Operator learning for history-dependent and multiscale problems

Margaret Trautner

Data Assimilation and Inverse Problems for Digital Twins

October 8, 2025

Caltech

1



Motivation via example: predicting material dynamics

Sth Frequency Mode In Range ( 114.725 Hz )

Min: 0.000e+000
2007/11/26 13:08
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Constitutive laws

Equations for material dynamics:
LF=m-a %
2. Initial condition
3. Boundary condition
4. Constitutive law: relates material
displacement to force (material strain to

material stress) rt n
"
Stress (normal): force per area i
Strain: gradient of displacement iy > fry R Teve
1
rl
Fl Fl
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Simple constitutive law: linear elasticity

Mass (densityi Acceleration Force

Force balance pou(x,t) =V - o(x, 1) + f(x,1)
Constitutive law (linear elasticity) o(x, 1) = AV, ux,1)

Zero initial conditions

Zero Dirichlet boundary conditions
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Multiscale constitutive law

Displacement Stress External forcing

! ! |

Force balance Patzus(??, t) = Vg -o0.(z,t) + f(z,1),
Constitutive law o.(x,t) = \I!l ({uns (z,8) }sep0.45 M) (t)

Zero initial conditions ) tl_”ln trajectory

Zero Dirichlet boundary conditions

Caltech
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Approaching multiscale problems

Square array Unit cell
1. Assume periodicity in & 2. Use known
I ¢ physics to solve
TR ﬁ PDE on unit cell

Cross-sectional view of continuous

fiber reinforced composites 3. Use resultant stress on all
repeated cells to find displacement
at next time iteration
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Homogenized equations

Displacement Stress External forcing

} } !

pOug(z,t) = Vg - ooz, t) + f(z,1),
oo(z,t) = Ul ({Vauo(z, s)}sepo,q; M) (¢)

Strain trajectory

« Assume microstructure ¢ periodic
. Seek homogenized constitutive law \Ifo such thatu, = ugyase - 0

. \I/(Jg : homogenized strain — homogenized stress
« Homogenized constitutive law maps between functions in time



Operator learning

« Classical machine learning methods map between finite-dimensional spaces
« PDEs map between function spaces

« Operator learning approximates infinite-dimensional operators using data

d
Example: Learn derivative map o - Cl(10,1]) ~ C(10,1])
X

_ Learning in Finite Dimensions Learning in Infinite Dimensions

Mapping between R2! —» R2! Cc'([0,1]) » C([0,1])

Discretization Hardwired into model architecture Aff?CtS learned model parameters only
indirectly

Evaluation at new Can only be interpolated from model Model itself can be evaluated at new

output points output points points



When is operator learning useful?

« Classical methods work well to solve PDEs

 Operator learning only potentially useful if:

1. Data generation/training cost can be amortized

2. Equations are unknown

_ Learning in Finite Dimensions Learning in Infinite Dimensions

Mapping between R2! —» R2! Cc'([0,1]) » C([0,1])

Discretization Hardwired into model architecture Aff?CtS learned model parameters only
indirectly

Evaluation at new Can only be interpolated from model Model itself can be evaluated at new

output points output points points



Some existing work on operator learning

I. Architectures

« Fourier Neural Operators (FNO) (Li et al. 2021), DeepONet (Lu et al. 2021), GNO (Li et al. 2020),
PCA-Net (Liu et al. 2022), ANO (Lanthaler et al. 2023), etc.

II. Analysis

« Universal approximation: FNO (Kovachki et al. 2021), DeepONet (Lu et al. 2021), etc. UA in finite
dimensions goes back to Cybenko (1989).

« Error bounds with respect to model size: FNO (Kovachki et al. 2021), DeepONet (Lanthaler et al.
2021), DON with Lipschitz/Holder maps (Schwab et al. 2023) etc. Foundational work in finite
dimensions by Yarotsky (2017).

