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Motivation via example: predicting material dynamics
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Constitutive laws
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Equations for material dynamics: 
1.  
2. Initial condition 
3. Boundary condition 
4. Constitutive law: relates material 

displacement to force (material strain to 
material stress)

F = m ⋅ a

Stress (normal): force per area 
Strain: gradient of displacement



Simple constitutive law: linear elasticity
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Force balance

Constitutive law (linear elasticity)

Zero initial conditions 

Zero Dirichlet boundary conditions

ρ∂2
t u(x, t) = ∇ ⋅ σ(x, t) + f(x, t)

Mass (density) Acceleration Force

σ(x, t) = A∇xu(x, t)



Multiscale constitutive law
StressDisplacement External forcing

Force balance

Constitutive law
Strain trajectoryZero initial conditions 

Zero Dirichlet boundary conditions

Zhang, Mingzhong, 2013.

 indicates dependence on small scale variable  ε y =
x
ε
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Approaching multiscale problems
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1. Assume periodicity in ε
ε

2. Use known 
physics to solve 
PDE on unit cell

3. Use resultant stress on all 
repeated cells to find displacement 
at next time iteration



Homogenized equations
StressDisplacement External forcing

Force balance

Constitutive law

Strain trajectory

• Assume microstructure  periodic 
• Seek homogenized constitutive law          such that  as   
•          : homogenized strain  homogenized stress  
•  Homogenized constitutive law maps between functions in time 

ε
uε → u0 ε → 0

↦
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Zero initial conditions 

Zero Dirichlet boundary conditions



Operator learning 
• Classical machine learning methods map between finite-dimensional spaces 
• PDEs map between function spaces 
• Operator learning approximates infinite-dimensional operators using data

Learning in Finite Dimensions Learning in Infinite Dimensions

Mapping between

Discretization Hardwired into model architecture Affects learned model parameters only 
indirectly

Evaluation at new 
output points

Can only be interpolated from model 
output points

Model itself can be evaluated at new 
points

ℝ21 ↦ ℝ21 C1([0,1]) ↦ C([0,1])

Example: Learn derivative map 
d

d x
: C1([0,1]) ↦ C([0,1])
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When is operator learning useful?
• Classical methods work well to solve PDEs 
• Operator learning only potentially useful if:  
1. Data generation/training cost can be amortized 
2. Equations are unknown

Learning in Finite Dimensions Learning in Infinite Dimensions

Mapping between

Discretization Hardwired into model architecture Affects learned model parameters only 
indirectly

Evaluation at new 
output points

Can only be interpolated from model 
output points

Model itself can be evaluated at new 
points

ℝd ↦ ℝd C([0,1]) ↦ C([0,1])
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Learning in Finite Dimensions Learning in Infinite Dimensions

Mapping between

Discretization Hardwired into model architecture Affects learned model parameters only 
indirectly

Evaluation at new 
output points

Can only be interpolated from model 
output points

Model itself can be evaluated at new 
points

ℝ21 ↦ ℝ21 C1([0,1]) ↦ C([0,1])



Some existing work on operator learning
I. Architectures 

• Fourier Neural Operators (FNO) (Li et al. 2021), DeepONet (Lu et al. 2021), GNO (Li et al. 2020), 
PCA-Net (Liu et al. 2022), ANO (Lanthaler et al. 2023), etc. 

II.  Analysis  
• Universal approximation: FNO (Kovachki et al. 2021), DeepONet (Lu et al. 2021), etc. UA in finite 

dimensions goes back to Cybenko (1989).  
• Error bounds with respect to model size: FNO (Kovachki et al. 2021), DeepONet (Lanthaler et al. 

2021), DON with Lipschitz/Holder maps (Schwab et al. 2023) etc. Foundational work in finite 
dimensions by Yarotsky (2017).  

