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Overview
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Solving PDEs / Learning PDEs / Operator Learning

Generic nonlinear PDE
Plu) =
® (PDE solvers) Given B, f find & such that B(u) = f

—

Pl:f—u
* (Learning PDEs) Given training data {upm, fm}M_; find P such that P(u) ~ f
‘}A3 cu—f

* (Operator learning) Given training data {um, fm}M_; find q?jl such that

L —

P-1(F)=u

—

PB-1:f—u

!Brunton, Proctor, and Kutz, “Discovering governing equations from data by sparse identification
of nonlinear dynamical systems”.
2Kovachki, Lanthaler, and Stuart, “Operator learning: Algorithms and analysis” .
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PDE Solvers U Learning PDEs U Operator Learning

® Sparse observation meshes
Xm = {Xm71, ... 7Xm,N} cQ

Given sparse and noisy observations
{um(Xim) + €m, fm }m 1
learn €IA3 ~ P and q?—\l ~ Pt

First learn ‘,]3 assuming it is local. Then
"invert” B to obtain P p-1.

E.g. Burgers’ PDE

P(u) = ur + uuy — VU =0

While 3¢ is simple, the solution map
PL:u(x,0) — u(x,t) is complex.

—0.25
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Problem Setup

Pu)(x) = f(x) x€Q
PB(u)(x) = po (x, Du(x), D?u(x),...,)
=pod(u,x)

* (known) Mapping ® : U x Q — R®, linear in u and nonlinear in x
¢ (unknown) Nonlinear function p : R — R

E.g. Nonlinear, Variable Coefficient, Elliptic PDE

P(u) = —0x (a(x)Dxu) + a® = f
D(u, x) = (x, u(x), ux(x), uxx(x))

p(si, $2,53,5) = —ax(s1)s3 — a(s1)ss + as3
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Kernel Equation Learning (KEqL): Formulation

0.25

e Assumption B = p o d(u, x) = f(x)
* Training data (um(Xm), fm)M_;
e Banach spaces (U, || - |lu) and
(Pl 1»)
® Optimal recovery problem

0.00

—0.25

M
(Um, p) = argmin [lgllp +X1 Y [Vl
Vm€U,qeP m—1
s.t. Vin(Xm) = tm(Xm) (Observation/data)

q o P(vm,x) = fm(x), Vx€Q (PDE constraint)
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Reproducing Kernel Hilbert Spaces (RKHS)

® Complete Ky to get
* Set & RKHS K
o ;P(O?ISV: Eilefl_r;r;g:and symmetric (PDS) kernel o K is uniquely defined by
° K(x,x")=K(x',x), ¥x,x' € Q K
® For any set of points X = {xi,...,xy} C Q the ® Reproducing property:
matrix K(X, X) = (K(x;,x;)) is PDS. vVfe K

® Pre-Hilbert space Fx) = (£, K(-x))
X) = ) HX))K

In fact, for any ¢ € K*

o(f) = (F, K(-, 9))x

j=1

Ny
Ko := {f Q= R‘f = Zoéf,jK('7Xf,j) = K('aXf)af}

® Define inner product
where

(f, &), = af K(X¢, Xg)eg K(x, ¢) = ¢(K(x,))
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Kernel Equation Learning (KEqL): Formulation

0.25

Assumption B = p o ®(u, x) = f(x)
Training data (um(Xm), fm)M_;
RKHS space U with kernel U
RKHS space P with kernel P
Collocation mesh X D Uy X

0.00

—0.25

M
(Gm, p) = argmin [[qlp +A D [vallis
Vm€U,qeP m—1

s.t. Vin(Xm) = tm(Xm) (Observation/data)
q o ®(vm, X) = fn(X) (Discrete PDE constraint)
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KEqL: All-at-once Inversion

M
(Um, p) = argmin [lg|3+ A [lvml
vm€U,qEP m—1

s.t. Vin(Xm) = tm(Xm) (Observation/data)
q o ®(vm, X) = fn(X)  (Discrete PDE constraint)

3Chen, Liu, and Sun, “Physics-informed learning of governing equations from scarce data”.
*Sun, Liu, and Sun, “Physics-informed Spline Learning for Nonlinear Dynamics Discovery” .
®Haber and Oldenburg, “Joint inversion: a structural approach”.

