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@ Motivation

o Why do we need predictive models with quantified uncertainties to accurately
anticipate future sea level rise?

o Why do we need more efficient approximations of high rank Hessians?

Bayesian inverse problems governed by PDEs (preliminaries)

Exploiting low-dimensional structure in Bayesian inverse problems governed
by PDEs
o (Global) low rank approximation
e Hierarchical off-diagonal low rank (HODLR) approximation
e Point spread function approximation combined with hierarchical matrix
(H-matrix) approximation
@ Numerical examples

e Inversion for the basal friction coefficient in an ice sheet flow problem
o Spatially varying blurring problem (if time permits)

Conclusions and outlook
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Need predictive models with quantified uncertainties to

accurately anticipate future sea level rise.
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Antarctic ice sheet inversion for the basal friction parameter field
using InSAR surface velocity measurements

Observed surface flow velocity (Rignot et. al, 2011)

@ Several port cities will be at risk from coastal flooding in the future.
@ Ice flowing from ice sheets to ocean is primary contributor to sea level rise.

Details in: Intergovernmental Panel on Climate Change (IPCC), “Climate Change 2021 - The Physical
Science Basis: Working Group | Contribution to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change”. Cambridge University Press, 2023.
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9 Bayesian inverse problems governed by PDEs (preliminaries)
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The inverse problem

Use available observations/data d to infer the values of the unknown parameter
field m that characterize a physical process modeled by PDEs, i.e.,

d=F(m)+mn.

@ The map F : M — RY is the so-called parameter-to-observable map.

e Evaluations of F involve the solution of the PDE (e.g., nonlinear Stokes in
the context of ice sheet problems) given m, followed by the application of an
observation operator B : V — RY to extract the observations from the state.

@ 7 accounts for noisy measurements and model errors and is modeled as
n ~N(0,T,..), i.e., a centered Gaussian at 0 with covariance T,..
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Bayesian formulation of the inverse problem

Describes probability of all models that are consistent with the observations/data
and any prior knowledge about the parameters:

1 1
Afbpose X exp{ - §||]:(m) - d”%n;sle - 5”"’/ - mPng;i;}'

@ The first term in the exponential is the negative log-likelihood (representing
the probability that a given set of parameters might give rise to the observed
data).

@ The second term represents the negative log-prior (e.g., Gaussian prior, i.e.,
m ~ N(mph Cprior))'

Goals:

o Characterize the posterior statistically (MAP point, mean, covariance, etc.)

e for functions m (large vectors after discretization), and
o for expensive F(-).

@ Exploit connection to PDE-constrained optimization.
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Inverse problems governed by PDEs

@ The maximum a posteriori (MAP) point my,e is defined as the parameter
field that maximizes the posterior distribution:

Mypp + = argmin(— log dfiye. (m))
meM

1 1
= in = ||F(m) —d|*-1 + =||m — 2
argmin 5| F(m) —difzs + 5l —morlE

1 1
= argmin — ||B(u) — d|>- + =|jm — 2_
7I;Lg€Ir_/\l/1[n 2 || (U) ||Fnoisle 2 ||Tn mpr||cpri01r7

where for given m, u solves the PDE (e.g., Stokes).
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Inverse problems governed by PDEs

@ The maximum a posteriori (MAP) point my,e is defined as the parameter
field that maximizes the posterior distribution:

Mypp + = argmin(— log dfiye. (m))
meM

1
= argmin 3| F(m) i3y + gl —molE

1
_ : 2 2
= a;gerf\l/lln §||B(u) - d||I,n;i51e + §||m — 77"Lpr||(/,p_ri;r7
where for given m, u solves the PDE (e.g., Stokes).

@ When F is linear, due to the particular choice of prior and noise model, the
posterior measure is Gaussian, N (Myap, Coost)

Muar = CPOSt(‘F* n;sid + Cprlor mpl’)’ C’POSt = H_l = ( 1‘7: + Cpr\or)

where F* : R? — M is the adjoint of F, and H is the Hessian (second
derivative) of the negative-log posterior.