III. Application setting of constitutive modeling in solid mechanics 
• PCA-Net approach to multiscale setting (Liu et al. 2022), deep learning approach to constitutive 

models (Huang et al. 2020) (Mozaffar et al. 2019), structure-preserving deep learning approach to 
constitutive models (As’ad et al. 2022), etc.
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Outline: Operator learning for history-dependent and multiscale problems

I. Recurrent neural operator for causal history-dependent models 

II. Learning for discontinuous inputs (materials) with FNO 

III. Comparison of parameter-to-observable operator learning for multiscale 
elasticity via Fourier Neural Mapping (FNM) 

IV.  Sampling convergence rate theory-to-practice gap
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History-dependent constitutive laws
• For some materials, stress depend on entire strain history
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σε(t) = Eεstrainε(t) + νε∂tstrainε(t)

Homogenized: 

σ(t) = E′￼strain(t) + ν′￼∂tstrain(t) − ∫
t

0
κ(t − τ)strain(τ) 𝖽τ

• Kelvin-Voigt viscoelastic material 



Markovian model to capture history dependence

Recurrent neural operator (RNO) architecture

ξ(0) = 0

•  are hidden variables 
•  and  are neural networks 
•  updated with any time 

integration scheme

ξ ∈ ℝL

F G
ξ

•  captures memory 
• Discretization invariant

ξ

13

σ(t) = F(strain(t), ∂tstrain(t), ξ(t))
·ξ(t) = G(strain(t), ξ(t))



RNO model and 1d viscoelasticity
• For piecewise-constant viscoelastic materials, homogenized constitutive law 

takes the form

ξ(0) = 0

• Exactly matches RNO model architecture
RNO architecture

6 piecewise-constant

Bhattacharya, K., Liu, B., Stuart, A., & Trautner, M. (2023). Learning Markovian homogenized models in viscoelasticity. 
Multiscale Modeling & Simulation, 21(2), 641-679. 14

σ(t) = E′￼strain(t) + ν′￼∂tstrain(t) − ⟨ξ(t), 1L⟩
·ξ(t) = βstrain(t) − αξ(t)

ξ(0) = 0

σ(t) = F(strain(t), ∂tstrain(t), ξ(t))
·ξ(t) = G(strain(t), ξ(t))



RNO approximation theorem

Bhattacharya, K., Liu, B., Stuart, A., & Trautner, M. (2023). Learning Markovian homogenized models in viscoelasticity. 
Multiscale Modeling & Simulation, 21(2), 641-679.

RNO Approximation Theorem (Informal)
Let  be the Markovian constitutive law for 1d piecewise-constant 
viscoelastic materials.  

 For any , there exists an RNO  such that

ΨPC
0

η > 0 ΨRNO
0

• Also show that  for piecewise-continuous materials is approximated by  
for some choice of piecewise-constant materials

uε uPC
0
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sup
t∈[0,T ]

ΨPC
0 ({strain(τ)}τ∈[0,T ], t) − ΨRNO

0 ({strain(τ)}τ∈[0,T ], t) < η,

RNO is proven to approximate the history-dependent constitutive law



Experimental results: 1d piecewise-constant viscoelasticity
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Experimental results: 1d elasto-viscoplasticity
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Burigede Liu, Eric Ocegueda, M. Trautner, Andrew M. Stuart, and Kaushik Bhattacharya. “Learning macroscopic internal variables and history dependence 
from microscopic models”. Journal of the Mechanics and Physics of Solids 178 (2023), p. 105329. doi: 10.1016/j.jmps.2023.105329.



Material models in 2d

https://ascelibrary.org/doi/10.1061/%28ASCE%29MT.1943-5533.0003494

Grains in a cement-based material Voronoi tessellation
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Learn 2d elasticity constitutive model using a Fourier Neural Operator



Fourier Neural Operator (FNO)
FNO  is an integral kernel based neural operator architecture 
mapping between Banach spaces 

Ψ
𝒜 → 𝒰

Ψ = 𝒬 ∘ 𝖫T−1 ∘ … ∘ 𝖫0 ∘ 𝒫

𝖫tvt = σt(Wtvt + 𝒦tvt + bt)