®Kaltenbacher, “Regularization based on all-at-once formulations for inverse problems”.
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KEgL: Algorithm Summary

® Relax equality constraints

M
(G, P) = argmin_lqllp + > Allvall7
vm€U,qEP m=1

+ X [|um(X™) = V(X3 + X" [[q 0 ®(vim, X) — (X)) 13

® Apply kernel trick (representer theorem) or use feature maps

® Solve using a Levenberg—Marquardt-type algorithm
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Operator Learning via KEqL

* Given KEqL solution p approximate PDE solution map B! with pseudo inverse of

PB:=pod.

PBI(F) == argmin |v|Z + X'[p o d(v, X) — F(X)|3.
velu

"Chen et al., “Solving and learning nonlinear PDEs with Gaussian processes’ .

8Long et al., “A kernel framework for learning differential equations and their solution operators” .
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Burgers’ Benchmark: Shocks with Sparse Data

B(u) = ur + vuy — 0.1uyx =0 plus B.C and I.C

KEqL PINN-SR SIND
- ’ 03
. — ios

True

OpL
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Burgers’ Benchmark: Comparison to PINN-SR and SINDy

Fixed IC

Varying IC

® |arge performance gap with PINN model

Um error

10°1 — 1-step

-==- SINDy e

— i-step

10!

--=- SINDy - PINN-SR

0 200 400
# of observations

p error
1094 4, — fstep === SINDy PINN-SR
1071
1072, ‘ ‘ ‘
0 200 400 600
— tstep  ---- SINDy - PINN-SR

0

200 400 600
# of observations
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Darcy Flow PDE: Variable Coefficients with Sparse Data

P(u) =—-divaVu="f a(x) = exp(sin(cos(x1) + cos(x2))) + B.C.

up u» us

1.0

0.5 4R
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Darcy Flow PDE: EqL and OpL Errors

® M — # of solution and source pairs (um(X), fm)™_;

® 2-step — Methods like SINDy that infer up, first before learning p
® Rl-step — KEqL with reduced basis for better performance

EqL: Training

EqL: OOD Test OpL: ID Test

-- 2-step
—e— Ri-step

-- 2-step
—e— Ri-step

Pisaa,

A;E:-_zmsazs:pa
21632 64 128 21632 64 128

21632 64 128
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Quantitative Error Analysis

Theorem [JOHHO] (Part 1)

Consider {um(X), fn}™_, defined on a smooth domain Q C R? and observation mesh
Xobs C Q2 with | Xobs| = N. Suppose that u™ € HY(Q) for v > d/2 + order of 8 and
B = po® such that (u,x) € RQ. Define the fill distance

f— N /!
P = SUPycq infxex,,. [x — X',

Then under sufficient smoothness assumptions it holds for 0 < o/ < ~

M M
D lum = nly gy S P07 <||P||3: +y ||Um||124> :
m=1 m=1

°Zhang and Schaeffer, “On the convergence of the SINDy algorithm”.
10Scholl et al., “The uniqueness problem of physical law learning”.
1He, Zhao, and Zhong, “How much can one learn a partial differential equation from its solution?”

12Boullé, Halikias, and Townsend, “Elliptic PDE learning is provably data-efficient”.
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Quantitative Error Analysis

Theorem [JOHHO] (Part 2)

Consider {um(X), fn}™_, defined on a smooth domain Q C R? and observation mesh
Xobs C Q with [ Xops| = N. Suppose that u™ € HY(Q) for v > d/2 + order of 8 and

P = po ® such that ®(u,x) € R? and p € H(R®) for n > Q/2 . Define the set
S :=UM_, Usex,,. P(tm,x) along with the fill distances

— X

p = SuUpucqinfiex,,. [x — x|, o(B) == supycpinfscsnp|s — 5’|,

for any smooth and bounded set B € R?. Then under sufficient smoothness assumptions it
holds for d/2 —i— order of P <+ < v

M
ZHP Pll=(s) < [p’y "+ o(B)"- 0/2} <|P||P+Z||“m|u>-
m=1
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Summary

A kernel method for learning PDEs and filtering solutions
Joint/simultaneous recovery of solutions and PDE form
Successful recovery of PDEs and their solution maps with very scarce data

Optimization problem is amenable to quasi-newton algorithms, easier and more
efficient training

Better performance compared to some neural net models or two step learning

Operator learning through equation learning, going well beyond typical operator
learning setups

Quantitative convergence analysis, reminiscent of Sobolev sampling inequalities
for scattered data approximation
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Algorithms



RKHS Representer Theorems

~

f=argmin|flx st ¢(f)=z
fek

Shorthand notation ¢ = (¢1,...,¢n) € (K*)V
Data z € RV

Closed form solution

f=K(.¢)K(¢,0)* 1712 =2"K(¢,4)"

