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Introduction

My Group’s Work / Inverse Problems
• Optimization with structure and regularization

• Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations

cosformer linear-attention performer nystromformer monarch-attention softmax

• Nonconvex optimization theory and practice
• Algorithmic convergence behavior, when we need to initialize well and

how, what induces implicit regularization and how to use it wisely

• Matrix Completion
• Dynamic Inverse Imaging
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My Group’s Work / Inverse Problems
• Optimization with structure and regularization

• Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations

• Nonconvex optimization theory and practice
• Algorithmic convergence behavior, when we need to initialize well and

how, what induces implicit regularization and how to use it wisely

• Matrix Completion (recommender systems, environmental and chemical flow

missing data imputation, hyperspectral video completion, rigid structure from

motion, internet topology hopcount matrix estimation)

• Dynamic Inverse Imaging
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(a) r = 3, d1 = 100, d2 = 1000,
d3 = 20, �2 = 0.

(b) r = 3, d1 = 100, d2 = 1000,
d3 = 20, �2 = 10�3.

(c) r = 3, d1 = 200, d2 = 1500,
d3 = 50, �2 = 0.

(d) r = 3, d1 = 200, d2 = 1500,
d3 = 50, �2 = 10�3.

(e) r = 3, d1 = d3 = 100, �2 = 0. (f) r = 3, d1 = d3 = 100, �2 = 10�3.

Fig. 2: (a)-(d): Batch completion of t-SVD synthetic tensors with 20% entries observed and median wall-clock time over 10
trials on the x-axis. Markers are plotted every 100 TOUCAN iterations and 50 batch algorithm iterations. (e) & (f): TOUCAN
completing a tensor from a dynamically changing FSM over time compared to batch completion t-SVD methods with 50% of
the entries observed. Markers are plotted for every 50 TOUCAN iterations. The second dimension of the tensor passed to the
batch algorithms TCTF and TNN-ADMM is equal to the number of iterations.

Fig. 3: NRMSE of each recovered time slice for Toluene gas
dataset from 25% samples.

TABLE II: Total wall clock times in seconds for Toluene gas
dataset

Algorithm Time (s)
TOUCAN 30.81
TeCPSGD 137.31

STC 363.54
OLSTEC 552.53

TCTF 725.55
TNN-ADMM 879.78

algorithms iterate until the difference NRMSE between iterates
is less than 10�4 or a maximum number of 75 iterations is
reached.

Fig. 3 compares the NRMSE of each recovered 2D slice to
the true data at each time instance for the algorithms, which
shows TOUCAN tracking the sensor readings with comparable
error to OLSTEC. Due to the non-stationary behavior of the
data, the tracking errors fluctuate as the data changes in time.

While the batch methods achieve the best overall NRMSE
error computed for the entire tensor, the online methods show
the best reconstruction error on each sample after the initial
start-up iterations. We also give the total computation time for
each algorithm in Table II, emphasizing the significant speedup
TOUCAN attains over the baseline algorithms, particularly
the batch algorithms that are computationally prohibitive with
large tensor data.

2) Streaming dynamic MRI reconstruction: Magnetic res-
onance imaging (MRI) collects a high-dimensional tensor
that is often undersampled due to computational limitations
exacerbated by large volumetric and dynamic acquisitions.
One successful solution to image reconstruction from limited
sampling is low-rank tensor completion [7], [38]. A t-SVD
factorization of the spatial frequency-by-time (or k-t space)
tensor reveals low-tubal-rank structure in the real and complex
components [7], and t-SVD algorithms have been shown to
be proficient at completing the k-t space tensor for image
reconstruction. MRI data can also contain significant motion
content and time-varying dynamics such as breathing mo-
tion. We employ TOUCAN’s ability to track streaming time-
dynamic multiway day to recover the k-t space tensor.