(𝒦tvt)(x) = ∑
k∈ℤd

(P(k)
t ) ̂v t(k)e2πi⟨k,x⟩

Fourier coefficients of vt

FNO Model

Hidden FNO Layers

Integral Kernel Operator
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Linear multiscale elasticity
−∇x ⋅ (Aε ∇xuε) = f Aε(x) = A ( x

ε ) periodicA( ⋅ ) 1−

Homogenized equations:

−∇x ⋅ (A ∇xu) = f

A = ∫𝕋d

(A(y) + A(y)∇χ(y)T) 𝖽y

 solves the cell problemχ
−∇ ⋅ (∇χA) = ∇ ⋅ A periodicχ 1−

20
Interested in map .A ↦ χ

Effective coefficient



Stability and universal approximation 

Separable Input Space? Continuous map? 

Goal: approximate  using FNO. A ↦ χ
Universal approximation requires  
(1) a separable input space and  
(2) a continuous true map. 

L∞ ↦ ·H1

Lp ↦ ·H1, p ∈ [2,∞)

A ↦ χ

21

Our result



Continuity result
Cell Problem Continuity (Informal)

•  is continuous from closed set in  to  
• There exists  such that for all ,  is Lipschitz continuous 

from  to 

A ↦ χ L2 ·H1

q0 > 2 q ∈ (q0, ∞) A ↦ χ
Lq ·H1

Bhattacharya, K., Kovachki, N. B., Rajan, A., Stuart, A. M., & Trautner, M. (2024). Learning homogenization for elliptic operators. 
SIAM Journal on Numerical Analysis, 62(4), 1844-1873.

Continuity result + compactness of input set = Universal Approximation
Input set  is sufficient for compactness in .⊂ BV ∩ L∞ L2

Smooth Star Square Voronoi
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Operator learning is mathematically justified for a variety of common microstructures
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Data efficiency
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Different ways to learn effective coefficient A
• Learned , a map between function spaces 

• Would it be more data efficient to learn effective coefficient directly, i.e. ? 

•

A ↦ χ
A ↦ A

A = ∫𝕋d

(A(y) + A(y)∇χ(y)T) 𝖽y

25
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Fourier Neural Mappings: “parameter-to-observable”

Modification of FNO to accommodate finite-dimensional inputs and outputs

Linear functional layer takes functions to ℝn

Linear decoder layer  takes  to function spacez ∈ ℝn

Decoder layer Functional layer

Daniel Zhengyu Huang, Nicholas H. Nelsen, M. Trautner. An operator learning perspective on parameter-to-observable maps. Foundations of Data Science, 2025, 7(1): 163-225. doi: 10.3934/
fods.2024037 26
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Absolute error in  versus data size ∥A∥F N
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Valuable to use function 
space data if you have 
access to it



Learning material dependence and memory simultaneously

The same model can learn history-dependence and material-
dependence simultaneously.

Bhattacharya, Kaushik, Lianghao Cao, George Stepaniants, Andrew Stuart, and M. Trautner. "Learning Memory and Material Dependent Constitutive Laws." arXiv preprint 
arXiv:2502.05463 (2025). 28

RNO architecture
σ(t) = F(ϵ(t), ·ϵ(t), ξ(t))
·ξ(t) = G(ϵ(t), ξ(t))

ξ(0) = 0

Make  and  
Fourier Neural 
Mappings 

F G



Bhattacharya, Kaushik, Lianghao Cao, George Stepaniants, Andrew Stuart, and M. Trautner. "Learning Memory and Material Dependent Constitutive Laws." arXiv preprint 
arXiv:2502.05463 (2025). 29



Sampling convergence rates- what does theory tell us?

30
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Theory-to-practice gap: introduction
Theory:  

• Universal approximation: model expressivity  
• Model size bounds: how wide and deep a model needs to be to achieve low error 

Practice: 
• Must identify model from finite data: data efficiency

31

Is there a relationship between models with high model expressivity 
and models with high data efficiency? 



Error convergence rates
Theory: parametric convergence rate 

• A model with  parameters can approximate with   
Practice: sampling convergence rate 

• A model given  data samples can find a reconstruction with error 

n error ≲ n−α

N ≲ N−β*

32

What is the relationship between  and α β*?

