Formulating the digital twin
problem as a Bayesian
Inference problem

Peter Jan van Leeuwen
Department of Atmospheric Science,

Colorado State University

Interests and work over the years

Physics, astrophysics, physical chemistry, theoretical physics, coastal waves, physical
oceanography, data assimilation, fully nonlinear causal discovery, information
propagation in complex systems, cloud microphysics, cloud aggregation, air-sea
interaction.

Discovered a new ocean current, the South Indian Ocean Counter Current.

Involved in Ensemble Kalman Filter and Smoother, (Local) Particle Filters, and Particle
Flow Filters and Smoothers. From theory to very high-dimensional applications.

All kinds of practical data-assimilation stuff: estimating model errors, observation errors,
representation errors, and estimating missing physics.

Some other stuff...

Digital Twins

f \ N

. L. ywvem Forecast Cont of actiors Yyatem Cantrol

N

S gl MWchine warned Moy roes
—— Modeh —— —— ™

— — — —
— — — —

l-ﬂdon rference j 2/

The four ingredients of a digital twin, fed by observations from the real-world system and
models and resources.
Arrows denote Information Flow (blue), Causal Flow (purple), and Workflow (red).

Notation

Tt State vector, state of the system
Yt Observations

¢ Controls

Ct Costs

<t Target variable (subset of Tt)

Formulation of the digital twin problem |

Our goal is to find the controls that lead to a target evolution of the system, given
observations of the system. Since ‘everything’ is uncertain, our goal will be a pdf:

p(at:T |y0:ta Zt:Ty CO:T) = /p(at:'r; xt:'r|yt7 Zt:T COZT) dict:'r

Since this parameter estimation problem is highly nonlinear, we often reformulate it as

INding p(at:‘T7 .'L't;q-lyt) Zt:‘T) CO?T)

and then marginalize over ;.- . (We typically also would like to know .+ to better
understand what happened.)

We then use Bayes' Theorem to find:
(ytlxt) p(Zt:r|iL't:'r, O475:'r) p(ct:‘r|at:'r: cO:t)

p(yt) p(zt:7) p(ct:r|co:t) P(@e:r|r)p(air)

P
p(at:'ra -’Et:'r|yt: Zt:T s CO:T) -

Formulation of the digital twin problem |l
We found:

p(at”_, mt:*r|yt, Ztors CO:'T) — p(yt|33t) p(Zt:T|fEt:T; C(t:'r) p(ct;7|at:7, CO:t)
p(yt) p(zt:'r) p(ct:7|c0;t)

p(mt:T |at:7)p(at:7)

which means that the state evolution Z¢.+ and the controls (4. are ‘driven’ by the
observations of the system, Yt , the target evolution, Z¢.+ , and the costs, Co.+ via the
likelihoods P(Yt|Zt) and P(2er|Tir, rr) and pcir|tr, Co:t)

Their relation is via

Y = Hy(xt) = Ety' Rt — H~ (xt:'r; at:'r) + ef;q- Ct.r = Hc(ata cO:t—l) + 6765:

HY(z,) is given, while the difficult part is to find H*(zs.,, as.,) and especially H(a, co:¢—1).
The latter includes factors such as the value of human lives versus the cost of property.

The Ef:,,. and ef are tolerances, i.e., how flexible we are on target and cost.

Formulation of the digital twin problem Il

The main point is that, formulated this way, i.e., including full
uncertainty, there is no clear separation between the
data-assimilation problem and the ‘optimization problem’.

The optimization problem is written as an estimation problem,
allowing direct access to powerful methods from data assimilation.