We test the completion abilities of each algorithm on the
invivo myocardial perfusion dataset data from [33] with both
varying levels of uniformly random entry sampling and tube
sampling along the ky direction. The dimensions of the data
are kx = 190, ky = 90 and kt = 70, and the data contains
many dynamic motions such as heartbeats, breathing motion,
and image intensity changes.

The streaming algorithms pass over the data once with the
k-space rows oriented along the third tensor mode (ky = d3).

NRMSE of each recovered time slice for Toluene gas dataset from 25% samples, and wall 
time for the corresponding algorithms. 
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Fig. 1. Synthetic Sphere dataset. (a) 3D model of the sphere. (b) Observed point tracks. (c) Observed data matrix based on occlusion pattern. (d) Observed data matrix with 
data removed randomly. 

Fig. 2. Dinosaur dataset. (a) One frame from the sequence. (b) Reconstructed 3D model. (c) Observed point tracks. Because the dinosaur is on a turntable, the tracks are 
elliptical. (d) Observed data matrix. 

Fig. 3. Bear dataset. (a) One frame from the sequence. (b) Reconstructed 3D model. (c) Observed point tracks. (d) Observed data matix. 
the median run is plotted in a darker version of the same color. 
The dashed black line shows the run using the deterministic ini- 
tialization. To measure the speed of convergence, we find the time 
it takes for the median line to move 99% of the way from its initial 
error to the smallest error achieved over all plots. The algorithms 
are sorted by this value and its location is denoted by a vertical 
red line. The bottom set of plots shows the same results when 3D 
RMSE is calculated. The set of plots in Fig. 5 show the empirical cu- 
mulative distribution function of the error for each algorithm after 
convergence. Once again, the error for the deterministic initializa- 
tion is shown with a black dashed line. In this case, the number 
associated with each algorithm is the median error after conver- 
gence and the algorithms are sorted by this value. 

In terms of speed, we find that SAGE and SAGE100 are signif- 
icantly faster than any other algorithm for 2D RMSE. These two 
algorithms take only 0.35 s to achieve 99% of the final error re- 
duction. The only algorithm with comparable performance is PF, 
which takes 10 times longer and does not converge as frequently. 
All other algorithms are at least two orders of magnitude slower 
than SAGE. It is also notable that the deterministic solution often 
performs as good as the best random initialization, with the ex- 
ceptions being DW and DN. A similar result is seen with 3D RMSE 
in the middle plots, where PF and SAGE converge much faster than 
other algorithms. The general convergence rate in terms of 3D er- 
ror is lower than 2D error, since the 3D error will generally not 
decrease much until the 2D error is lowered enough for an accu- 
rate 3D model to be generated. 

It is important to note here that while SAGE reaches a small er- 
ror in computation times that are orders of magnitude faster than 
the other algorithms, it is not always fastest to reach a very small 
error. Consider the time it takes to reach 10 −2 versus 10 −5 for 2D 
RMSE in this experiment. While SAGE reaches 10 −2 in a median 
time of 0.26 s, it takes an additional 26.9 s to reach 10 −5 . Damped 
Wiberg (DW), by comparison, reaches 10 −2 in 25.1 s and takes only 
another 9.52 s to reach 10 −5 . Thus, while our first-order method 
is faster at first, second-order methods have potential to reach a 
highly accurate solution, given more computation time. Since our 
focus is real-time structure from motion, we believe that SAGE is 
an excellent option for achieving acceptable accuracy in signifi- 
cantly less time. 

With respect to convergence as shown in the bottom set of 
plots, we find that LM_M and LM_S almost always converge, re- 
gardless of their initialization; the same can be said for DW if we 
ignore the deterministic initialization. Other algorithms, including 
SAGE and WIBERG, also converge in most cases. Interestingly, the 
more complex algorithms CSF and BALM will often get stuck in lo- 
cal minima on this dataset. We note that these algorithms have 
several extra parameters that affect their convergence rate and it 
may be possible to tune them to specific datasets to get better con- 
vergence. 

