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My Group's Work / Inverse Problems

® QOptimization with structure and regularization
® Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations
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My Group's Work / Inverse Problems

® Optimization with structure and regularization
® [ow-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations
® Nonconvex optimization theory and practice

® Algorithmic convergence behavior, when we need to initialize well and
how, what induces implicit regularization and how to use it wisely
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Figure courtesy Science Magazine
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My Group's Work / Inverse Problems

® QOptimization with structure and regularization
® Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations

® Nonconvex optimization theory and practice
® Algorithmic convergence behavior, when we need to initialize well and
how, what induces implicit regularization and how to use it wisely

® Matrix Completion (recommender systems, environmental and chemical flow
missing data imputation, hyperspectral video completion, rigid structure from

motion, internet topology hopcount matrix estimation)
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NRMSE of each recovered time slice for Toluene gas dataset from 25% samples, and wall
time for the corresponding algorithms.
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My Group's Work / Inverse Problems

® QOptimization with structure and regularization
® Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations
® Nonconvex optimization theory and practice
® Algorithmic convergence behavior, when we need to initialize well and
how, what induces implicit regularization and how to use it wisely

® Matrix Completion
Dynamic Inverse Imaging (cardiac perfusion DMRI; dynamic fMRI OSSI)
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My Group's Work / Inverse Problems

® QOptimization with structure and regularization
® Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations

® Nonconvex optimization theory and practice

® Algorithmic convergence behavior, when we need to initialize well and
how, what induces implicit regularization and how to use it wisely

® Matrix Completion
® Dynamic Inverse Imaging

® Learning with heterogeneous/heteroscedastic data, reduced order
modeling and control, switched system identification, ...

® Today: Leveraging low-rank structure in deep learning
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Introduction

Most successful modern deep learning applications

GitHub
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Introduction

How is modern ML achieved?
* Training data {(z;,;)}Y, C R% x R% with

dy XN dyxN
R%XN R%

X =[x 2 ... xn] € Y=[yiy2 ... yn] €

This notation doesn’t handle transformers or dimension-changing nonlinearities like pooling, but it's close enough for our
purposes.
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How is modern ML achieved?
* Training data {(z;,;)}Y, C R% x R% with
X =[xy 22 ... zN] eREXN Yy — [y1 y2 ... yn] € Rw*N
and we wish to learn a prediction function
fo(x) == o (W (0p1(Wi—1---01(Wim))),

where W, € R4*di-1,. @ = {W}L |, and {o;}L, are known
nonlinearities applied to each layer, usually related to ReLU for
intermediate layers and softmax at the end?.

This notation doesn’t handle transformers or dimension-changing nonlinearities like pooling, but it's close enough for our
purposes.
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How is modern ML achieved?
e Training data {(z;,y;)})Y, C R% x R% with
X =[xy 22 ... zN] eREXN Yy — [y1 y2 ... yn] c RW*N
and we wish to learn a prediction function
fe(x) == o (Wi (op-1(Wr—1---01(Wiz))),

where W, € R4*di-1,. @ = {W}L |, and {o;}L, are known
nonlinearities applied to each layer, usually related to ReLU for
intermediate layers and softmax at the end?.

e Optimize the loss function:

1 N
min ((©) = ;&' (fo(®i), yi)

Loss could be cross-entropy, MSE, or other error metrics.

This notation doesn’t handle transformers or dimension-changing nonlinearities like pooling, but it's close enough for our
purposes.
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Pretrain, Fine tune, and Infer: The Modern ML Pipeline

® FEstimates for param count and training costs:

® GPT3 (175B params) $5M.
® GPT4 (1.7T params) $50M.
® GPT5 (2.0T params) $500M.

Making (training), fine-tuning, and inference more efficient has been one of
the most important problems for widespread accessibility of generative Al.

- _—] .
7 Maizey ¢
Query and extract insights from
your own data C O I_A l

The Corpus of Linguistic Acceptability
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Introduction

Observation: deep layers have low-rank structure

Use gradient descent to optimize ® = {W;}%_, and look at the

over iterations t.

Linear Model

10°

o 10 20 30 40 10 20 30 40 0 10 20 30
Index Index Index Index
Linear Model MLP VGG ViT-B

weights

Figure: Singular values of AW_1 over iterations, where W;(t) = W;(0) + AW, for

iteration t.

Deep linear network (DLN) with MSE loss, Multi-layer perception (MLP) with CE loss, trained on MNIST, VGG
[Simonyan and Zisserman, 2015] and ViT-B [Dosovitskiy et al., 2020] trained with CE loss on €IFAR-10.
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Introduction

Observation: Success of Low-Rank Adaptation

® LoRA [Hu et al., 2021] is a parameter-efficient adaptation technique
for large pretrained models that uses low-rank updates to pre-trained
weights.

