generated by 
SGM

 + LV 1 (1st 
column of )Eτ

 + LV 100 
(100th column 
of )Eτ



Alignment leads to learning the dimension of the 
data manifold

Pidstrigach 2022; Stanczuk 
et al 2024; Kadkhodaie et al 
2024; Chen, Huang, Zhao, 

and Wang 2023; Lee Lu Tan 
2023; Mimikos-

Stamatopoulos, Zhang, 
Katsoulakis 2024 

Index

Finite-time 
Lyapunov 
exponents 
(mean of 
log 
diagonal of 

)Rt



Alignment leads to learning 
the data manifold

• The most sensitive subspaces  are 
constructively defined; scalable 
computation


• Is alignment preserved under 
perturbations?  Yes, under smooth 
perturbations.


• What kind of dynamics leads to alignment?


• How to ensure alignment?

Eτ



Vector fields (scores) in diffusion models

t ≈ τt ≈ 0



Sufficient conditions for alignment

•  when target is singular


• Expansive dynamics leads to contraction above


• Compression can lead to alignment as well

sτ ⊥ TM



Summary 
• GMs can be viewed as random dynamical systems


• This perspective explains their behavior under learning errors


• Alignment of the d most sensitive subspaces with the 
tangent space of the d-dimensional data manifold leads to 
robustness of the support


• Aligned generative models can learn the data manifold

C and de Clercq, NeuRIPS 2025, https://arxiv.org/abs/2508.07581 



Takeaways for digital twins

• Probability measures of interest to DA and DT often have a factorizable 
low-dimensional structure.


• We can use Oseledets theory for dynamical GMs to exploit this structure


• How to produce alignment?


• How to control GMs for rare events or regions of interest? Diffusion 
guidance [Ho Salimans 2022, Song Shen Xing and Ermon 2021]