Random occlusion pattern. Results for the Synthetic Sphere 
dataset using a random pattern of missing data are shown in Fig. 6 . 
This dataset is much simpler for all algorithms; 100% convergence 
is achieved for all initializations. We omit 2D errors since they are 
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Rigid Structure from Motion 
Kennedy, Balzano, Taylor 2013
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Rigid Structure from Motion 
Kennedy, Balzano, Taylor 2013
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Introduction

My Group’s Work / Inverse Problems
• Optimization with structure and regularization

• Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations

• Nonconvex optimization theory and practice
• Algorithmic convergence behavior, when we need to initialize well and

how, what induces implicit regularization and how to use it wisely

• Matrix Completion
• Dynamic Inverse Imaging (cardiac perfusion DMRI; dynamic fMRI OSSI)0 5 10 15 20 25
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Fig. 1: Comparison of global L+S [16] reconstruction versus online algorithms RUFFed GROUSE (this work) and GROUSE [20] on a
synthetic cardiac cine DMRI dataset (left) and a real cardiac perfusion DMRI dataset (right). Images are cropped to a region of interest (ROI).

sampled data. We compute the SNR of the reconstruction
restricted to pixels in a region of interest (ROI) containing the
myocardium, which we call the SNR in ROI.

For RUFFed GROUSE we partitioned the dataset into
batches of b temporally adjacent frames and processed the
batches in sequence using the following settings: MRXCAT
dataset, r = 1, b = 6, ⌘ = 0.0002, � = 0.005; perfusion
dataset r = 3, b = 5, ⌘ = 0.001, � = 0.005. We initialize the
subspace estimate U0 using GROUSE [20]. We also compare
with the GROUSE run frame-by-frame in sequence, using
the same rank r and initialization of U0 (i.e., two full passes
of GROUSE). Finally, we compare with the low-rank plus
sparse (L+S) method of [16] with temporal finite differences
as the sparsifying transform, using publicly available code2.
All experiments were run in MATLAB on a MacBook Pro
laptop (3.1 GHz Intel Core i7 CPU, 16 GB RAM).

The reconstructions obtained using RUFFed GROUSE
are comparable to the L+S method, both visually and in terms
of SNR in ROI. The GROUSE reconstruction, which uses
only a low-rank model, gives lower quality reconstructions

2http://cai2r.net/resources/software/
ls-reconstruction-matlab-code

in frames containing significant dynamics (e.g., frame 15 for
the MRXCAT phantom dataset, and frame 8 for the perfu-
sion dataset). This demonstrates the benefit of including the
(transform) sparse component in RUFFed GROUSE. How-
ever, the improvement in reconstruction quality comes at the
expense of greater computation time: RUFFed GROUSE is
several times slower than GROUSE (e.g., 246 s vs. 18 s on
the synthetic dataset), yet still 2-4 times faster than the L+S
reconstruction on these datasets.

5. CONCLUSION

We extend the GROUSE subspace tracking algorithm to in-
corporate batch processing under a low-rank plus transform
sparse model with applications to DMRI reconstruction. We
show that the proposed approach gives comparable recon-
struction quality to the approach of [16] based on a global
low-rank plus sparse model that performs iterative reconstruc-
tion of the entire time series. The proposed approach requires
storing and processing only small batches of frames sequen-
tially, which allows robust subspace methods to be applied to
much larger DMRI datasets than previously possible.
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Introduction

My Group’s Work / Inverse Problems
• Optimization with structure and regularization

• Low-rank structure, union of subspaces, low-dimensional varieties,
sparsity structure, total variation, Monarch, and combinations

• Nonconvex optimization theory and practice
• Algorithmic convergence behavior, when we need to initialize well and

how, what induces implicit regularization and how to use it wisely

• Matrix Completion

• Dynamic Inverse Imaging

• Learning with heterogeneous/heteroscedastic data, reduced order
modeling and control, switched system identification, ...