@ Note: In the general case of nonlinear parameter-to-observable map F the
posterior distribution is not Gaussian.
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Challenges in solving inverse problems (under uncertainty)

Severe mathematical and computational challenges place significant barriers on
solving complex inverse problems (governed by PDEs) under uncertainty.

o Expensive-to-evaluate/solve forward problems:

o Challenges: large state dimension, complex and high-aspect ratio (thin)
geometry, nonlinear and anisotropic constitutive laws, ill-conditioned linear
and nonlinear algebraic systems that arise upon discretization as a result of
heterogeneous and widely varying parameters, etc.

o All scalable methods will benefit from some combination of tools, e.g., ROM,
multi-fidelity, data-driven models/corrections.

o Large-scale optimization problem governed by the forward problem:
o Challenges: large parameter dimension, bound constraints, etc.
o Newton-type algorithms are essential with efficient preconditioning.

@ Uncertainty quantification:
e The solution of the Bayesian inverse problem takes the form of a very
high-dimensional posterior probability density function.
e Models often times have additional uncertainties and/or are approximations;
need to take into account model uncertainty/error/discrepancy (how do we
represent/model this, and handle it in a scalable way?).
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What do we mean by scalable?

@ Computational cost of solving inverse problems governed by PDEs can be
measured in number of (linearized) forward (and adjoint) solves.

o Algorithmic scalability: the computational cost is independent of the state
variable dimension, the parameter dimension, and the data dimension.

o Hardware scalability: the compute time is decreased upon more hardware
resources.

@ The algorithm should be robust with respect to over discretization of state
and parameter and overprovisioning of data.

@ The algorithm should exploit the problem strucure (e.g., global/hierarchical
low-rankness, locality, smoothness, low-dimensionality) in Bayesian inverse
problems governed by PDEs.
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Scalability of an ice sheet inverse solver

Inexact Newton-CG (results obtained using the ymir Stokes solver)

#sdof #pdof | #N | #CG | avgCG | #Stokes
95,796 10,371 42 | 2718 65 7031
233,834 25,295 39 | 2342 60 6440
848,850 91,787 39 | 2577 66 6856
3,372,707 364,649 39 | 2211 57 6193
22,570,303 | 1,456,225 40 | 1923 48 5376

##sdof: number of degrees of freedom for the state variables;
#pdof: number of degrees of freedom for the inversion parameter field;
#N: number of Newton iterations;

#CG, avgCG: total and average (per Newton iteration) number of CG iterations;

#£Stokes: total number of linear(ized) Stokes solves (from forward, adjoint, and
incremental forward and adjoint problems)
Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the

propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).
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MCMC sampling: stochastic Newton (SN)

Performance results / Convergence diagnostics

MPSRF | IAT | ESS | MSJ | ARR | #Stokes | time (s)
SN 1.348 600 | 875 64 2 8400 420

@ MPSRF: multivariate potential

scale reduction factor @ ARR: average rejection rate

@ #Stokes: # of Stokes solves per

@ |IAT: integrated autocorrelation ]
independent sample

time
@ time: time per independent

@ ESS: effecitive sample size
sample

@ MSJ: mean squared jump distance

@ Statistics: 21 parallel chains (each 25k); # samples: 525k; dof: 139; rank
Hessian: 15

det Hl/2 1 1 \T 1
Proposal density: —————exp | —= (y —mr + H H(y—miy+H
p Y. gy P | 7y (y g) Hy 9)
Details in:

@ N. Petra, J. Martin, G. Stadler, O. Ghattas. A computational framework for infinite-dimensional
Bayesian inverse problems: Part Il. Stochastic Newton MCMC with application to ice sheet inverse
problems, SIAM Journal on Scientific Computing, 2014

@ K. Kim, U. Villa, M. Parno, Y. Marzouk, O. Ghattas, N. Petra, hIPPYIlib-MUQ, TOMS, 2023
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The Hessian (of the negative log posterior) plays a critical

role in inverse problems

@ Its spectral properties characterize the degree of ill-posedness.

@ The Hessian drives Newton-type optimization algorithms for solving the
inverse problem.

@ The inverse of the Hessian locally characterizes the uncertainty in the
solution of the inverse problem (under the Gaussian assumption, it is precisely
the posterior covariance matrix).