Practical ways to use the formulation

Several practical methods exist to make the problem tractable:

* Restrict the temporal dependence to a fixed time window, i.e. replace time T with £ + £,

 We can then formulate this as a moving window problem, resulting in so-called
continuous data assimilation:

time axis

Use ML surrogates

or use Gaussian time correlations (to avoid adjoints)

Continuous nonlinear data assimilation |

Explore that observations far in the future do not constrain the solution now in any
significant way. Assume this time horizon is ..
We can write in general, for any x and z:

p('TO:tw |ZO:tw) — p(:clztw |z0:tw) zO)p(mO|ZO:tw)
and use the time horizon idea:

P($0|Zo:tw) = P(330|Zo:tw—1)

The particles at time 0 will not change with future target states for £ > ¢,, , so they
are fixed when the latest z arrive, and we can write'

(.’B(}lZOt _1 NZé SU()—.’EU

Continuous nonlinear data assimilation I

This allows us to integrate out zV:
N
1 i
p(Z1:t,|21:t,) = /p(l‘l:tw|21:tw,$0)p($0|21:tw) dzro = N ZP($1:tw|21:tw,$0)
i=1

N . t :
1 p(zlztw|$1:tw:$6) 7 2 p(zklwl:twawa) 7
= = P\T1:t,|Tg) = P\Tt|Tt—1)P\T1|T
N ; p(zl:tw) (| ()) g? P(letw) (|) (| O)

The beauty of this equation is that it only contains transition densities and likelihoods
at the different time steps. Transition densities correspond to model errors.
We ‘know’ these analytically, so the gradient of the posterior can be calculated.

Hence, we do not need to specify p(mo), we just continue from the particles at the
start of the window.

Practical ways to use the formulation

Use continuous data assimilation

time axis

We cannot use the same observations twice, only new observations at end of the window!

This will result in:

- Continuous DA, no shocks at the start of a window

- No Gaussian priors necessary, prior only from transition densities!

- Fully nonlinear methodology

- Allows for long-window smoother

- Each new window uses the solution of the previous window as prior, and only assimilates
new observations at the end of the window, hence fast convergence.

Langevin-based Monte-Carlo

The Langevin equation is known to generate samples from pdf p(x), starting from
samples from any pdf.

It can be generalized as
dr = (D+ Q) - Vlogp(z)dt + V - (D + Q)dt + /2D 2dWw

For any positive semi-definite matrix D and antisymmetric matrix Q.
This methodology is used in generative diffusion ML models as follows:
Choose D = o*(t)I and (Q = 0 and use a standard Gaussian as target pdf, such that

Vliogpg(z) = —=

Hence, simply add random white noise and this forcing at every timestep or iteration.

Machine learning: Diffusion-based generative methods

Step 1: Transform prior ensemble members to samples from standard Gaussian

Prior pdf Multivariate
p(a:) standard
Gaussian

The transformation is done by adding Gaussian noise to the samples in an iterative way,
and add a forcing towards the standard Gaussian.

Langevin dynamics to move prior samples to Gaussian samples

For each particle we will have a Markov chain:

The MC evolves forward in pseudo time via:

dxt = —bztdt + odW

Since the SPDE is linear the transition densities p(z*|z'~!) are all Gaussian!

Machine learning: Diffusion-based generative modeling

Step 2: Transform standard Gaussian samples to prior samples

Prior pdf
p()

Multivariate
standard
Gaussian

This transformation is done by adding noise and adding a forcing towards the prior.
Learn this forcing towards the prior or use analytical form.

ML or use analytical form...

For each particle we will have a Markov chain:

The MC evolves backward in pseudo time via:

dzt = bxldt — 0°V log pt(z!)dt + ocdW

in which:

N

p(a) = [pala®)p(a”) do® = 3 pa'[af)

i=1
and each p(z'|z?) is Gaussian!
Hence, no need to learn it, fast to calculate directly.

But what about data assimilation?

Diffusion-based data assimilation

Add likelihood forcing V log p(y|x) to the evolution equation, which will lead to posterior?

dzt = bxtdt — 0°V log p'(z!)dt < o*h*V log p(y|z?)dt + odW

Posterior pdf
p(z|y)

Prior pdf
p(z)

However, there is no principled way to weight the prior and likelihood forcings, yet...

Example: backward flow with extra likelihood term

Prior: 2-dimensional bimodal Gaussian with means (3,3) and (0.8,0.8), standard deviations 0.1.
Observe first component, y=6, standard deviation 0.1. Use 100 particles.