• Today: Leveraging low-rank structure in deep learning
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Introduction

Most successful modern deep learning applications

text generation...
image generation...

... and image
recognition.
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Introduction

How is modern ML achieved?
• Training data {(xi,yi)}Ni=1 ⊂ Rdx × Rdy with

X = [x1 x2 . . . xN ] ∈ Rdx×N , Y = [y1 y2 . . . yN ] ∈ Rdy×N

and we wish to learn a prediction function

fΘ(x) := σL (WL (σL−1(WL−1 · · ·σ1(W1x))) ,

where Wl ∈ Rdl×dl−1 , Θ = {Wl}Ll=1, and {σl}Ll=1 are known
nonlinearities applied to each layer, usually related to ReLU for
intermediate layers and softmax at the end1.

• Optimize the loss function:

min
Θ

`(Θ) =
1

N

N∑

i=1

`i (fΘ(xi),yi)

Loss could be cross-entropy, MSE, or other error metrics.

1
This notation doesn’t handle transformers or dimension-changing nonlinearities like pooling, but it’s close enough for our

purposes.
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Introduction

Pretrain, Fine tune, and Infer: The Modern ML Pipeline
• Estimates for param count and training costs:

• GPT3 (175B params) $5M.
• GPT4 (1.7T params) $50M.
• GPT5 (2.0T params) $500M.

Pretrain Fine tune Infer

Pretrain Fine tune Infer

Pretrain Fine tune Infer

Making (training), fine-tuning, and inference more efficient has been one of
the most important problems for widespread accessibility of generative AI.

L. Balzano Low-rank Deep Learning October 8, 2025 5 / 32



Introduction

Observation: deep layers have low-rank structure
Use gradient descent to optimize Θ = {Wl}Ll=1 and look at the weights
over iterations t.
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Figure: Singular values of ∆WL−1 over iterations, where Wl(t) = Wl(0) + ∆Wl for
iteration t.

Deep linear network (DLN) with MSE loss, Multi-layer perception (MLP) with CE loss, trained on MNIST, VGG
[Simonyan and Zisserman, 2015] and ViT-B [Dosovitskiy et al., 2020] trained with CE loss on CIFAR-10.
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Introduction

Observation: Success of Low-Rank Adaptation

• LoRA [Hu et al., 2021] is a parameter-efficient adaptation technique
for large pretrained models that uses low-rank updates to pre-trained
weights.

• Fine-tune dense weight matrix W ∈ Rd×d as

W =W +W2W1

where W is frozen pretrained weight matrix and W1,W2 are
trainable factors with W1 ∈ Rr×d, W2 ∈ Rd×r, and r � d.

• LoRA achieves high accuracy with very low memory costs on many
natural language and vision tasks.

• 19319 citations and counting

L. Balzano Low-rank Deep Learning October 8, 2025 7 / 32



Introduction

Goals: Understand and Leverage Low-Rank Structure

Goals:

• Understand how low-rank structure arises in deep networks.

• Leverage low-rank structure for more efficient deep learning
optimization.

• Use it to improve LoRA.

L. Balzano Low-rank Deep Learning October 8, 2025 8 / 32



Introduction

Goals: Understand and Leverage Low-Rank Structure

Goals:

• Understand how low-rank structure arises in deep networks.

There is now a rich literature on how low-rank structure arises in
overparameterized deep linear networks:

fΘ(x) := WLWL−1 · · ·W1x

• There is an implicit low-rank bias that gets stronger with the depth of
the network.

• The gradients, weights, and activations all “share” rank.

