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Interests and work over the years
• Physics, astrophysics, physical chemistry, theoretical physics, coastal waves, physical 

oceanography, data assimilation, fully nonlinear causal discovery, information 
propagation in complex systems, cloud microphysics, cloud aggregation, air-sea 
interaction.

• Discovered a new ocean current, the South Indian Ocean Counter Current.

• Involved in Ensemble Kalman Filter and Smoother, (Local) Particle Filters, and Particle 
Flow Filters and Smoothers. From theory to very high-dimensional applications.

• All kinds of practical data-assimilation stuff: estimating model errors, observation errors, 
representation errors, and estimating missing physics.

• Some other stuff…



Digital Twins

The four ingredients of a digital twin, fed by observations from the real-world system and 
models and resources. 
Arrows denote Information Flow (blue), Causal Flow (purple), and Workflow (red).



Notation 

State vector, state of the system 

Observations

Controls

Costs

Target variable (subset of         )



Formulation of the digital twin problem I 
Our goal is to find the controls that lead to a target evolution of the system, given 
observations of the system. Since ‘everything’ is uncertain, our goal will be a pdf:

Since this parameter estimation problem is highly nonlinear, we often reformulate it as 
finding 

and then marginalize over           . (We typically also would like to know            to better 
understand what happened.)

We then use Bayes' Theorem to find:



Formulation of the digital twin problem II 
We found:

which means that the state evolution             and the controls             are ‘driven’ by the 
observations of the system,          , the target evolution,          , and the costs,           via the 
likelihoods                      and                                    and                                     .

Their relation is via

is given, while the difficult part is to find                             and especially                         . 
The latter includes factors such as the value of human lives versus the cost of property.

The            and            are tolerances, i.e., how flexible we are on target and cost.



Formulation of the digital twin problem  III 

The main point is that, formulated this way, i.e., including full 
uncertainty, there is no clear separation between the 
data-assimilation problem and the ‘optimization problem’.   

The optimization problem is written as an estimation problem, 
allowing direct access to powerful methods from data assimilation.



Practical ways to use the formulation 
Several practical methods exist to make the problem tractable:
• Restrict the temporal dependence to a fixed time window, i.e. replace time     with
• We can then formulate this as a moving window problem, resulting in so-called 

continuous data assimilation:

Use ML surrogates

or use Gaussian time correlations (to avoid adjoints)

time axis



Continuous nonlinear data assimilation  I 

Explore that observations far in the future do not constrain the solution now in any 
significant way. Assume this time horizon is      .
We can write in general, for any x and z:

and use the time horizon idea: 

The particles at time 0 will not change with future target states for                   , so they 
are fixed when the latest z arrive, and we can write:



Continuous nonlinear data assimilation  II 

This allows us to integrate out       :

The beauty of this equation is that it only contains transition densities and likelihoods 
at the different time steps. Transition densities correspond to model errors. 
We ‘know’ these analytically, so the gradient of the posterior can be calculated.

Hence, we do not need to specify              , we just continue from the particles at the 
start of the window.



Practical ways to use the formulation 
Use continuous data assimilation

We cannot use the same observations twice, only new observations at end of the window!

This will result in:
- Continuous DA, no shocks at the start of a window
- No Gaussian priors necessary, prior only from transition densities!
- Fully nonlinear methodology
- Allows for long-window smoother
- Each new window uses the solution of the previous window as prior, and only assimilates 
new observations at the end of the window, hence fast convergence.

time axis



Langevin-based Monte-Carlo
The Langevin equation is known to generate samples from pdf p(x), starting from 
samples from any pdf.
It can be generalized as

For any positive semi-definite matrix      and antisymmetric matrix     .
This methodology is used in generative diffusion ML models as follows:
Choose                          and                 and use a standard Gaussian as target pdf, such that

Hence, simply add random white noise and this forcing at every timestep or iteration.



Prior pdf Multivariate 
standard 
Gaussian

Machine learning: Diffusion-based generative methods

The transformation is done by adding Gaussian noise to the samples in an iterative way, 
and add a forcing towards the standard Gaussian.

Step 1: Transform prior ensemble members to samples from standard Gaussian



For each particle we will have a Markov chain:

The MC evolves forward in pseudo time via:

Since the SPDE is linear the transition densities                       are all Gaussian!

Langevin dynamics to move prior samples to Gaussian samples



Multivariate Prior pdf
standard 
Gaussian

Machine learning: Diffusion-based generative modeling

This transformation is done by adding noise and adding a forcing towards the prior.
Learn this forcing towards the prior or use analytical form.

Step 2: Transform standard Gaussian samples to prior samples



ML or use analytical form…

For each particle we will have a Markov chain:

The MC evolves backward in pseudo time via:

in which:

and each                    is Gaussian! 
Hence, no need to learn it, fast to calculate directly.

But what about data assimilation?