® Fine-tune dense weight matrix W € R%*¢ as
W =W + WoW;

where W is frozen pretrained weight matrix and W, W5 are
trainable factors with Wy € R™*4, Wy € R4*" and r < d.

® | oRA achieves high accuracy with very low memory costs on many
natural language and vision tasks.

® 19319 citations and counting
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Introduction

Goals: Understand and Leverage Low-Rank Structure

Goals:

® Understand how low-rank structure arises in deep networks.

® | everage low-rank structure for more efficient deep learning
optimization.

® Use it to improve LoRA.
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Introduction

Goals: Understand and Leverage Low-Rank Structure

Goals:

® Understand how low-rank structure arises in deep networks.

There is now a rich literature on how low-rank structure arises in
overparameterized deep linear networks:
fe(x) = W Wr_;-- - Wiz

® There is an implicit low-rank bias that gets stronger with the depth of
the network.

® The gradients, weights, and activations all “share” rank.
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Introduction

Contributions

Theoretical: For deep overparameterized matrix factorization,
® We show every iteration of gradient descent occurs within an
invariant low-dimensional subspace of the weights

® Weights are highly compressible — we construct near-identical
factorizations at a fraction of the parameter count
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Introduction

Contributions

Theoretical: For deep overparameterized matrix factorization,

® \We show every iteration of gradient descent occurs within an
invariant low-dimensional subspace of the weights

® Weights are highly compressible — we construct near-identical
factorizations at a fraction of the parameter count

Practical

® We validate our compression methodology for accelerating
deep matrix completion

® We propose Deep LoRA: an efficient and robust method for
fine-tuning language models based on compression
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Outline

Introduction

Theory for Overparameterized Deep Linear Networks

Matrix Completion
Deep LoRA

=] & = E = DaAe
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Theory for DLN

Modern Machine Learning = Overparameterization

Success of overparameterized models
attributed to

@ implicit algorithmic regularization

® improved optimization landscape

But there are also costs:
Consider an overparameterized LoRA to bring these benefits to low-rank
fine tuning:
W =W + W3sW,o,W;
where Wi, Wy, W3 € R4 This L layer factorization has
e Ld? parameters
® O(Ld®) gradient complexity

Much larger than 2rd parameters of LoRA! We are back to full training
costs. Can we get the benefits without the costs?
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Set-Up

Data. Target matrix & € R?? with rank(®) = r*

=] & = E = DaAe
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Set-Up
Data. Target matrix & € R?? with rank(®) = r*
Model. Deep matrix factorization

[(©) =W Wir_i---WoW; = Wp,

with parameters © = (W))£ | c Rdxd
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Set-Up
Data. Target matrix & € R?? with rank(®) = r*
Model. Deep matrix factorization
f(©) =W Wi_1-- - WoW; = W,y
with parameters © = (W))£ | c Rdxd
Objective. Minimize £(®) = 1|/ f(©) — ®||% via Gradient Descent:
Wit +1) = 1 = )Wi(t) = nVw, (O(1)), | € [L]
from arbitrary €;-scaled orthogonal initialization, i.e.,

W (0O)W;(0)" = Wi(0)T Wy(0) = €14, 1 € [L]
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Main Result

Suppose d — 2r* > 0. Then there exist orthogonal (Ul)lel C R4 and
(V)L c R4 with Vi1 = Uj such that

wit) 0

W, (t) = U,
i(t) Lo pi(t) g

v e

for all t > 0 where Wﬁ(t) € R¥"*2" and

pi(t) = pu(t —1)- (L =nA—n- ][ pi(t — 1)) (1)
by

for all [ € [L] and t > 1 with p;(0) = ¢;. Note p;(t) = p(t) if they are all
initialized at e.

L. Balzano Low-rank Deep Learning October 8, 2025 14 /32



lllustration of the theory

® | earning only occurs within a 2r*-dimensional invariant subspace of
left /right spaces of weights (p is independent of ®)

® The factors U;, V; depend only on ® and ®(0) — more generally the
initial gradient V/(©(0))

Singular Values Right Singular Vectors Left Singular Vectors
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Theory for DLN

Insight at initialization

Let Q=W --- W1 and R=W,_ ;.- Wy, so from ¢;-scaled
orthogonal initialization, we have the gradient

VwL(®)=Q QW R-®)R' = |[[¢ |Wi-Q @R, (2
kA i

which gives the update

Wh=1-n)W,— |[[¢|Wi+A=|1-m-]]¢|Wi+A
k#l k£l
(3)

The d — 2r identical singular values that satisfy (1) correspond to a
construction of d — 2r pairs of singular vectors (u,v) that are
simultaneously annihilated on the left and right of A respectively.
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Theory for DLN

The Evolution of Singular Spaces in More Generic Settings

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of weight matrices for ((©) = 1[|W,.1 X — Y%
(for wide or low-rank Y).