L. Balzano Low-rank Deep Learning October 8, 2025 9 / 32



Introduction

Contributions

Theoretical: For deep overparameterized matrix factorization,

• We show every iteration of gradient descent occurs within an
invariant low-dimensional subspace of the weights

• Weights are highly compressible – we construct near-identical
factorizations at a fraction of the parameter count

Practical

• We validate our compression methodology for accelerating
deep matrix completion

• We propose Deep LoRA: an efficient and robust method for
fine-tuning language models based on compression

L. Balzano Low-rank Deep Learning October 8, 2025 10 / 32
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Introduction

Outline

• Introduction

• Theory for Overparameterized Deep Linear Networks

• Matrix Completion

• Deep LoRA
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Theory for DLN

Modern Machine Learning = Overparameterization

Success of overparameterized models
attributed to

1 implicit algorithmic regularization

2 improved optimization landscape

But there are also costs:
Consider an overparameterized LoRA to bring these benefits to low-rank
fine tuning:

W =W +W3W2W1

where W1,W2,W3 ∈ Rd×d. This L layer factorization has

• Ld2 parameters

• O(Ld3) gradient complexity

Much larger than 2rd parameters of LoRA! We are back to full training
costs. Can we get the benefits without the costs?

L. Balzano Low-rank Deep Learning October 8, 2025 12 / 32



Theory for DLN

Set-Up

Data. Target matrix Φ ∈ Rd×d with rank(Φ) = r∗

Model. Deep matrix factorization

f(Θ) =WLWL−1 · · ·W2W1 =WL:1

with parameters Θ = (Wl)
L
l=1 ⊂ Rd×d

Objective. Minimize `(Θ) = 1
2‖f(Θ)−Φ‖2F via Gradient Descent:

Wl(t+ 1) = (1− ηλ)Wl(t)− η∇Wl
`(Θ(t)), l ∈ [L]

from arbitrary εl-scaled orthogonal initialization, i.e.,

Wl(0)Wl(0)
> =Wl(0)

>Wl(0) = ε2l Id, l ∈ [L]
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2‖f(Θ)−Φ‖2F via Gradient Descent:

Wl(t+ 1) = (1− ηλ)Wl(t)− η∇Wl
`(Θ(t)), l ∈ [L]

from arbitrary εl-scaled orthogonal initialization, i.e.,

Wl(0)Wl(0)
> =Wl(0)

>Wl(0) = ε2l Id, l ∈ [L]
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Theory for DLN

Main Result

Theorem

Suppose d− 2r∗ > 0. Then there exist orthogonal (Ul)
L
l=1 ⊂ Rd×d and

(Vl)
L
l=1 ⊂ Rd×d with Vl+1 = Ul such that

Wl(t) = Ul

[
W̃l(t) 0

0 ρl(t)Id−2r∗

]
V >l , l ∈ [L]

for all t ≥ 0 where W̃l(t) ∈ R2r∗×2r∗ and

ρl(t) = ρl(t− 1) · (1− ηλ− η ·
∏

k 6=l

ρ2k(t− 1)) (1)

for all l ∈ [L] and t ≥ 1 with ρl(0) = εl. Note ρl(t) = ρ(t) if they are all
initialized at ε.

Proof Sketch
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Theory for DLN

Illustration of the theory

• Learning only occurs within a 2r∗-dimensional invariant subspace of
left/right spaces of weights (ρ is independent of Φ)

• The factors Ul,Vl depend only on Φ and Θ(0) → more generally the
initial gradient ∇`(Θ(0))
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Theory for DLN

Insight at initialization

Let Q =WL · · ·Wl+1 and R =Wl−1 · · ·W1, so from εl-scaled
orthogonal initialization, we have the gradient

∇Wl
L(Θ) = Q>(QWlR−Φ)R> =


∏

k 6=l

ε2k


Wl −Q>ΦR>︸ ︷︷ ︸

A

, (2)

which gives the update

W+
l = (1− ηλ)Wl −


∏

k 6=l

ε2k


Wl +A =


1− ηλ−

∏

k 6=l

ε2k


Wl +A.