Vector field K(-,¢) = (K(-, ¢1),...,K(-, ¢n)) € KV
Matrix K(¢,$) € RV*N

K(g.8)ij = 0i(K(:, )
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Feature Map Perspective

?:argmianH;c st. ¢(f) =z
fex

e Solution R R
fF=K(,9)K(¢.0) 'z, |fllk =2"K(¢,9) 'z

e Coefficient vector a = K (¢, )1z

N

F=K(d)a=> aK(-e)

J=1

® Using reproducing property
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Reformulate KEqL

M
(G, p) = argmin [lallp + > [lvml
Vm€U,qgEP m=1

+ um(X™) = vin(X™)I3 + llg © ©(vim, X) — £n(X)13

Take A = X = X =1 for simplicity

Reduced model vy, = U(+, X)am and define a = (a1, ..., apm)

Recall X is the collocation mesh

Define S(a) = UM_, Uyex ®(K (-, X)a, x) and S(am) = Uxex®(K(-, X)am, x)
Take g = P(-, S(a))B

M
(@,B8) :argr;inﬂTP(S(a), S(@)B+ > afUX, X)om

m=1
+ um(X™) = UX™, X)am3 + [P(S(am), S(@))B — fn(X)]13
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Reformulate KEqL

M
(@,B) =argmin BT P(S(a), S(@))B + > an U(X, X)ar

aB m=1
+ um(X™) = UX™, X)aml3 + [P(S(am), S(a))B — fn(X)]13

e Compositional structure

® Quadratic in a for fixed B8

® Quadratic in B for fixed

® Propose sequential quadratic approximations

® Additional regularization to control deviation in each step, similar to
Levenberg—-Marquardt (LM)
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LM for KEqL

M
(@,B8) =argmin BT P(S(@), S(@))B + Y e U(X, X)am
a,B

m=1
+ lum(X™) = UX™, X3 + [[P(S(@m), S(@))B — fm(X)]13

Minimizing sequence (a¥), B(K) given by
M
(K
(a(k+1)7ﬂ( +1)) — argminﬂTP(S(a(k))7 5(a(k))),3 + Za;U()CX)am
B m=1

+ lum(X™) ~ UX™, X))
+|[PS@s). S@t)) + VaP(S(@8), S@t))(a - a®)] 6 - ()

+ oula—al)TUX, X)(a —al) + a4(B — B¥)TP(S(alr)), S(a))(8 — B*)

Choose oy, 0}, based on decrease of objective, established heuristics for LM
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LM for KEqL

10711 — M
-=--- SVD-LM
1073
2105
I
3 1077
1079 Y
0 200 400
Iteration
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Sobolev Sampling Inequalities

Sobolev Sampling Inequality

Suppose Q C R? is a bounded set with Lipschitz boundary and consider a set of points
X = {x1,...,xn} C Q with fill distance hx := supxcq infxex ||x — x||2. Let u|x
denote the restriction of u to the set X. Further consider v > d/2 and 0 < +' < and
let u € H(Q).

® (Noiseless) Suppose u|x = 0. Then there exists hg > 0 so that whenever hx < hg
we have ||ul () < CQh}(_7/||U||H7(Q) , where Cq > 0 is a constant that
depends only on Q.

® (Noisy) Suppose u|x # 0. Then there exists hy > 0 so that whenever hx < hy we

have [Julli(@) < Cahl “?llullpva) + 2llulxles, where Co > 0'is a constant
that depends only on Q.
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Controlling the Filtering Error

~ N . M
(Um, B) = argmin_ lqllm + > et IVimllZ,
'm ,q

s.t. Vin(Xobs) = Um(Xobs) (Observation/data)
q o ®(Vm, Xobs) = fm(Xobs) (Discrete PDE constraint)

® Apply Sobolev sampling inequality, recalling p = sup,.cq infxex, d

obs - X
”Um‘*UmHHWXQ)gfﬂviv)uum‘*um”HWQ)

® Sum up, use assumed embedding U C HY(2), and optimality

Sl — gy < 207 (Z |Gy + ||ﬁm%mm>
m m
< p20- (Z Gl + umnu) < 207 (npnp +X ||umu>

m
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Controlling the Equation Error

M
(Tm,B) = argmin lqlp + > llvml
Vm€U,qEP m—1

st Vim(Xobs) = Um(Xobs)
gqo (D(Vma Xobs) = 7“m()<ObS) =Ppo q)(u"” XObS)

Observe this is "almost” an interpolation problem for p

® S =UpmUxex.,. P(Um, x) then constraint is

q(S + noise) = p(S)

Akin to total least squares!