@ Goal: rapidly perform linear algebraic operations, i.e., manipulation of the
Hessian (and its square root and inverse) actions needed by sampling or CG
solvers, hence seek approaches to approximate the Hessian(-applies).

@ These approximations can then be used as pre-conditioners, and to build
MCMC proposals based on local Gaussian approximations.
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e Exploiting low-dimensional structure in Bayesian inverse problems governed by PDEs
@ (Global) low rank approximation
@ Hierarchical off-diagonal low rank (HODLR) approximation
@ Point spread function approximation combined with hierarchical matrix (#-matrix)

approximation
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Low rank approximation of the Hessian of the likelihood

Under the assumption of Gaussian noise and linearized parameter-to-observable map
@ The Hessian (in discrete form) takes the form:

H = Hd + Hike
~~~ ~~

. iy . . —1
Hessian of the neg-log post  Hessian of the neg-log prior = 1"prior

@ Invoking low rank approximation of H; combined with Sherman-Morrison-
Woodbury formula to approximate the inverse Hessian (i.e., T,...):

p!

o W,: contains the largest r , — 1,190,403 parameters

eigenvectors of Ty Hg

l.=H'=(T.,H+I) 'T,,~T,,-W,DW!

o D, = diag(\i/(\; + 1)) € R™*", £
where )\; are eigenvalues of Tyio Hy S 02
e Figure: spectrum of I, Hy for o
Antarctica (1.19M parameters). B

0 1000 2000 3000 4000
number

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. JCP, 2015.

Noemi Petra
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Motivation to go b “global low rank approximation”

@ Low rank Hessian approximation-based
methods require computing twice as many
linearized forward or adjoint partial differential
equation (PDE) solves as the numerical rank of ™~

the Hessian. )
@ These methods are inefficient when the o |—1.190.403 parameters

numerical rank of the Hessian is large, as is the g

case in continental scale ice sheet inverse b

problems.

1000 2000 3000 4000
number

Our goal is to use additional structure combined with hierarchical matrix
compression to reduce the computational cost of solving the (Bayesian) ice sheet
inverse problem.
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Hierarchical off-diagonal low rank (HODLR) approximation

Exploit the narrow sensitivities

sensitivities, 9B measurements, d

sensitivities, 54 parameter, (3(x)

Details in:
Per-Gunnar Martinsson, Fast direct solvers for elliptic PDEs, SIAM, 2020.

J. Ballani and D. Kressner, Matrices with hierarchical low rank structures, Springer, 2016.
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Rank-structure approximation costs

Numerical results obtained using Albany/Sandia

4,000

2,000 F .

Hessian-vector products

1073 102 1071
|| H misfic — iImisﬁt”Z/HHmisﬁtHZ

Details in: T. Hartland, G. Stadler, M. Perego, K. Liegeois, N. Petra. “Hierarchical off-diagonal
low-rank approximation of Hessians in inverse problems, with application to ice sheet model
initialization”, Inverse Problems, 39 (8), 2023.
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Hierarchical matrices (H-matrices)

@ Matrix is reordered and subdivided recursively into
blocks.

@ Many off-diagonal blocks are low rank.

@ The matrix as a whole may be high rank.

@ Work and memory required for an N x NV
H-matrix with rank k& blocks:

O(k*N (log N)*)

e a,be {0,1,2,3} depends on the type of
H-matrix used and the operation being
performed

e typical operations: matrix-vector products,
matrix-matrix addition, matrix-matrix
multiplication, matrix factorization, matrix
inversion

Details in:
@ Hackbusch, Hierarchical matrices: algorithms and analysis, Springer, 2015.
@ L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices, Computing, 70, 2003.
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Hierarchical matrix versus matrix free

o Classical methods for building H-matrix require matrix entries H;;.

@ New algebraic methods based on “peeling process” can build H-matrix from
matrix-vector products.
@ Problem: peeling process better than low rank, but still expensive