(3)

The d− 2r identical singular values that satisfy (1) correspond to a
construction of d− 2r pairs of singular vectors (u,v) that are
simultaneously annihilated on the left and right of A respectively.
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Theory for DLN

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices for `(Θ) = 1
2‖WL:1X − Y ‖2F

(for wide or low-rank Y ).

Figure: Evolution of SVD of weight matrices with momentum.
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Theory for DLN

Compressible Dynamics

From Theorem 1, we have that

f(Θ(t)) = UL,1W̃L:1(t)V
>
1,1 +

(
L∏

l=1

ρl(t)
2

)
·UL,2V

>
1,2

≈ UL,1W̃L:1(t)V
>
1,1 = fC(Θ̃(t),UL,1,V1,1)

when εl are small (since ρl ≤ εl).

Proposition 2

For r ≥ r∗ such that d− 2r > 0, running GD on compressed weights Θ̃ yields

‖f(Θ(t))− fC(Θ̃(t),UL,1,V1,1)‖2F ≤ (d− 2r) ·
L∏

l=1

ε2l .
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Theory for DLN

Compressed Trajectory

Figure: Original vs. compressed trajectories for deep matrix factorization.

• Left: Principal components of end-to-end GD trajectories.

• Right: Training loss vs. wall-time comparison.
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Matrix completion

Outline

• Introduction

• Theory for Overparameterized Deep Linear Networks

• Matrix Completion

• Deep LoRA
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Matrix completion

From Deep Matrix Factorization to Completion

Let Ω ⊂ {1, . . . , d} × {1, . . . , d} be a subset of observed entries of Φ.

min
Θ

1

2
‖Ω� (f(Θ)−Φ)‖2F (4)

…
UL,1

V !
1,1W̃L(t) W̃1(t)

• Our theorem doesn’t hold since Ω�Φ is not low-rank for arbitrary
Ω, and the method fails. (d = 1000, r = 3, |Ω| = 20000)
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Matrix completion

Compression for General Loss - Implemented Strategy

For a general loss `, we make it work with a (currently, heuristic)
modification:

…
UL,1(t)

V1,1(t)
!W̃L(t) W̃1(t)

We make UL,1,V1,1 ∈ Rd×2r trainable

with a discrepant learning rate γη.

We apply this to matrix completion as

well as Deep LoRA.
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Matrix completion

Accelerating Matrix Completion

Figure: Original vs. compressed trajectories with γ discrepant updates
(γ = 0.01) and ablating γ (γ = 0).

• Left: Principal components of end-to-end trajectories.

• Middle: Recovery error vs. iteration comparison.

• Right: Recovery error vs wall-time comparison.
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Deep LoRA

Outline

• Introduction

• Theory for Overparameterized Deep Linear Networks

• Matrix Completion

• Deep LoRA
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Deep LoRA

Success of Low-Rank Adaptation

Low-Rank Adaptation (LoRA) [Hu et al., 2021]

Fine-tune dense weight matrix W ∈ Rd×d (e.g. of transformer) as

W =W +W2W1

where W is frozen pretrained weight matrix and W1,W2 are trainable
factors with W1 ∈ Rr×d, W2 ∈ Rd×r, and r � d.

• LoRA achieves high accuracy with very low memory costs on many
natural language and vision tasks.

• Its accuracy can exceed that of full fine-tuning!
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Deep LoRA

Weaknesses of Low-Rank Adaptation

Low-Rank Adaptation (LoRA) [Hu et al., 2021]

Fine-tune dense weight matrix W ∈ Rd×d of transformer as

W =W +W2W1

where W is frozen pretrained weight matrix and W1,W2 are trainable
factors with W1 ∈ Rr×d, W2 ∈ Rd×r, and r � d.

• Prone to overfitting with limited data unless rank at each layer is
carefully specified

• Choosing layer-specific update ranks using cross validation is
intractable
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Deep LoRA

LoRA Overfitting
Ex: LoRA is sensitive to the rank parameter.