® We need to do more work
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Controlling the Equation Error

® Basic idea N
p(S +6S) = p(S)

B(S) + VA(S)3S ~ p(S)
= [B(S) - p(S)| ~ [VB(S)3S|

® Use Sobolev sampling inequality again but with noisy RHS
® Local Lipschitz assumption for g € P:
la(s) —a(s")| < C(B)llqllp|s —s'|, Vs,s' € B,

for any bounded set B ¢ R?
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Controlling the Equation Error

po ®(tm,xk) = po P(um, xx)= f(xx)
= [(p = p) © ®(um, xi)| = [P o ®(tm, xk) — P o P(um, k)|
(Lipschitz assumption) < C(B)|IPllp|®(Um, xk) — D (tm, xk)|

Suppose ®(u, x) = (x, u(x),0?u(x)) for some multi-index a s.t. |a] < k €N

(P — p) o ®(um, xi)| S C(B)IPllplltm — umll cx(a)
(Sobolev embedding) < C(B)pllp ||tm — um||H7/(Q)

(From filtering bound) < C(B)|Bllp o7~ (llpllp + X lumllee)
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Controlling the Equation Error

(P = p) 0 ®(um, xe)| S C(B)lIPll» 7~ <||P||P + ||Um||u>

m

* Extra lemma: ||p]lp < |lpllp 4+ p7 >, [|uml|?2 where || - [l is stronger norm on U.

® Up to leading order

(P = p) o ®(um, x)| S C(B)llpllp 7~ <||p||7> + ||Um||u>

® Apply sampling inequality for p and p with fill distance
o(B) := sup inf |s" — ®(upm, xk)|

s'eB mk

15~ pllieey < C(B) (o(BY 92+ p0) (\\pup+zuumuu)
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Thank you

Yasamin Jalalian, Juan Felipe Osorio Ramirez, Alex Hsu,, Bamdad Hosseini, and
Houman Owhadi, Data-Efficient Kernel Methods for Learning Differential
Equations and Their Solution Operators: Algorithms and Error Analysis,

arXiv:2503.01036, 2025

38 /41



References |

[1]

2]
[3]

[4]

S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems”. In:
Proceedings of the National Academy of Sciences 113.15 (2016),

pp. 3932-3937. DOI: 10.1073/pnas.1517384113.

N. B. Kovachki, S. Lanthaler, and A. M. Stuart. “Operator learning: Algorithms
and analysis”. In: arXiv preprint arXiv:2402.15715 (2024).

Z. Chen, Y. Liu, and H. Sun. “Physics-informed learning of governing equations
from scarce data”. In: Nature communications 12.1 (2021), p. 6136.

F. Sun, Y. Liu, and H. Sun. “Physics-informed Spline Learning for Nonlinear
Dynamics Discovery”. In: Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21. Ed. by Z.-H. Zhou. Main Track.
International Joint Conferences on Artificial Intelligence Organization, Aug.
2021, pp. 2054-2061.

39/41


https://doi.org/10.1073/pnas.1517384113

References |l

[5]
[6]
[7]
[8]
[9]

[10]

E Haber and D Oldenburg. “Joint inversion: a structural approach”. In: /nverse
problems 13.1 (1997), p. 63.

B. Kaltenbacher. “Regularization based on all-at-once formulations for inverse
problems” . In: arXiv [math.NA] (Mar. 16, 2016).

Y. Chen et al. “Solving and learning nonlinear PDEs with Gaussian processes”.
In: Journal of Computational Physics 447 (2021), p. 110668.

D. Long et al. “A kernel framework for learning differential equations and their
solution operators”. |n: Physica D: Nonlinear Phenomena 460 (2024), p. 134095.

L. Zhang and H. Schaeffer. “On the convergence of the SINDy algorithm”. In:
Multiscale Modeling & Simulation 17.3 (2019), pp. 948-972.

P. Scholl et al. “The uniqueness problem of physical law learning”. In: /CASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2023, pp. 1-5.

40/ 41



References Il

[11]

[12]

Y. He, H. Zhao, and Y. Zhong. “How much can one learn a partial differential
equation from its solution?" In: Foundations of Computational Mathematics
24.5 (2024), pp. 1595-1641,

N. Boullé, D. Halikias, and A. Townsend. “Elliptic PDE learning is provably
data-efficient” . In: Proceedings of the National Academy of Sciences 120.39
(2023), €2303904120.

41/41



	Overview
	Algorithms
	Theory
	References