-4 T - T v v v v ’ v v v v v v v
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Backward flow from standard Gaussian to ‘posterior pdf’. Two issues:
* likelihood and prior forcing not ‘well balanced’, and
* no communication between state components Indeed, this is not correct!

Physical nudging in real time

Consider the problem in real time of ‘nudging’ particles from a start time towards a set of
observation at observation time. (This is also called synchronization.)

If the model equation is given by:

dz, = M (z,)dt + V2D 2dW,

it is modified to

dz; = M(z;)dt + V2D 2dW, + Ty(y:,,. — H(z4))

and the goal is to find 1'; such that the model smoothly converges towards the
observation, and ends up at the observation within the observation uncertainty.

We can make this more formal!

Physical nudging

Consider the pdf P(Cﬂt) — p(y1|ze)p(zi|z0)
p(y1]zo)

yi|zo)p(zolzo) _ s
pnle) 0

which is equal to the prior pdf at t=0: P(xg) = P

and equal to the posterior pdf at t=1: P(z,) = P(y1|21)p(21]20) = p(x1|y1, zo)
P(y1lo)

Assume x evolves under p(x¢|zg) as

dz, = M(z;)dt + V2D 2dW,

Then we can find the evolution equation for P(x;) as follows.

Physical nudging

Remember P(z;) = p(y1|ze)p(xt|z0)
p(y1]zo)

Using the forward and backward Kolmogorov equations on p(z;|zg) and p(y;|z;), find:

8P(33t)
ot

=~V - [M(z:)P(z) + D - Vo log p(ysz:) P(z)] + %Vw (D VP(z)]

with corresponding SDE
dr; = M(z;)dt + D - V, log p(y1|xs)dt + V2DY/2dw,

This SDE will bring a prior particle starting at x, to a posterior particle at time 1.

The likelihood term

The likelihood follows the Kolmogorov backward equation:

9 1
p(iglt|$t) = —M(z¢) - Vep(y1|Tt) — §VIV$p(y1|$t)

with final condition p(y1|:171) at t =11 = t,ps

When M is nonlinear, this equation has to be solved numerically.
Instead, we can use the small time approximation (Conti, PJvL, Anderson 2025), which, for
Gaussian observation errors, leads to:
1
p(y1|zt) = cexp [—5(.% — H(x;) —HM (z)(t1 — t)) A" (y1 — H(x:) — HM (2)(t1 — t)))

nwhich \ _ HDHT(t, —) + R

Stochastic physical nudging equation

This leads to:
da; = M(z;)dt + Kp(y, — H(z,;))dt + vV2D'2dWw,
in which
Kp=DHT (HDHT +R)™' and H(z,) = H(z,) + HM(z,)(t, — t)
This can be compared to the traditional nudging equation:
dxy = M(z)dt + Ty (ye, — H(zp)) + V2D 2dW,

showing that the traditional method is a special case of the physical nudging scheme.

Physical nudging into diffusion method

We use physical nudging in pseudo time instead of real time.

To obtain samples from the posterior pdf, we need to start from the prior pdf. However,
diffusions start from the standard Gaussian.

In principle, we can do:

Phys Nudge + DM Phys Nudge + DM

but not very efficient...
However, we can combine them into one:

T
_

Phys Nudge + DM

Example: backward flow with extra likelihood term

Prior: 2-dimensional bimodal Gaussian with means (3,3) and (0.8,0.8), standard deviations 0.1.
Observe first component, y=4, standard deviation 0.1. Use 100 particles.

0 20 40 60 80 100 M 20 40 60 80 100
The correct answer!
(Note we used time stepping ideas from stochastic interpolants.)

Conclusions and Take-home message

* The Digital Twin problem can be reformulated as a Bayesian Inference problem

* This shows how to include uncertainty in a principled way, and approximations
become well defined.

* Many possibilities for ML, we discussed generative diffusion methods

* Diffusion generative methods use ad-hoc infusion of likelihood, existing methods
do not generalize.

* Combining diffusive generative methods with physical nudging might solve this.