III. Application setting of constitutive modeling in solid mechanics

« PCA-Net approach to multiscale setting (Liu et al. 2022), deep learning approach to constitutive
models (Huang et al. 2020) (Mozaffar et al. 2019), structure-preserving deep learning approach to
constitutive models (As’ad et al. 2022), etc.
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Outline: Operator learning for history-dependent and multiscale problems

I. Recurrent neural operator for causal history-dependent models

II. Learning for discontinuous inputs (materials) with FNO

III. Comparison of parameter-to-observable operator learning for multiscale
elasticity via Fourier Neural Mapping (FNM)

IV. Sampling convergence rate theory-to-practice gap
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History-dependent constitutive laws

 For some materials, stress depend on entire strain history

« Kelvin-Voigt viscoelastic material

o (t) = E_strain.(f) + v 0 strain.(7)

Homogenized:
1

o(t) = E'strain(7) + v'0,strain(7) — J k(t — 7)strain(z) dz
0
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Markovian model to capture history dependence

Recurrent neural operator (RNO) architecture
o(t) = F(strain(?), 0,strain(¢), £()) + & € RL are hidden variables

. F
E(t) = G(strain(?), &) and G are .neural n.etworks
. £ updated with any time

§0)=0 integration scheme

« £ captures memory

e Discretization invariant
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RNO model and 1d viscoelasticity

« For piecewise-constant viscoelastic materials, homogenized constitutive law
takes the form

o(t) = E'strain(¢) + v'dstrain(z) — (£(2), 1;)

E(t) = Pstrain(t) — al(?) -:l
§0)=0

6 piecewise-constant

« Exactly matches RNO model architecture

RNO architecture
o(t) = F(strain(?), d,strain(?), £(7))

E(1) = G(strain(p), &(1))
£0)=20

Bhattacharya, K., Liu, B., Stuart, A., & Trautner, M. (2023). Learning Markovian homogenized models in viscoelasticity. a I teCh
Multiscale Modeling & Simulation, 21(2), 641-679. 14



RNO approximation theorem

RNO Approximation Theorem (Informal)
Let ‘I’g C be the Markovian constitutive law for 1d piecewise-constant
viscoelastic materials.

For any 17 > 0, there exists an RNO ‘P}}NO such that

sup ‘Pg C({strain(r)}fe[o,ﬂ, 1) — ‘I’(l){NO({strain(f)}Te[o’T], Nl <n,

t€[0,T]

. Also show that u, for piecewise-continuous materials is approximated by ué) ¢

for some choice of piecewise-constant materials

I:> RNO is proven to approximate the history-dependent constitutive law

Bhattacharya, K., Liu, B., Stuart, A., & Trautner, M. (2023). Learning Markovian homogenized models in viscoelasticity.
Multiscale Modeling & Simulation, 21(2), 641-679.
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Experimental results: 1d piecewise-constant viscoelasticity

Input Strain Sample 1 Sample 2 Sample 3
3 _
3 —— True Solution
0.0 1 2 0- === RNO Approx
24
c —0.11 v o 17 v
— 7] w w
o @ 1 g 9 —27
n n n 01 n
-0.2 1 |
—— Sample 1 0
-1 1 -4
Sample 2
—0.3 A -1
—— Sample 3 -
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time Time Time Time
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Experimental results: 1d elasto-viscoplasticity

Sample 1 Sample 2 Sample 3 —— True Solution
0.0 0.0 A --- RNO Approx
-0.2 1 -0.2 1
\!
v —0.4 1 \ -0.4
: '.
n —0.6 - —0.6
-0.8 1 1
0.8 ‘ -0.8 -
\
-1.0 1 -1.0
0 1 2 3 4
Time
0.0 0.0
1.0 A
—0.2 1 -0.2 4
0.8 - ,
9 —0.4 ] -0.4
E 0.6
»n —0.6 0.4 - —0.6 -
—-0.8 - 0.2 1 —0.8 1
-1.0 - 0.0 —1.0
-0.25 —0.20 —0.15 —0.10 —0.05 0.00 0.0 0.1 0.2 0.3 -0.25 -0.20 —0.15 —-0.10 —0.05 0.00
Strain Strain Strain
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Burigede Liu, Eric Ocegueda, M. Trautner, Andrew M. Stuart, and Kaushik Bhattacharya. “Learning macroscopic internal variables and history dependence
from microscopic models”. Journal of the Mechanics and Physics of Solids 178 (2023), p. 105329. doi: 10.1016/j.jmps.2023.105329.
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Material models in 2d

e « % Coarse B
i aggregate

Grains in a cement-based material Voronoi tessellation

Learn 2d elasticity constitutive model using a Fourier Neural Operator

Caltech
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Fourier Neural Operator (FNO)

| > FNO Y is an integral kernel based neural operator architecture

mapping between Banach spaces &/ — %
W=QoclL; jo...0Lje P

Ly, =Wy, + X ,v,+ b,

(FHy)) = Y (PO (kye?mith

kez?