An overparameterized factorization can solve this problem.

Figure: For fine-tuning BERT on STS-B, each choice of rank r, we draw 16
samples at random from STS-B over 5 trials with different seeds, and measure
performance on the validation split.
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Deep LoRA

Deep LoRA - Key Takeaway

Figure: Deep, wide adaptation of BERT yields simple weight updates (left)
whose directions converge early on in fine-tuning (right).

Early alignment to low-rank updates implies compressibility.
Can be compressed to only Lr2 more parameters than vanilla LoRA.

figure details
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Deep LoRA

Deep LoRA

Deep LoRA uses what we learned in our theorem.

• Step 1: Overparameterize each layer with three ε-orthogonal
initialized matrices.

W =W +W3W2W1

where W1,W2,W3 ∈ Rd×d.

• Step 2: Compute one gradient (one full pass or one batch) and
compute the initial “invariant” subspace

• Step 3: Initialize new W3,W1 to match these subspaces and W2 to
be random orthogonal, and run gradient descent with discrepant
learning rates2.

2The discrepant learning rate may not be necessary, according to more recent studies.
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Deep LoRA

Improved Few-Shot Fine-Tuning with More Parsimony

Deep LoRA performs better with limited data

Figure: Fine-tune BERT on STS-B over
20 random trials; measure performance
on the validation split of each method
using the same train set.

Figure: We plot a histogram of
numerical ranks for Deep LoRA and
vanilla LoRA with r = 8 after adapting
to STS-B with 256 samples.
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Deep LoRA

Improved Few-Shot Fine-Tuning with More Parsimony

Deep LoRA performs better and adaptively chooses correct rank.

Figure: Fine-tune BERT on STS-B over
20 random trials; measure performance
on the validation split of each method
using the same train set.

Figure: We plot a histogram of
numerical ranks for Deep LoRA and
vanilla LoRA with r = 8 after adapting
to STS-B with 256 samples.
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Deep LoRA

Limited-Data GLUE Benchmark

Table: Performance gap (with variance) for 1024 samples over 10 trials on the
validation split between Deep LoRA and vanilla LoRA using the same train set.
Metrics are normalized to 1.

CoLA MNLI MRPC QNLI QQP

∆ +0.090±0.002 +0.011±0.0005 +0.0042±0.001 +0.048±0.0009 +0.005±0.0002

RTE SST-2 STS-B Overall

∆ +0.029±0.002 +0.019±0.0006 +0.018±0.00006 +0.028±0.002
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Deep LoRA

• In practice: Deep LoRA. Adaptive to the intrinsic rank of
the problem with less overfitting.

• In theory: compressible learning dynamics. Gradient
descent only happens within invariant subspaces of the weights.

• Yaras, Can, Peng Wang, Laura Balzano, and Qing Qu. “Compressible Dynamics in Deep Overparameterized Low-Rank
Learning & Adaptation.” In International Conference on Machine Learning, pp. 56946-56965. PMLR, 2024.

• Kwon, Soo Min, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. “Efficient Low-Dimensional Compression of
Overparameterized Models.” In Proceedings of Artificial Intelligence and Statistics, 2024.

• Wang, Peng, Xiao Li, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, and Qing Qu. “Understanding deep
representation learning via layerwise feature compression and discrimination.” Accepted to the Journal of Machine
Learning, 2025.

• Yaras, Can, Alec S. Xu, Pierre Abillama, Changwoo Lee, and Laura Balzano. “MonarchAttention: Zero-Shot Conversion
to Fast, Hardware-Aware Structured Attention.” Accepted to Neural Information Processing Systems, 2025.

• Balzano, Laura, Tianjiao Ding, Benjamin D. Haeffele, Soo Min Kwon, Qing Qu, Peng Wang, Zhangyang Wang, and
Can Yaras. “An overview of low-rank structures in the training and adaptation of large models.” arXiv preprint
arXiv:2503.19859 (2025).
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Overparameterized Fine-Tuning: Deep LoRA

Figure: Deep, wide adaptation of BERT yields simple weight updates (left)
whose directions converge early on in fine-tuning (right).