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of weight matrices with momentum.
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Theory for DLN

Compressible Dynamics

From Theorem 1, we have that

L
FO) = U WitV + (H Pl(t)Q) ULaVih
~ UL WiV = fe(©(t), UL, Via)

when ¢ are small (since p; < ¢).

o <5 = E = DA
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Theory for DLN

Compressible Dynamics

From Theorem 1, we have that

FO) =UL Wra(t) Vi) + (HPZ ) U2V

~ UL,lﬁ;Lzl(t)Vm = fe(O(1), Uri1,Vi1)

when ¢ are small (since p; < ¢).

For r > r* such that d — 2r > 0, running GD on compressed weights e) yields

I£(©() = fo(®), Uy, Via)lE < (d—2r)- [ &

=1

L. Balzano Low-rank Deep Learning October 8, 2025 18 /32



Theory for DLN

Compressed Trajectory

-1
. Original 10
Compressed _a
* Initialization 10
1077
0 10710
3
—110-13
10716
mmmm Original
107 Compressed
0 10 20 30 40
Time (s)

Figure: Original vs. compressed trajectories for deep matrix factorization.

® Left: Principal components of end-to-end GD trajectories.

® Right: Training loss vs. wall-time comparison.
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Matrix completion

Outline

Introduction

Theory for Overparameterized Deep Linear Networks

Matrix Completion
Deep LoRA
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Matrix completion

From Deep Matrix Factorization to Completion

Let @ C {1,...,d} x{1,...,d} be a subset of observed entries of ®.

min 3|20 (7(©) - )|} Q

o <5 = E = DA
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Matrix completion

From Deep Matrix Factorization to Completion

Let @ C {1,...,d} x {1,...,d} be a subset of observed entries of ®.

1
min |26 (£(©) - ®)|IF

1072 ==

1074
Wi(t) =-- Wl(t) V1T1 10-¢

-8
UL,l 10

Recovery Error

10-10 mmmm Original

10-12 Comp

0 10 20 30 40

Time (s)

(4)

® Qur theorem doesn't hold since @ ® is not low-rank for arbitrary
Q, and the method fails. (d = 1000,r = 3, |Q2| = 20000)
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Matrix completion

Compression for General Loss - Implemented Strategy

For a general loss ¢, we make it work with a (currently, heuristic)
modification:

We make Uy 1, Vi1 € R¥?" trainable
with a discrepant learning rate 1.

u}
)

I
il
tht
n
S
Py
i)

L. Balzano Low-rank Deep Learning



Matrix completion

Compression for General Loss - Implemented Strategy

For a general loss ¢, we make it work with a (currently, heuristic)
modification:

1072
l
1074
s
cee 0 1076
ay
2 10-®
o
19 .
2 10-10 = Original
== Comp (y>0)
10712 = Comp (y=0)
We make Up 1, Vi1 € R%2" trainable 0 10 20 30 40

. . . Time (s)
with a discrepant learning rate 1.
We apply this to matrix completion as

well as Deep LoRA.
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)
I
il
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n
S
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Matrix completion

Accelerating Matrix Completion

== Original 1072 I=.] 107 ==

Comp (y>0) ‘
Comp (y=0) 1074 10°*
Y Initialization &5 s
b 106 b 106
oy 2
¢ 10-® ¢ 10-®
o o
o : o PPy
2 10-10 mmmm Original K 10-10 mmmm Original
Comp (y>0) Comp (y>0)
10-12 Comp (y=0) 10-12 Comp (y=0)
0 500 1000 1500 0 10 20 30 40
Iteration (x100) Time (s)

Figure: Original vs. compressed trajectories with « discrepant updates
(v = 0.01) and ablating v (v = 0).

® Left: Principal components of end-to-end trajectories.
® Middle: Recovery error vs. iteration comparison.

® Right: Recovery error vs wall-time comparison.

L. Balzano Low-rank Deep Learning October 8, 2025 23/32



Outline

Introduction

Theory for Overparameterized Deep Linear Networks

Matrix Completion
Deep LoRA
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Deep LoRA

Success of Low-Rank Adaptation

Low-Rank Adaptation (LoRA) [Hu et al., 2021]

Fine-tune dense weight matrix W € R%*? (e.g. of transformer) as
W =W + WoW;

where W is frozen pretrained weight matrix and W, W5 are trainable
factors with Wi € R4 W, € R¥" and r < d.