Fourier coefficients of v,

19



Linear multiscale elasticity
-V,.-A.V,u,)=f Ax)=A <§> A(-) 1-—periodic
Homogenized equations:
—V,.-AV.u)=f y solves the cell problem
/ —V-(VyYA)=V-A y 1—periodic

A= [ AW +AQY) V(") dy
T LE Function A Function X

Cell Problem

—

Effective coefficient

Interested in map A — . -0



Stability and universal approximation

Goal: approximate A — y using FNO.

Universal approximation requires
(1)a separable input space and
(2)a continuous true map.

LooHHl

L? — H',p € [2,00) Our result

Caltech
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Continuity result

Cell Problem Continuity (Informal)

« A — yis continuous from closed set in L to H'
« There exists g, > 2 such that for all ¢ € (g, ), A — y is Lipschitz continuous

from L4 to H'

Continuity result + compactness of input set = Universal Approximation

Input set C BV N L* is sufficient for compactness in L>.

Star Square Voronoi

I::> Operator learning is mathematically justified for a variety of common microstructures

Smooth

Bhattacharya, K., Kovachki, N. B., Rajan, A., Stuart, A. M., & Trautner, M. (2024). Learning homogenization for elliptic operators.
SIAM Journal on Numerical Analysis, 62(4), 1844-1873.






Data efficiency

Voronoi slope: -0.25
S
LE S~
—_ 10_2' S~
m ~~~~~ O(N_I/Q)
= ~~‘~~
g ~~~~~
= ~“~~
Smooth slope: -0.65
—#— Voronoi
—®— Smooth
2x10° 3x10°4x10° 6 x 10° 10*

Number of Training Samples

Caltech
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Different ways to learn effective coefficient A

« Learned A — y, a map between function spaces

. Would it be more data efficient to learn effective coefficient directly, i.e. A > A?

(A(y) +A() Vy(»)") dy

/ w

Vector z Function A Function X Vector A
25 Parameters: Cell Problem
e 5 Voronoi cell ) 2xX2
centers _) ﬁ A€ Ry sym,>0
e 3 A DoF per
cell

oy Caltech N




Fourier Neural Mappings: “parameter-to-observable”
Modification of FNO to accommodate finite-dimensional inputs and outputs

Linear functional layer takes functions to R"
Linear decoder layer takes z € R" to function space

V2V
V2F
Vector z Function A Function X Vector A
25 Parameters: Cell Problem
e 5 Voronoi cell ’ - 2%X2
centers ’ ) Ac Rsym’>'0
e 3 A DoF per
cell

Functional layer

Decoder layer

F2F
F2V

Daniel Zhengyu Huang, Nicholas H. Nelsen, M. Trautner. An operator learning perspective on parameter-to-observable maps. Foundations of Data Science, 2025, 7(1): 163-225. doi: 10.3932 6
fods.2024037




Absolute error in ||A||» versus data size N

10°
E v -------- V- -------- ’
510~ "—"'"—"l}'.f'ﬁlﬂi::"m.
fg | .\'\ 3. N Valuable to use function
2102 k.\ ~..‘.‘“ |::> space data if you have
< ., access to it
oD —@— [2F \..\
§ ..‘.... Fov \
Z 1073 === V2F .
vav .~.:
_..”... NN
N—1/2
T e N S——
10 102 10° 10*
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Learning material dependence and memory simultaneously

RNO architecture Make F and G r
o(t) = F(€(1),€(), &()) + Fourier Neural +
&) = GE(@), &) Mappings .

¢0)=0

|::> The same model can learn history-dependence and material-
dependence simultaneously.