High  = good model expressivity 
High  = good data efficiency 

α
β*



Convergence rate “gap” for neural networks
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High  = good model expressivity 
High  = good data efficiency 

α
β*

Degrees of freedom argument suggests  
For polynomial reconstruction, determining  parameters requires 

 samples.

β* = α
n

N = n + 1

For neural networks, there is a gap between  and .α β*

Grohs, Philipp, and Felix Voigtlaender. "Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces." 
Foundations of Computational Mathematics 24, no. 4 (2024): 1085-1143.



Theory-to-practice gap in finite dimensions: intuition 

• For any sample points  , there exists 
a sufficiently large “void” 

• A locally supported function  in this void is 
indistinguishable from the zero function  

• ReLU neural networks can efficiently 
approximate certain locally supported 
functions 

x1, …, xN

g

34Grohs, Philipp, Samuel Lanthaler, and M. Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).



Theory-to-practice gap in finite dimensions

Grohs, Philipp, Samuel Lanthaler, and M. Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).

Theorem (Theory-to-practice gap in finite dimensions) (Informal)
For approximation of functions  with parametric convergence rate ,[0,1]d ↦ ℝ α

 .β* ≤
1
p

+
1
d

⋅
α

α + correction*

 is the sampling convergence rate for approximation in   : expected  error of the 
reconstruction with  data samples converges at a rate . High  = good data efficiency.
β* Lp Lp

N N−β* β

 is the parametric convergence rate: error in the number of nonzero weights  
converges at a rate . High  = good model expressivity. 
α n

n−α α
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Theory-to-practice gap in infinite dimensions

Grohs, Philipp, Samuel Lanthaler, and M. Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).

Theorem (Theory-to-practice gap in infinite dimensions) (Informal)
For approximation of functions  with parametric convergence rate ,𝒳 ↦ ℝ α

 .β* ≤
1
p

36

 is the sampling convergence rate for approximation in   : expected  error of the 
reconstruction with  data samples converges at a rate . High  = good data efficiency.
β* Lp Lp

N N−β* β

 is the parametric convergence rate: error in the number of nonzero weights  
converges at a rate . High  = good model expressivity. 
α n

n−α α



Conclusion 

37

I. Recurrent neural operator captures history dependence  
• Effective in various application settings in multiscale constitutive surrogate modeling. 

II.  In 2d, we prove that learning on discontinuous materials is theoretically valid 
• Numerical experiments show that FNO can be empirically effective in this setting. 
• Bound discretization error of FNO due to aliasing as well.  

III. Modified the FNO to accept finite-dimensional inputs and outputs  
• Data efficiency of learning in this setting is explored. 
• This modification also allows for material dependence to be built into the model. 

IV. Hardness result for sampling convergence rate via the lens of the “theory-to-practice gap”



Appendix
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Summary of operator learning for constitutive models

I. Recurrent neural operator captures history dependence  
• For 1d viscoelasticity, use is rigorously justified.  
• Effective in setting of 1d elasto-viscoplasticity, more complex materials as well. 

II.  In 2d, we prove that learning on discontinuous materials is theoretically valid 
• Numerical experiments show that FNO can be empirically effective in this setting. 

III. Modified the FNO to accept finite-dimensional inputs and outputs  
• Data efficiency of learning in this setting is explored. 
• This modification also allows for material dependence to be built into the model.
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Discretization error in FNO (aliasing error)
Ψ = 𝒬 ∘ 𝖫T−1 ∘ … ∘ 𝖫0 ∘ 𝒫

𝖫tvt = σt(Wtvt + 𝒦tvt + bt)

(𝒦tvt)(x) = ∑
k∈ℤd

(P(k)
t ) ̂v t(k)e2πi⟨k,x⟩

In definition, ̂v t(k) = ∫𝕋d

vt(x)e−2πi⟨k,x⟩ 𝖽x

In practice:  ̂v N
t (k) = 𝖣𝖥𝖳(vN

t )