® | oRA achieves high accuracy with very low memory costs on many
natural language and vision tasks.

® |ts accuracy can exceed that of full fine-tuning!
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Weaknesses of Low-Rank Adaptation

Low-Rank Adaptation (LoRA) [Hu et al., 2021]

Fine-tune dense weight matrix W € R%*? of transformer as
W =W + WoW,;

where W is frozen pretrained weight matrix and W, W, are trainable
factors with Wi € R4 W, € R¥*" and r < d.

® Prone to overfitting with limited data unless rank at each layer is
carefully specified

® Choosing layer-specific update ranks using cross validation is
intractable

L. Balzano Low-rank Deep Learning October 8, 2025 26 /32



LoRA Overfitting

Ex: LoRA is sensitive to the rank parameter.

0.7

0.6

0.5

0.4

Pearson Correlation

02 Vanilla LoRA

0.1

8 16 32 64
Rank r

Figure: For fine-tuning BERT on STS-B, each choice of rank r, we draw 16

samples at random from STS-B over 5 trials with different seeds, and measure
performance on the validation split.
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LoRA Overfitting

Ex: LoRA is sensitive to the rank parameter.
An overparameterized factorization can solve this problem.

0.7

o
EY

°
o

Pearson Correlation
o o
w -

Vanilla LoRA
—— Deep LoRA

o
N

0.1

8 16 32 64
Rank r

Figure: For fine-tuning BERT on STS-B, each choice of rank r, we draw 16
samples at random from STS-B over 5 trials with different seeds, and measure
performance on the validation split.
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Deep LoRA - Key Takeaway

QJ'@f 0 \‘e(

Figure: Deep, wide adaptation of BERT vyields simple weight updates (left)
whose directions converge early on in fine-tuning (right).

Early alignment to low-rank updates implies compressibility.
Can be compressed to only Lr? more parameters than vanilla LoRA.

figure details
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Deep LoRA

Deep LoRA uses what we learned in our theorem.

® Step 1: Overparameterize each layer with three e-orthogonal
initialized matrices.

W =W + WsWoW,;

where Wi, Wy, W3 € Rxd,

® Step 2: Compute one gradient (one full pass or one batch) and
compute the initial “invariant” subspace

® Step 3: Initialize new W3, W7 to match these subspaces and W5 to
be random orthogonal, and run gradient descent with discrepant
learning rates?.

2The discrepant learning rate may not be necessary, accordingto more recent studies:
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Improved Few-Shot Fine-Tuning with More Parsimony

Deep LoRA performs better with limited data

Vanilla LoRA
—— Deep LoRA

Pearson Correlation
o
>
a

16 64 256
# Training Examples

Figure: Fine-tune BERT on STS-B over
20 random trials; measure performance
on the validation split of each method
using the same train set.
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Deep LoRA

Improved Few-Shot Fine-Tuning with More Parsimony

Deep LoRA performs better and adaptively chooses correct rank.

Vanilla LoRA
—— Deep LoRA

704 = Vanilla LoRA
I Deep LoRA

c 075
(=}
2
D070 50
E €
3 o065 340
c o
o
@ 0.60 30
i
a 055 20

0.50 10

0.45 0

16 64 256 0 2 4 6
# Training Examples Rank

Figure: Fine-tune BERT on STS-B over  Figure: We plot a histogram of

20 random trials; measure performance  numerical ranks for Deep LoRA and
on the validation split of each method vanilla LoRA with r = 8 after adapting
using the same train set. to STS-B with 256 samples.
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Limited-Data GLUE Benchmark

Table: Performance gap (with variance) for 1024 samples over 10 trials on the

validation split between Deep LoRA and vanilla LoRA using the same train set.
Metrics are normalized to 1.

ColLA MNLI MRPC QNLI QQP

A +40.090+0.002 +0.0114+0.0005 +0.0042+10.001 +0.048+0.0009 +0.005+0.0002

RTE SST-2 STS-B Overall
A 40.02940.002  +0.019+0.0006 +0.018+0.00006 +0.028-+0.002
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Deep LoRA

® |n practice: Deep LoRA. Adaptive to the intrinsic rank of
the problem with less overfitting.

® |n theory: compressible learning dynamics. Gradient
descent only happens within invariant subspaces of the weights.