Function
Input
M Function Fourier L
\‘ifting ourier Layers
Sy Ly - Lp
Vector Vector Vector Vector
Input Lifting / \ Projection Output
s(t) S, — D G Qv o(t)
Vector to Function to
Function Vector

Bhattacharya, Kaushik, Lianghao Cao, George Stepaniants, Andrew Stuart, and M. Trautner. "Learning Memory and Material Dependent Constitutive Laws." arXiv preprint
arXiv:2502.05463 (2025).
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Reference solution
using homogenized
stress response

Multiscale Stress response FNM-RNO
stress response Wwithout memory stress response

-0.057 -0.012 0.032 -0.057  -0.012 0.032 -0.057 -0.012 0.032 -0.057 -0.012  0.032
[ ee— [ e
2
o, ® <
O 0O
U erm
+ (.5 T 0+ + 051 0 o o
: 2
§ @
0'%.0 0.5 1.0 0'%.0 0.5 1.0 0'(8).0 0.5 1.0
T x T
Material 8.5% relative 13% relative 6.6% relative
microstructure L? error L? error L? error
1.0 106 104 1072 106 10~¢ 1072 10-6 1074 1072
] N
ﬁﬂ0.55w o L0 L0
o =
0.1 g )
Lo £ 8 + 05 + 0.5
N 0.55 3 .E
(@) M ATAYT A 1
0 Q-| B '1‘.'|'.'|"'|"'| "l"'t ‘ll
bo 0.5 1.0 « 080 0.5 o %0 0.5 o %90 0.5 1.0
Yy x x x

Bhattacharya, Kaushik, Lianghao Cao, George Stepaniants, Andrew Stuart, and M. Trautner. "Learning Memory and Material Dependent Constitutive Laws." arXiv preprint
arXiv:2502.05463 (2025).



Sampling convergence rates- what does theory tell us?

2 x 10°

Voronoi slope: -0.25

Smooth slope: -0.65

—#— Voronoi
—®— Smooth

3x10°4 x 10° 6 x 10° 10°
Number of Training Samples

100

Average Absolute Error
— —_ —
(@) (@) (@)

& s L

—_
7
>

10! 102 10 104
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Theory-to-practice gap: introduction

Theory:

« Universal approximation: model expressivity

« Model size bounds: how wide and deep a model needs to be to achieve low error
Practice:

« Must identify model from finite data: data efficiency

Is there a relationship between models with high model expressivity
and models with high data efficiency?

31



Error convergence rates

Theory: parametric convergence rate

« A model with n parameters can approximate with error < n™“

Practice: sampling convergence rate

. A model given N data samples can find a reconstruction with error < N

High a = good model expressivity
High . = good data efficiency

What is the relationship between a and f.?

32



Convergence rate “gap” for neural networks

High a = good model expressivity
High f. = good data efficiency

Degrees of freedom argument suggests . = a
For polynomial reconstruction, determining n parameters requires
N = n + 1 samples.

For neural networks, there is a gap between a and f..

Grohs, Philipp, and Felix Voigtlaender. "Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces."
Foundations of Computational Mathematics 24, no. 4 (2024): 1085-1143.
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Theory-to-practice gap in finite dimensions: intuition

. For any sample points x;, ..., Xy, there exists i i i i i i E i N E
. s 199 S Lo VoV
a sufficiently large “void R N o
. . . . . | | 1 | | 11 | \
« A locally supported function g in this void is AR oo FERY
1 1 1 1 1 I 1 1 1
indistinguishable from the zero function S ——— —TT 2 :
 ReLU neural networks can efficiently AR Lo i ;
approximate certain locally supported A |1 i E
functions R R A
| | 1 1 1 11 |
I L1 | (E- smee

good parametric complexity

=~ good sampling complexity

Caltech

Grohs, Philipp, Samuel Lanthaler, and M. Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025). 3 4



Theory-to-practice gap in finite dimensions

o is the parametric convergence rate: error in the number of nonzero weights n
converges at a rate n~%. High @ = good model expressivity.

[ is the sampling convergence rate for approximation in L”: expected L” error of the

reconstruction with N data samples converges at a rate N7, High f = good data efficiency.

Theorem (Theory-to-practice gap in finite dimensions) (Informal)

For approximation of functions [0,1]¢ — R with parametric convergence rate «,

1/ 1 a
P < —H— -5 =
p “.d_“o + correction

Grohs, Philipp, Samuel Lanthaler, and M. Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).
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Theory-to-practice gap in infinite dimensions

o is the parametric convergence rate: error in the number of nonzero weights n
converges at a rate n~%. High @ = good model expressivity.

. 1s the sampling convergence rate for approximation in L?: expected L? error of the
plung 8 pp p

reconstruction with N data samples converges at a rate N7, High f = good data efficiency.