(e.g., Q).

@ Here we build the H-matrix faster by taking advantage of the problem
structure (e.g., @), i.e.,
o Local sensitivities
o Local mean-displacement invariance
o Non-negative impulse responses.

Details in:

o T. Hartland, G. Stadler, M. Perego, K. Liegeois, N. Petra. “Hierarchical off-diagonal low-rank
approximation of Hessians in inverse problems, with application to ice sheet model initialization”,
Inverse Problems, 39 (8), 2023.

@ N. Alger, T. Hartland, N. Petra, O. Ghattas. “Point spread function approximation of high rank
Hessians with locally supported non-negative integral kernels”, SIAM Journal on Scientific Computing
(SISC), 46 (3), 2024 (http://arxiv.org/abs/2307.03349).
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Fast high rank Hessian approximation for Bayesian inverse

problems

e Stage 1: Point spread function (PSF) approximation of (high rank)
Hessians
o Apply the Hessian to a delta distribution (i.e., point source, impulse) to
compute impulse responses of the Hessian operator at scattered points.
o Interpolate these impulse responses to approximate the entries of the
integral kernel

o Stage 2: H-matrix compression:

o Convert the PSF Hessian approximation to hierarchical matrix format.
o Invert the compressed matrix using fast hierarchical matrix arithmetic.

o Stage 3: Hessian-approximation via 7{-matrix compression:
o Use this approximation to precondition linear systems involving the Hessian
(e.g., solve the Newton system to compute the MAP point) and/or draw
samples from the posterior.

Details in: N. Alger, T. Hartland, N. Petra, O. Ghattas. “Point spread function approximation of high
rank Hessians with locally supported non-negative integral kernels”, SIAM Journal on Scientific
Computing (SISC), 46 (3), 2024 (http://arxiv.org/abs/2307.03349).
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The computational cost of the PSF-based method

o Computing impulse response moments and batches:
1+d+dd+1)/24n, operator applications

o d: spatial dimension; ny: number of impulse response batches
e In a typical application one might have d = 2 and ny = 5, in which case a
modest 11 operator applications are required.

o Building the #-matrix:
0] ((kthog N) (kn log N + ki)) elementary operations
o kp: H-matrix rank; N: parameter size; k,: number of nearest neighbors

o Performing linear algebra operations with the 7{-matrix:

e One matrix-matrix addition to add the H-matrix approximation of the data
misfit term to the regularization term.

e One matrix-matrix addition to enforce symmetry.

o Few matrix-matrix additions and matrix factorizations to handle negative
eigenvalues.

o These H-matrix linear algebra operations (as implemented in the HLIBPro
library) were less costly than the PDE solves.
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e Numerical examples
@ Inversion for the basal friction coefficient in an ice sheet flow problem
@ Spatially varying blurring problem (if time permits)
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Example: lce sheet inverse problem

Nonlinear Stokes ice sheet model (for viscous, shear-thinning, incompressible fluid)

Invoking the balance of mass and linear momentum:

=V - [2y(u,n) &y — Ip] = pg in Q
V-u=0 inQ
oy,n=0 onl;
u-n=0,To,n+exp(f)Tu=0 onl,

p density, g gravity

o wu ice flow velocity, p pressure °

@ 0y = —Ip+ 2y(u,n)é, stress tensor @ 7 unit normal vector

° — l(Vu + VuT) strain rate tensor @ [ log basal sliding coefficient
1A 1on octi ) ) o T =1 — n ®n tangential

° y(u,n) = w 511 effective viscosity operator

o &y = Str(¢2) second invariant of the o T, and T}, top and base

strain rate tensor boundaries
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Example: lce sheet inverse problem

The ice sheet geometry and discretization (top), the “true” parameter (bottom
left) and the corresponding velocity field (bottom right).
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Example: lce sheet inverse problem

Impulse responses

Black stars are point source locations.

Shading shows the magnitude of the normalized impulse responses (darker