Stochastic particle flow

We can generalize the Langevin dynamics:

dz = f(z)ds + Qdp

Now define 2z = (a:lT, ers ZE%)T and consider the Langevin dynamics over the

configuration space spanned by the N particles. (Gallego and Insua 2020; Leviyev et al.,
2022)

If one chooses
f(Z)ZDVIng(z]y)JrV-D and Q_\/§D1/2

then this MC generates samples from z|y H p X; \y

Using Markov Chain to sample from the posterior

Note we have one chain that contains all particles!

Stochastic Particle Flow Filter

If we choose DD = D (' we find the Stochastic Particle Flow Filter:

N
1
Ax; = 5 Z K;;jBV g, logp(zj|y)As + BV, K;;As + V2Asp;

J=1
attracting term repulsive term stochastic term

This flow leads to an unbiased posterior independent of ensemble size!

Nonlinear data assimilation: Particle flow Filters

Geophysical data assimilation is a nonlinear problem.

Posterior pdf
p(z|y)

Prior pdf

p(z)

The prior and posterior can be for a model state (filter) or a model trajectory (smoother)
or a set of parameters, or a combination of these.

Stochastic Particle Flow Filter

The Stochastic Particle Flow Filter reads:

N
1
Az; = — Y KijBV., logp(z;|y)As + BV, KijAs + V2Asp;

j=1
This flow leads to an unbiased posterior independent of ensemble size!

However Vlogp(z|y) = Viogp(y|z) + Vlogp(x), and we know the likelihood, but
the prior is only known via a few samples.

Stochastic PFF practice uses Gaussian pdf for p(x). This can be bad...

Diffusion PFF: use diffusion generative model to approximate V log p(z).

Example: Squall line

Application on squall-line case, using Cloud Model 1 (CM1)

e dx=1km, dz=500 m
Observe w at 20 grid points

50 particles

Obs error standard deviation 0.2

Extremely nonlinear!

Vertical velocity.
Black dots are observation
locations.

Application on squall-line case, using Cloud Model 1 (CM1

25

20

w

o

0.0144

0.0128

0.0112

0.0096

-

0.0080

0.0064

0.0048

- 0.0032

0.0016

20 40 60 80
Water vapor and Graupel

0.0045
0.0040
0.0035

" 0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.00024

0.00021

0.00018

0.00015

0.00012

0.00009

0.00006

0.00003

0.00000
20 40 60 80

ice and snow

0.0024
0.0021
0.0018
0.0015
0.0012
0.0009

0.0006

- 0.0003

0.0000

0.0027

0.0024

0.0021

0.0018

0.0015

0.0012

- 0.0009

0.0006

0.0003

0.0000
20 40 60 80

cloud liquid water and rain

0.0045
0.0035
00030
00015

0.0010

0.0005

0.0000

Results on vertical velocity

25

20

15

10

5

: a

3

2

1

0
-1
! -2
\ -3
-4

40 60

80 0 20 40 60 80
Prior mean True state
Black dots are observation locations

20

20

40 60 80

posterior mean

o

&

~N

(=]

Results on ice and snow content

0.00024 0.00027
0.00021 0.00024
0.00021
0.00018
0.00018
+ 0.00015
0.00015
+ 0.00012
0.00012
+ 0.00009
0.00009
+ 0.00006
0.00006
0.00003 0.00003
0.00000 0.00000
0 20 40 60 80] 20 40 60 B8O 0 20 40 60 80
Prior mean True state posterior state
0.0024 0.00168
0.0021 0.00144
0.0018
0.00120
 0.0015
0.00096
I 0.0012
0.00072
+ 0.0009
0.00048
- 0.0006
|
0.0003 0.00024
0.0000 0.00000

Stochastic Particle Flow Filter

The Stochastic Particle Flow Filter reads:

N
1
Ax; = N Z K;;jBV ., logp(z;|y)As + BV, K;jAs + V2Asp;
j=1
in which 3, = (LBNL;C)Z_ with Cholesky factors L, and N is a matrix with standard
Gaussian noise values, and kernel

Kij = K () = exp (5, — x) (@B) " (x, -))
and
[K(x!,x}) K(x}x?) K(x!,x:")
K(x2,x!) K(x2x?) K (x2,x4")

1
=N,