Theorem (Theory-to-practice gap in infinite dimensions) (Informal)

For approximation of functions 2 — R with parametric convergence rate a,

1
p

Grohs, Philipp, Samuel Lanthaler, and M. Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).
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Conclusion

I. Recurrent neural operator captures history dependence
« Effective in various application settings in multiscale constitutive surrogate modeling.

II. In 2d, we prove that learning on discontinuous materials is theoretically valid
« Numerical experiments show that FNO can be empirically effective in this setting.
« Bound discretization error of FNO due to aliasing as well.

III. Modified the FNO to accept finite-dimensional inputs and outputs
« Data efficiency of learning in this setting is explored.

« This modification also allows for material dependence to be built into the model.

IV. Hardness result for sampling convergence rate via the lens of the “theory-to-practice gap”

37



Appendix

Caltech
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Summary of operator learning for constitutive models

I. Recurrent neural operator captures history dependence
« For 1d viscoelasticity, use is rigorously justified.
« Effective in setting of 1d elasto-viscoplasticity, more complex materials as well.

II. In 2d, we prove that learning on discontinuous materials is theoretically valid
« Numerical experiments show that FNO can be empirically effective in this setting.

III. Modified the FNO to accept finite-dimensional inputs and outputs

« Data efficiency of learning in this setting is explored.
« This modification also allows for material dependence to be built into the model.
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Discretization error in FNO (aliasing error)

A . ‘PZQOL_O..,OL Ogj
In definition, v (k) = [ vt(x)e—zmk,x) dx T-1 0

T Ly, =Wy, + F,v,+ b,)
In practice: VY (k) = DFT(vY) (F v)(x) = Z (Pt(k):)i}t(k),ﬂﬂi(k,x)
kez?

Theorem (Informal) (Bounding FNO discretization error)

For input a with Sobolev regularity s, the error evaluated on the grid [N 14 of the output of layer
L, satisfies 1

Nd2 ”Vt(d) o vtN(a)”ﬂ([N]d) <CN*

Lanthaler, Samuel, Andrew M. Stuart, and M. Trautner. "Discretization error of Fourier neural operators." arXiv preprint arXiv:2405.02221 (2024).
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Setting: multiscale material response

Displacement Stress External forcing

Force balance pOu.(z,t) = Vg - oc(x,t) + f(z,1),
Constitutive law o.(z,t) = Wl ({uns(as, S) }sepo); M, af;)( ),
Initial condition ue(x,0) = Oyu(x,0) =

Boundary condition  Ue(2,t) =0, x€dD

¢ indicates dependence on small scale variable y =




Homogenized equations

Displacement Stress External forcing

} } }

p8t2u0($>t) = Vg - Uo(ZC,t) + f(il?,t),
0-0(337 t) — qjg({kuﬂ(xv 3)}86[07t]; M) (t)a
’U,()(.T, O) — atUO(xa O) = 0, Strain history
uo(x,t) =0, =z € dD.

« Assume microstructure ¢ periodic
. Seek homogenized constitutive law \Ifo such thatu, = ugyase - 0

. \I!(Jg : homogenized strain — homogenized stress

42



History-dependent constitutive laws

 For some materials, stress depend on entire strain history

Kelvin-Voigt viscoelasticity

Strain: €, =V, u, Homogenized strain: € = [ V. u, dx
Q

Multiscale constitutive law  o.(f) = E.€.(1)+v,€.(7)

t
Homogenized constitutive law o () = E’E(t)+v’é‘(t)—J k(t —1)e(7r) dr
0

V) {E@}eeor) = (6@ }eero History dependence

43



RNO approximation theorem

RNO Approximation Theorem (Informal)
Let ‘I’g C be the Markovian form taken by ‘I’g for 1d PC viscoelastic materials.

For any n7 > 0, there exists ‘P(I){NO such that

sup [ PHCe@®) repory ) — YRNOUe@ ) reiorp )| < 10

tel0,T];eeZ

where Z bounds € uniformly in 7.

. Also show that u, for piecewise-continuous materials is approximated by ug ¢

for some choice of PC materials
. Francfort & Suquet (1986) gives u, — u,

Bhattacharya, K., Liu, B., Stuart, A., & Trautner, M. (2023). Learning Markovian homogenized models in viscoelasticity.
Multiscale Modeling & Simulation, 21(2), 641-679.
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Homogenization two ways

1. We have defined homogenized map ‘Pg {€(®) Yoo P 10(0) } o<, Where

€ = V,ug as the map from the homogenized strain trajectory to the
homogenized stress trajectory

2. Another perspective views ‘Pg as the map from spatially-averaged strain

trajectory over the cell to spatially averaged stress trajectory over the cell, i.e.