® Yaras, Can, Peng Wang, Laura Balzano, and Qing Qu. “Compressible Dynamics in Deep Overparameterized Low-Rank
Learning & Adaptation.” In International Conference on Machine Learning, pp. 56946-56965. PMLR, 2024.

® Kwon, Soo Min, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. “Efficient Low-Dimensional Compression of
Overparameterized Models.” In Proceedings of Artificial Intelligence and Statistics, 2024.

® Wang, Peng, Xiao Li, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, and Qing Qu. “Understanding deep
representation learning via layerwise feature compression and discrimination.” Accepted to the Journal of Machine
Learning, 2025.

® Yaras, Can, Alec S. Xu, Pierre Abillama, Changwoo Lee, and Laura Balzano. “MonarchAttention: Zero-Shot Conversion
to Fast, Hardware-Aware Structured Attention.” Accepted to Neural Information Processing Systems, 2025.

® Balzano, Laura, Tianjiao Ding, Benjamin D. Haeffele, Soo Min Kwon, Qing Qu, Peng Wang, Zhangyang Wang, and
Can Yaras. “An overview of low-rank structures in the training and adaptation of large models.” arXiv preprint
arXiv:2503.19859 (2025).
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|
Overparameterized Fine-Tuning: Deep LoRA

sy@r 0 wet

Figure: Deep, wide adaptation of BERT yields simple weight updates (left)
whose directions converge early on in fine-tuning (right).

e Left: Final singular value spectra of W — W,

® Right: Cosine alignment of subspace formed by top 8 right singular
vectors between current and final iterations.

back to takeaway
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Why do we need depth in linear networks?

Recall Wi --- Wix = Wi x, so why not just learn the parameters of

one matrix Wp.; to apply to 7

Training L-layer networks on F-MNIST (left) and CIFAR-10 (right)

Test Accuracy
w w w
~ o [}

[
o
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=@= Hybrid
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Depth (L)

w
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Why do we need depth in linear networks?

Recall W, --- Wix = Wp.ix, so why not just learn the parameters of
one matrix Wr.1 to apply to «?
® Recent works demonstrated that linear over-parameterization by
depth (i.e., expanding one linear layer into a composition of multiple
linear layers) in deep nonlinear networks yields better generalization
performance across different network architectures and datasets
[Guo et al., 2020, Huh et al., , Kwon et al., 2024].
® This is also corroborated by our experiments, where increasing the
depth of linear layers of a hybrid network leads to improved test
accuracy and improved feature compression.
® Another work [Arora et al., 2019] shows that deeper
overparameterized factorizations have implicit regularization towards
low-rank solutions, and they can better handle ill-conditioned or
low-sample settings. Our experiments also support this.
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Learning Dynamics Visualized

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of the weight matrix W (t) = U, ()2, (t)Vi(t) 7.

¢ Left: Evolution of singular values o;(t) throughout training.
¢ Middle: Evolution of Z(v;(t),v;(0)) throughout training.
¢ Right: Evolution of Z(u;(t),u;(0)) throughout training.
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Proof ldeas

® The analytic form of the gradient Vg ¢(®) is given by
Vw,l(©) = Wi, (f(©) — @) Wily,y, L€ L],

which when substituted into the gradient descent update equation
gives

Wit +1) = (L= nA)Wi(t) = Wy (8) (Wra(t) — @) Wili, (1)

forl € [L] and t > 0.
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Proof ldeas

Wit +1) = (1= npA)Wi(t) = nWi o (t) (Wra(t) — @) WL, (1)

We proceed by establishing VI the existence of m := d — 2r* vectors
vi(l) ul) ie [m], so that Vt:

y S

A(t) : Wity = pi(tul’,

B(t): W (hu’ = pi(t)o”,
Ct): & Wiy (Hhul” = o0,
D(t): dW," ., (v = 0.

If these four events hold, @ plays no role in the dynamics, and the

subspace spanned by {vgl) i, “passes through” the update equation.
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Proof ldeas

Wi(1) = (1 = pA)Wi(0) — nW,L5(0) (W.1(0) — @) W, (0)

Define S := A (W,,(0)®) N\ ((WLTQ(O)<1>)T W1(0)> c RY - notice it
has dim(S) > d — 2r* = m.

For any orthonormal set {vl(l)}?ll €S,
® Let ugl) = Wi(0)v (1)/61 (also an orthonormal set)
o Then W1 (0) "ul!) = oV
o and W/, (0)®@v!") =0
o and & Wi, (0)W1(0)v") = 6@ T W0 (0)u!”) =0

The rest follows from induction on | € [L] and then induction on ¢ > 0.
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Ablating Compression for Deep LoRA
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