Theorem (Informal) (Bounding FNO discretization error)

1
Nd/2

∥vt(a) − vN
t (a)∥ℓ2([N]d) ≤ CN−s

For input  with Sobolev regularity , the error evaluated on the grid  of the output of layer 
 satisfies

a s [N ]d

𝖫t

Lanthaler, Samuel, Andrew M. Stuart, and M. Trautner. "Discretization error of Fourier neural operators." arXiv preprint arXiv:2405.02221 (2024).
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Setting: multiscale material response
StressDisplacement External forcing

Force balance

Constitutive law

Strain historyInitial condition

Boundary condition

Zhang, Mingzhong, 2013.

{
{

𝒪(1)

𝒪(ε)

 indicates dependence on small scale variable  ε y =
x
ε
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Homogenized equations
StressDisplacement External forcing

Force balance

Constitutive law

Strain historyInitial condition

Boundary condition

• Assume microstructure  periodic 
• Seek homogenized constitutive law          such that  as   
•          : homogenized strain  homogenized stress           

ε
uε → u0 ε → 0

↦

42



History-dependent constitutive laws
• For some materials, stress depend on entire strain history 

Kelvin-Voigt viscoelasticity 

σϵ(t) = Eεϵε(t)+νε
·ϵε(t)

ϵε = ∇xuεStrain: Homogenized strain:  ϵ = ∫Ω
∇xuε 𝖽x

Multiscale constitutive law 

Homogenized constitutive law σ(t) = E′￼ϵ(t)+ν′￼·ϵ(t)−∫
t

0
κ(t − τ)ϵ(τ) 𝖽τ

Ψ†
0 : {ϵ(τ)}τ∈[0,T ] ↦ {σ(τ)}τ∈[0,T ]

43

History dependence



RNO approximation theorem

Bhattacharya, K., Liu, B., Stuart, A., & Trautner, M. (2023). Learning Markovian homogenized models in viscoelasticity. 
Multiscale Modeling & Simulation, 21(2), 641-679.

RNO Approximation Theorem (Informal)

sup
t∈[0,T ];ϵ∈𝖹

ΨPC
0 ({ϵ(τ)}τ∈[0,T ], t) − ΨRNO

0 ({ϵ(τ)}τ∈[0,T ], t) < η,

Let  be the Markovian form taken by  for 1d PC viscoelastic materials.  

 For any , there exists  such that

ΨPC
0 Ψ†

0

η > 0 ΨRNO
0

where  bounds  uniformly in . 𝖹 ϵ t

• Also show that  for piecewise-continuous materials is approximated by  
for some choice of PC materials 

• Francfort & Suquet (1986) gives  

uε uPC
0

uε → u0

44



Homogenization two ways
1. We have defined homogenized map   where 

 as the map from the homogenized strain trajectory to the 
homogenized stress trajectory 

2. Another perspective views  as the map from spatially-averaged strain 

trajectory over the cell to spatially averaged stress trajectory over the cell, i.e. 

 to .

Ψ†
0 : {ϵ(τ)}0≤τ≤t ↦ {σ(τ)}0≤τ≤t

ϵ = ∇xu0

Ψ†
0

∫𝕋d

∇xuε(y) 𝖽y ∫𝕋d

σε(y) 𝖽y
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Fourier Neural Mappings
• Modification of FNO to accommodate finite-dimensional inputs 

and outputs with underlying infinite-dimensional operator map

Linear functional layer    takes functions to h ↦ 𝒢h := ∫Ω
κ(x)h(x) 𝖽x ℝn

Linear decoder layer    takes  to function spacez ↦ 𝒟z := κ( ⋅ )z z ∈ ℝn

Decoder layer Functional layerFNO hidden layers

Daniel Zhengyu Huang, Nicholas H. Nelsen, Margaret Trautner. An operator learning perspective on parameter-to-observable maps. Foundations of Data Science, 2025, 7(1): 163-225. doi: 
10.3934/fods.2024037 46



Theory-to-practice gap: introduction
Many theoretical results in machine learning answer questions about model expressivity:  