means larger function values).

@ Dashed gray ellipses are estimated impulse response support ellipsoids based
on the moment method.
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Example: lce sheet inverse problem

Convergence history for solving the Stokes inverse problem using inexact Newton PCG

PSF (5) REG NONE

Iter | #CG #Stokes ||g|| |#CG #Stokes ||g|| |#CG #Stokes ||g||
0 1 4 1.9e+4+7| 3 8 1.9e+7| 1 4 1.9e+7
1 2 6 6.1e+6| 8 18 8.4e+6| 2 6 6.1e+6
2 4 10  2.6e+6| 16 34  41le+6| 4 10  2.6e+6
3 2 6+22 6.9e+5| 34 70 1.8e+6| 14 30 6.9e+5
4 3 8 4.4e+4| 52 106  5.6e+5| 29 60 1.3e+5
5 5 12 2.2e+3| 79 160 9.4e+4| 38 78 1.0e+4
6 0 2 l.le+1| 102 206  6.5e+3| 58 118  1.8e+42
7 — — — 151 304 1.2e4+2| O 2 5.5e-1
8 — — — 0 2 2.9e-1 | — — —

Total | 17 70 — 445 908 — 146 308 —

@ #CG: the number of PCG iterations used to solve the Newton system.
@ #Stokes:the total number of Stokes PDE solves performed in each Newton iteration.

@ ||g|l: the % norm of the gradient.

Noemi Petra Bayesian ice sheet inverse problems October 07, 2025



Example: lce sheet inverse problem
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Example: lce sheet inverse problem

The log basal sliding parameter computed by solving the ice sheet inverse problem
with noise levels: 25% (left), 5% (middle), and 1% (right).
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Example: lce sheet inverse problem

Convergence history and eigenvalue clustering

1 7
10-1 "‘ ..... REG . 0
DR NONE S
_ v — PSF (1) T 108
LR — PSF(5) ! %
=10 o —PSF (25) ‘ .
B oo, : 10 =
& 5 B
8 -9 ) ‘. 3
8 10 X 101
‘—l ", PRI
v —=
—13 - 10—1
10 0 200 400 600 0 300 600 900 1,200
7, CG iteration k, generalized eigenvalue #

Left: convergence history for solving Hx = b using PCG, where b has i.i.d.
random entries drawn from the standard Gaussian distribution and H is evaluated
at the solution of the inverse problem. Right: eigenvalues of the generalized
eigenvalue problem Hu, = A\yHuy.
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e Conclusions and outlook
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Conclusions

@ Hessian approximations or preconditioners are essential for Bayesian inverse
problems governed by partial differential equations.

@ This is particularly important when the model must be continually updated
with new information, as with digital twins.

@ Low-rank approximations of the Hessian become prohibitive as the data
becomes more informative (as is the case for ice sheet inverse problems).

@ Local point spread function interpolation combined with Hierarchical matrix
representations promise a more efficient Hessian approximation.
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Extending to large-scale with simpler Gaussian PSF

Joint: N. Alger (UT Austin), T. Hartland (LLNL), T. Isaac (NVIDIA), O. Ghattas (UT
Austin)

@ Don't bother computing impulse responses. Use moments only.
@ Use Gaussian approximation of kernel:

(Hu)(y) ~ / B(y, )u(x)dz

x

B(0) 1= gz o (50— w50 - (o))

@ Use block row low rank (BRLR) structure instead of H-matrix:

— o

red=block rows, blue=nonzero cols in block

-100

0

—200

-300

-400

-1800 —1700 -1600 —1500 —1400 —1300 —1200 -1100 —1000
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Joint parameter and state dimension reduction for

Bayesian ice sheet inverse problems
Joint work with: P. Mrada, K. Kim, T. Cui, B. Peherstorfer and S. Minkoff

@ Parameter dimension reduction: identify a likelihood-informed parameter
subspace that captures parameter directions where the change from prior to
posterior is most significant and reduce the parameter dimension:

71—pc>st(n1|d) ~ Tike (d | (}mr) Wprior(mr) 7Tprior(rnL)
——

parameter—reduced posterior Tpost(m,|d) complement prior

@ State dimension reduction via POD and DEIM: accelerate the nonlinear
forward model evaluations by identifying a low-dimensional subspace of the
state and construct a reduced version of the forward model:

Key idea: POD-DEIM reduced Newton system:

VIKin+W(S W) 'STK )Wa=—-V(rjn+W(S W) 18 )

Details in:
T. Cui, Y. Marzouk and K. Willcox, Scalable posterior approximations for large-scale Bayesian inverse