• Left: Final singular value spectra of W −W .

• Right: Cosine alignment of subspace formed by top 8 right singular
vectors between current and final iterations.

back to takeaway
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Why do we need depth in linear networks?

Recall WL · · ·W1x = WL:1x, so why not just learn the parameters of
one matrix WL:1 to apply to x? More linear depth related work

Training L-layer networks on F-MNIST (left) and CIFAR-10 (right)
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Why do we need depth in linear networks?

Recall WL · · ·W1x = WL:1x, so why not just learn the parameters of
one matrix WL:1 to apply to x?

• Recent works demonstrated that linear over-parameterization by
depth (i.e., expanding one linear layer into a composition of multiple
linear layers) in deep nonlinear networks yields better generalization
performance across different network architectures and datasets
[Guo et al., 2020, Huh et al., , Kwon et al., 2024].

• This is also corroborated by our experiments, where increasing the
depth of linear layers of a hybrid network leads to improved test
accuracy and improved feature compression.

• Another work [Arora et al., 2019] shows that deeper
overparameterized factorizations have implicit regularization towards
low-rank solutions, and they can better handle ill-conditioned or
low-sample settings. Our experiments also support this.
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Learning Dynamics Visualized

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
>.

• Left: Evolution of singular values σi(t) throughout training.

• Middle: Evolution of ∠(vi(t),vi(0)) throughout training.

• Right: Evolution of ∠(ui(t),ui(0)) throughout training.
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Proof Ideas

• The analytic form of the gradient ∇Θ `(Θ) is given by

∇Wl
`(Θ) =W>

L:l+1 (f(Θ)−Φ)W>
l−1:1, l ∈ [L] ,

which when substituted into the gradient descent update equation
gives

Wl(t+ 1) = (1− ηλ)Wl(t)− ηW>
L:l+1(t) (WL:1(t)−Φ)W>

l−1:1(t)

for l ∈ [L] and t ≥ 0.
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Proof Ideas

Wl(t+ 1) = (1− ηλ)Wl(t)− ηW>
L:l+1(t) (WL:1(t)−Φ)W>

l−1:1(t)

We proceed by establishing ∀l the existence of m := d− 2r∗ vectors

v
(l)
i ,u

(l)
i , i ∈ [m], so that ∀t:

A(t) :Wl(t)v
(l)
i = ρl(t)u

(l)
i ,

B(t) :W>
l (t)u

(l)
i = ρl(t)v

(l)
i ,

C(t) : Φ>WL:l+1(t)u
(l)
i = 0,

D(t) : ΦW>
l−1:1(t)v

(l)
i = 0.

If these four events hold, Φ plays no role in the dynamics, and the

subspace spanned by {v(1)i }mi=1 “passes through” the update equation.
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Proof Ideas

W1(1) = (1− ηλ)W1(0)− ηW>
L:2(0) (WL:1(0)−Φ)W>

1 (0)

Define S := N
(
W>

L:2(0)Φ
)
∩N

((
W>

L:2(0)Φ
)>
W1(0)

)
⊂ Rd - notice it

has dim(S) ≥ d− 2r∗ = m.

For any orthonormal set {v(1)i }mi=1 ∈ S,

• Let u
(1)
i :=W1(0)v

(1)
i /ε1 (also an orthonormal set)

• Then W1(0)
>u

(1)
i = ε1v

(1)
i

• and W>
L:2(0)Φv

(1)
i = 0

• and Φ>WL:2(0)W1(0)v
(1)
i = ε1Φ

>WL:2(0)u
(1)
i = 0

The rest follows from induction on l ∈ [L] and then induction on t ≥ 0.
back to theorem
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Ablating Compression for Deep LoRA
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