• Can this model class approximate to  accuracy any function in a certain set? 
(Universal approximation) 

• Given  nonzero model weights, how small is the error of the optimal model 
parameterization? (Parametric complexity) 

Other results answer questions about generalizability: 

• Given  data samples from the underlying map of interest, how well does 
Algorithm X do, on average, compared to the optimal model parameterization? 
(Optimization) 

• Given  data samples, how well can any algorithm reconstruct the true 
underlying map of interest? (Sampling complexity) 

ε

n

N

N
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Infinite-dimensional setting

Finite-Dimensional Setting Infinite-Dimensional Setting

Mapping between 

Restriction of input 
space

Expected error 
measured in

D = [0,1]d ⊂ ℝd Measure on 𝒳

ℝd → ℝ
 for separable 

Banach space 
𝒳 → ℝ

𝒳

Lp(D) Banach space  such 
that 

V
U ⊂ V
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More formal set-up: Neural Operator Approximation Spaces

• Approximation Space  

• Approximation space quasi-norm  

•  

•   contains neural operators with at most  nonzero weights of uniformly 
bounded magnitude 

Aα = {𝒢 ∈ C(𝒳; 𝒴) : ∥𝒢∥Aα < ∞}
∥𝒢∥Aα = inf{θ > 0 : Γα(𝒢/θ) ≤ 1}

Γα(𝒢) = max{ sup
u∈𝒳

∥𝒢(u)∥, sup
n∈ℕ

[nα ⋅ inf
Ψ∈Σn

sup
u∈𝒳

∥𝒢(u) − Ψ(u)∥𝒴]}

Σn n

49

 contains all functions  that can be uniformly approximated at rate  by 
neural operators with at most  nonzero weights (parameters) of bounded magnitude
Aα 𝒳 → 𝒴 n−α

n

• We work in unit ball Uα ⊂ Aα



More formal set-up: Algorithms
•  set of all deterministic methods using  point measurements 

•  if there exist samples  and map 

 such that  for all  

• Optimal error  

• Can also formulate set of randomized algorithms 
• Results hold over all reconstruction methods using  samples 

AlgN(U, V ) N

𝒜 ∈ AlgN(U, V ) (x1, …, xN) ∈ 𝒳N

Q : ℝN → V 𝒜(G) = Q(G(x1), …, G(xN)) G ∈ U
eN = inf

𝒜∈AlgN

sup
G∈U

∥𝒜(G) − G∥V

N
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Proof sketch

Grohs, Philipp, Samuel Lanthaler, and Margaret Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).

1. Show that approximation space  contains compositions of the 

form , where  is an encoder, and  belongs to the 
-dimensional approximation space . 

2. Then  defines an embedding of  into , so any -dimensional 

bound on the convergence rate applies in the infinite-dimensional setting.

U ⊂ C(𝒳, ℝ)
f ∘ ℰ ℰ : 𝒳 → ℝd f : ℝd → ℝ

d f ∈ Uα,∞
ℓ

f ↦ f ∘ ℰ Uα,∞
ℓ U d
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Proof sketch

Grohs, Philipp, Samuel Lanthaler, and Margaret Trautner. "Theory-to-practice gap for neural networks and neural operators." arXiv preprint arXiv:2503.18219 (2025).

Require measure  on  and encoder   such that  “fills out” the 

unit cube  in the following sense: 

μ 𝒳 ℰ : 𝒳 ↦ ℝd ℰ
[0,1]d

ℰ#μ ≥ c ⋅ Unif([0,1]d)

Assume  can be written as the law of  for biorthogonal sequences 

,  and iid real-valued random variables  with sufficient density on 

open intervals.

μ ∈ 𝒫(𝒳) u =
∞

∑
j=1

Zjej

{ej}j∈ℕ ⊂ 𝒳 {e*j }j∈ℕ ⊂ 𝒳* Zj

Z1

Z2

Z3…

By approximating a projection onto 
 , the encoder “fills out” a cube 

with sufficient density that can be 
rescaled to 

{ej}j∈[d]

[0,1]d
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