problems via likelihood-informed parameter and state reduction, JCP, 2016.
S. Chaturantabut and D.C. Sorensen, Nonlinear Model Reduction via Discrete Empirical Interpolation
SIAM J. Sci. Comput., 2010
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Accounting for the model error

using the Bayesian Approximation Error (BAE) approach

o Key idea: explore the full posterior using a reduced order model and take
into account the model error:

d=F(m)+n=(F(m)+e)+n=F(n)+v

e F(m): the accurate (high fidelity) parameter-to-observable map

o F(m): the approximative (low fidelity) parameter-to-observable map

n=d- F(m) 1 ~ N (0, Tise) (data noise)
e =F(m)— F(im) e~N(ET:) (approximation/model error)
v=e+n v~N(D,T,) (total error)

o U =¢+7: the mean; I, = I'. + I.: the total error covariance
Details in:
@ Jari Kaipio and Erkki Somersalo, Statistical and Computational Inverse Problems, Springer, 2005
@ Jari Kaipio and Ville Kolehmainen, Approximate marginalization over modeling errors and uncertainties
in inverse problems, Bayesian Theory and Applications, 2013

@ Ruanui Nicholson, Noemi Petra, and Jari Kaipio, “Estimation of the Robin coefficient field in a Poisson
problem with uncertain conductivity field”, Inverse Problems, 2018.
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Stagel: Hessian approximation via PSF
Example: Spatially varying blurring problem

Left: Matrix created by evaluating the integral kernel at mesh points. Right: Impulse

responses ¢, associated with points ;.

2

Impulse responses can be thought of intuitively as “columns” of the integral kernel.

(y,2) = (1 — af(y,x))g(a) exp (—1(h<y, x)Tc*h@,x))
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Stagel: Hessian approximation via PSF

Example: Spatially varying blurring problem

To choose batches of impulse responses, we form ellipsoid estimates for the
supports of all ¢, via a “moment method”.

v

S(@)ui = o?u;

Impulse response moments and the ellipsoid support for an impulse response.
w(x): location that ¢, is centered at. 3(x): a matrix with eigenvectors and eigenvalues
that characterize the width of the support of ¢,. V(x): scaling factor.
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Stagel: Hessian approximation via PSF

Example: Spatially varying blurring problem

"‘
Solve ellipsoid Apply A to
(V 2 packing problem Dirac comb

1, X)

Ul Ql

Illustration of the process to compute one impulse response batch.

@ Impulse response moments are first used to form ellipsoid shaped estimates of
the supports of impulse responses.

@ Then, an ellipsoid packing problem is solved to choose batches of
non-overlapping support ellipsoids.

@ The blurring operator (here denoted by .A) is applied to a Dirac comb (a
weighted sum of point sources) associated with the points x;, which
correspond to the ellipsoids.

Batches of impulse responses may be thought of intuitively as
sets of “columns” of the kernel.
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Stage 2: PSF Hessian approximation to H-matrix

Kernel entry approximation via radial basis function interpolation

(y,x)

@ Left: H-matrix structure. Computing an entry of this matrix requires evaluating
the integral kernel, ®(y, x), at a pair of points (y, ).

@ Center: Kernel evaluation points = and y (black circles), sample points for the
approximation (light gray and black dots), and the k,, sample points, =, that are
nearest to z (black dots).

@ Right: Known impulse responses at x’. Using radial basis function interpolation,
the desired kernel entry is approximated as a weighted linear combination of
translated and scaled versions of impulse responses at the points z’.
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Stage 2: PSF Hessian approximation to H-matrix

Quality of the approximation

1.0

.

0.5

0.0

Relative error, ||®(-, ) — ®(-,2)||/||®(-, z)||, in the approximation of the
“column” of the integral kernel associated with z, using 5 (left), 10 (center) and
20 (right) impulse response batches.

Adding more batches yields a more accurate approximation
but this leads to more operator applies.