J V,u,(y) dy tOJ () dy.
Td ¢

45



Fourier Neural Mappings

« Modification of FNO to accommodate finite-dimensional inputs
and outputs with underlying infinite-dimensional operator map

Linear functional layer h — €h := J k(x)h(x) dx takes functions to R”
Q

Linear decoder layer z — 2z := k(- )z takes z € R" to function space

Vector 2 Function A Function X Vector A
—_—
25 Parameters: T Cell Problem
e 5 Voronoi cell ’ = 2X2
centers ﬁ ﬁ Ae Rsym’>'0
e 3 A DoF per
cell

Decoder layer FNO hidden layers Functional layer

Daniel Zhengyu Huang, Nicholas H. Nelsen, Margaret Trautner. An operator learning perspective on parameter-to-observable maps. Foundations of Data Science, 2025, 7(1): 163-225. doi: 46
10.3934/f0ds.2024037



Theory-to-practice gap: introduction

Many theoretical results in machine learning answer questions about model expressivity:

« Can this model class approximate to € accuracy any function in a certain set?
(Universal approximation)

« Given n nonzero model weights, how small is the error of the optimal model
parameterization? (Parametric complexity)

Other results answer questions about generalizability:

« Given N data samples from the underlying map of interest, how well does
Algorithm X do, on average, compared to the optimal model parameterization?
(Optimization)

« Given N data samples, how well can any algorithm reconstruct the true
underlying map of interest? (Sampling complexity)

47



Infinite-dimensional setting

_ Finite-Dimensional Setting Infinite-Dimensional Setting

2 — R for separable

B R~ R Banach space &
Restriction of input D =[0.11 c RY Measure on 2
space

Expected error LP(D) Banach space V such

measured in that U C V



More formal set-up: Neural Operator Approximation Spaces

. Approximation Space A = {& € C(L; Y) : || €| 4« < 00}
. Approximation space quasi-norm || &|| 4. = inf{@ > 0 : I'(&/0) < 1}
. 19(%) = max{ sup || ()|, sup[n® - inf sup ||%&w) —¥(w)ll4]}

ued neN Yex, yeg
. 2, contains neural operators with at most #n nonzero weights of uniformly

bounded magnitude

A? contains all functions & — % that can be uniformly approximated at rate n~* by
neural operators with at most n nonzero weights (parameters) of bounded magnitude

« We work in unit ball U* C A¢

49



More formal set-up: Algorithms

. AlgN( U, V) set of all deterministic methods using N point measurements
. & € Alg, (U, V) if there exist samples (xy, ..., xy) € N and map

O : RN — Vsuch that #(G) = Q(G(x)),....,Gxy)) forall G € U

Optimal error ey = inf  sup ||Z(G) — G|y
¢ ﬂeAlgN GelU

 Can also formulate set of randomized algorithms
« Results hold over all reconstruction methods using N samples

50



Proof sketch

1. Show that approximation space U C C(Z', R) contains compositions of the
form f o &, where & : £ — R%is an encoder, and f : RY — R belongs to the

d-dimensional approximation space f € U>.
2. Then f — f o & defines an embedding of U;"“’ into U, so any d-dimensional

bound on the convergence rate applies in the infinite-dimensional setting.

Grohs, Philipp, Samuel Lanthaler, and Margaret Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).
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Proof sketch

Require measure 4 on 2 and encoder & : & — R? such that & “fills out” the

unit cube [0,1]% in the following sense:

Eyp > c - Unif([0,11%)

(0]
Assume y € P(’) can be written as the law of u = Z Ze; for biorthogonal sequences

j=1

{e;}jen C X, {ej* }jen € &7 and iid real-valued random variables Z; with sufficient density on

open intervals.

Zl Interval 1

0.0 0.2 0.4 0.6 0.8 1.0
Z2 Interval 2

0.0 0.2 0.4 0.6 0.8
Z3 Interval 3

0.0 0.2 0.4 0.6

—

By approximating a projection onto
{€;};e[q) - the encoder “fills out” a cube
with sufficient density that can be
rescaled to [0,1]¢

Grohs, Philipp, Samuel Lanthaler, and Margaret Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).
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