Prior pdf Posterior pdf 

Diffusion-based data assimilation

However, there is no principled way to weight the prior and likelihood forcings, yet…

Add  likelihood forcing                              to the evolution equation, which will lead to posterior?



Prior: 2-dimensional bimodal Gaussian with means (3,3) and (0.8,0.8), standard deviations 0.1.
Observe first component, y=6, standard deviation 0.1.   Use 100 particles.

Backward flow from standard Gaussian to ‘posterior pdf’. Two issues: 
• likelihood and prior forcing not ‘well balanced’, and 
• no communication between state components                Indeed, this is not correct!

Example: backward flow with extra likelihood term



Consider the problem in real time of ‘nudging’ particles from a start time towards a set of 
observation at observation time. (This is also called synchronization.)

If the model equation is given by:

it is modified to

and the goal is to find         such that the model smoothly converges towards the 
observation, and ends up at the observation within the observation uncertainty. 

We can make this more formal!

Physical nudging in real time



Consider the pdf

which is equal to the prior pdf at t=0:                        

and equal to the posterior pdf at t=1: 

Assume  x evolves under                    as          

Then we can find the evolution equation for                as follows.                                                  

Physical nudging



Remember

Using the forward and backward Kolmogorov equations on                    and                  , find: 

with corresponding SDE 

This SDE will bring a prior particle starting at x0 to a posterior particle at time 1.

Physical nudging



The likelihood follows the Kolmogorov backward equation:

with final condition                        at 

When M is nonlinear, this equation has to be solved numerically.
Instead, we can use the small time approximation (Conti, PJvL, Anderson 2025), which, for 
Gaussian observation errors, leads to:

in which 

The likelihood term



This leads to:

in which

and

This can be compared to the traditional nudging equation:

showing that the traditional method is a special case of the physical nudging scheme.

Stochastic physical nudging equation



We use physical nudging in pseudo time instead of real time.  
To obtain samples from the posterior pdf, we need to start from the prior pdf. However, 
diffusions start from the standard Gaussian.

In principle, we can do:

Gaussian                                                  Prior                                              Posterior

but not very efficient…
However, we can combine them into one:

Gaussian Posterior

Physical nudging into diffusion method 

Phys Nudge + DM Phys Nudge + DM

Phys Nudge + DM

Prior



Prior: 2-dimensional bimodal Gaussian with means (3,3) and (0.8,0.8), standard deviations 0.1.
Observe first component, y=4, standard deviation 0.1.   Use 100 particles.

The correct answer! 
(Note we used time stepping ideas from stochastic interpolants.) 

Example: backward flow with extra likelihood term



Conclusions and Take-home message

• The Digital Twin problem can be reformulated as a Bayesian Inference problem
• This shows how to include uncertainty in a principled way, and approximations 

become well defined.
• Many possibilities for ML, we discussed generative diffusion methods
• Diffusion generative methods use ad-hoc infusion of likelihood, existing methods 

do not generalize.
• Combining diffusive generative methods with physical nudging might solve this.



Stochastic particle flow
We can generalize the Langevin dynamics:

Now define                                               and consider the Langevin dynamics over the 
configuration space spanned by the N particles. (Gallego and Insua 2020; Leviyev et al., 
2022)

If one chooses

and 

then this MC generates samples from   



Using Markov Chain to sample from the posterior

Note we have one chain that contains all particles!



Stochastic Particle Flow Filter
If we choose                               we find the Stochastic Particle Flow Filter:

attracting term                     repulsive term             stochastic term

This flow leads to an unbiased posterior independent of ensemble size!



Prior pdf Posterior pdf

Nonlinear data assimilation: Particle flow Filters

The prior and posterior can be for a model state (filter) or a model trajectory (smoother)
or a set of parameters, or a combination of these.

Geophysical data assimilation is a nonlinear problem.                    



Stochastic Particle Flow Filter
The Stochastic Particle Flow Filter reads:

This flow leads to an unbiased posterior independent of ensemble size!

However                                                                               , and we know the likelihood, but 
the prior is only known via a few samples.
Stochastic PFF practice uses Gaussian pdf for          . This can be bad…

Diffusion PFF: use diffusion generative model to approximate                      .  



Example: Squall line



• dx = 1 km, dz = 500 m
• Observe w at 20 grid points
• 50 particles
• Obs error standard deviation 0.2
• Extremely nonlinear!

Application on squall-line case, using Cloud Model 1 (CM1)

Vertical velocity.
Black dots are observation 
locations.



Application on squall-line case, using Cloud Model 1 (CM1)

Water vapor and Graupel                                       ice and snow                                            cloud liquid water and rain



Results on vertical velocity

Prior mean                                                      True state                                                   posterior mean
Black dots are observation locations



Results on ice and snow content

Prior mean                                                    True state                                                     posterior state



Stochastic Particle Flow Filter
The Stochastic Particle Flow Filter reads:

in which                                      with Cholesky factors L, and N is a matrix with standard 
Gaussian noise values, and  kernel

and