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Ellipsoid estimates for the supports of impulse responses

Blur kernel (left two columns) and a Ricker wavelet-type kernel (right two columns)

Spatially variant blur kernel (left two columns) and a Ricker wavelet-type kernel
(right two columns) for progressively more significant negative numbers in the
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Relative error in the PSF approximation of the kernel

Example: Spatially varying blurring problem

PSF convergence (impulse responses) PSF convergence (batches)
10° E 100 E
o L L
£ 107t E 1071}
R r r
fo L L
-2 | IS -2 L
z:a’i 10 2—7':2.0\, 10 g
re|4 | =—T =25 ~\ I
& 10-3 LT = 3.0 e 10-3 s
— [ o— = 3.5 N\ F
| ——7=14.0 I

1074 il Lol Lol Lol 1074 Ll Lol Lol Lo

101 102 103 10° 10! 102
#impulse responses #batches

Left: Relative error vs. the total number of impulse responses used in the
approximation. Right: Relative error vs. the number of impulse response
batches. The dashed gray lines show linear convergence rates.
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Comparison of computational cost

Example: Spatially varying blurring problem

Error #applies PSF #applies HODLR #applies RSVD
20% 11 592 354
L=1 10% 15 772 520
5% 23 924 674
20% 8 852 1316
L=1/2 10% 10 1144 1916
5% 12 1404 2456
20% 7 932 2624
L=1/3 10% 8 1264 3734
5% 8 1520 4660

o L: scales the width of the impulse responses (influences the rank)
@ Error: is the relative error in the approximation of the kernel measured in the
Frobenius norm.

o F#applies: number of operator applies required to achieve the given error
tolerances, using the PSF, HODLR (hierarchical off diagonal low rank), and

GLR (global low rank) methods.

October 07, 2025

Bayesian ice sheet inverse problems

Noemi Petra



Relevant literature

@ (Global) low rank approximation
@ Flath, Wilcox, Akgelik, Hill, Van Bloemen Waanders, and Ghattas, Fast algorithms for Bayesian
uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian
approximations, SISC, 2011.
@ Halko, Martinsson, and Tropp, Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions, SIAM review, 2011.
© Ghattas and Willcox, Learning physics-based models from data: perspectives from inverse
problems and model reduction, Acta Numerica, 2021.
@ Hierarchical (7{-)matrix approximations
Hackbusch, Hierarchical matrices: algorithms and analysis, Springer, 2015.
Martinsson, Fast direct solvers for elliptic PDEs, SIAM, 2020.
Lin, Lu, and Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP, 2011.
Ambartsumyan, Boukaram, Bui-Thanh, Ghattas, Keyes, Stadler, Turkiyyah, and Zampini,
Hierarchical matrix approximations of Hessians arising in inverse problems governed by PDEs,
SISC, 2020.
Hartland, Stadler, Perego, Liegeois, and Petra, Hierarchical off-diagonal low-rank approximation
of Hessians in inverse problems, with application to ice sheet model initialization, Inverse
Problems, 2023.
@ Chen, Anitescu, Scalable physics-based maximum likelihood estimation using hierarchical
matrices, JUQ, 2023.

@ Point spread function approximation combined with hierarchical matrix (#-matrix) approximation

© 000

@ Gentile, Courbin, and Meylan, Interpolating point spread function anisotropy, 2013.

@ Escande and Weiss, Approximation of integral operators using product-convolution expansions,
Journal of Mathematical Imaging and Vision, 2017.

© Alger, Rao, Myers, Bui-Thanh, and Ghattas, Scalable matrix-free adaptive product-convolution
approximation for locally translation-invariant operators, SISC, 2019.

Noemi Petra Bayesian ice sheet inverse problems October 07, 2025



	Motivation
	Bayesian inverse problems governed by PDEs (preliminaries)
	Exploiting low-dimensional structure in Bayesian inverse problems governed by PDEs
	(Global) low rank approximation
	Hierarchical off-diagonal low rank (HODLR) approximation
	Point spread function approximation combined with hierarchical matrix (H-matrix) approximation

	Numerical examples
	Inversion for the basal friction coefficient in an ice sheet flow problem
	Spatially varying blurring problem (if time permits)

	Conclusions and outlook

