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Data-Driven Sensing
‣ Data-driven sensor placement optimization 

- Choice of measurements crucial for real-time estimation and control 
- Physical resources with placement constraints and deployment cost 
- Uncertainty quantification, interpretability 

Large-scale aircraft assembly

Sensor measurements  
shims

→

Sparse Sensing in Nuclear Energy Systems



‣ Detect, characterize sensor failure/perturbation 
‣ Model discrepancy between virtual & physical spaces 
‣ Uncertainty quantification- expected performance  
‣ Interpretability- non convex, non differentiable optimization landscape

Core challenges
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Problem setting

y 𝕊 x

Gappy Reconstruction/Interpolation 
Everson & Sirovich 1995 (gappy POD) 
Chaturantabut & Sorensen 2010 (DEIM)

Manohar, Brunton, Kutz, Brunton 2018

Manohar, Kutz & Brunton, IEEE TAC 2021

Drmac & Gugercin 2016 (QDEIM)


Reconstruction  x̂ = Φ(𝕊Φ)†y

x ∈ ℝn

Φ ∈ ℝn×r

𝕊 ∈ {0,1}p×r

Sensor measurements y = 𝕊x + ξ
Represent state in a low-dimensional basis  x ≈ Φa

Var(a − â) ∝ det[(𝕊Φr)T𝕊Φr]−1



‣ Empirical Interpolation  
- Drmac & Gugercin 2016 
- Perherstofer et al 2020

p ≥ r

Objective function at a glance

ln det[(𝕊Φr)T𝕊Φr]

1
σmin(Θ)

tr(ΘTΘ)
‣ Observability,  norm optimal 

- Chen & Rowley 2016 
- Manohar et al 2021

H2

‣ When submodular, greedy near-D-optimal 
‣ Probabilistic view (max volume ellipsoid) 

- Joshi & Boyd 2016 
- Kakasenko, Alexanderian et al, arXiv 2025

ΘTΘ

for points where experiments were not performed. Statistical criteria, such as A, D and E-optimality,
are used to select the set which minimizes or maximizes di↵erent properties of the Fisher information
matrix. Fisher information [46] measures the amount of information a random variable contains about
the estimated parameter, such as its true mean or standard deviation. The Fisher information matrix
defines covariance matrices associated with maximum-likelihood estimates and is (S r)T (S r) in our
case. A-optimal designs minimize the trace of the inverse of the Fisher information matrix, whereas
E-optimal designs maximize the minimum eigenvalue of the information matrix. D-optimal designs
[47] minimize the generalized variance of the parameter estimates by maximizing the determinant of
the Fisher information matrix [48].

Optimal design for gappy estimation involves placing sensors at limited points in the domain to
accurately reconstruct flow fields over the entire domain. In contrast to classical optimal design in
which each sensor can be used multiple times out of a set of candidate sensors, candidate sensors can
only be used once in the gappy framework. In this setting, design of experiments aims to optimize
the sensor selection S to optimize statistics of the estimation error a � â, an r-dimensional random
variable with zero mean and covariance

⌃ = Var(a� â) = �2((S r)
T (S r))

�1. (8)

The eigenvalues of this covariance matrix characterize the statistical and geometric measures of es-
timation error “size” [49], shown in Table 1. Generalized variance, defined by det(⌃), characterizes

Measure Formula Geometry

Generalized variance det(⌃) = ⇧i�i area, (hyper)volume
Average variance tr(⌃) =

P
i �i linear sum

Maximal variance �max maximum dispersion

Table 1: Statistical and geometric measures for error covariance [49]

correlations among pairs of variables. When it is large, the variables have little correlation with each
other; when it is small, the variables are strongly correlated. On the other hand, average variance,
given by tr(⌃), is the sum of the population variances. A-optimal criteria minimize this average vari-
ance, while E-optimal criteria minimize the maximal variance of ⌃. The variance, which measures the
uncertainty in the estimated response, should be small for minimal deviation between estimated and
true values [47].

We consider D-optimal design for flow field reconstruction with information matrix (S r)T (S r),
which depends on the selected sensors S(�). The determinant objective maximizes the information
volume via maximization of its determinant, given a budget of p sensors. The maximizing sensor set
of this criterion is also the maximizer of its logarithm

�⇤ = argmax
�,|�|=p

log det((S r)
T (S r)). (9)

When p = r, this is equivalent to finding the maximizer of log | det(S r)|. Direct optimization of this
criterion leads to a brute force combinatorial search. This sensor placement approach builds upon the
empirical interpolation method (EIM) [50] and discrete empirical interpolation method (DEIM) [51]
which select the best interpolation points for evaluating nonlinear terms in projection-based reduced
order models. However, these methods do not directly optimize statistics of the error by maximizing
the captured variance. On the other hand, QR pivoting implicitly optimizes the D-optimal criterion
and hence we examine the greedy solution proposed in [52, 53, 54, 37] for sensor placement via QR
factorization with column pivoting in the next section.

3.2 Column-pivoted QR decomposition with spatial constraints

The QR factorization with column pivoting decomposes a matrix W 2 Rm⇥n into a unitary matrix
Q, an upper-triangular matrix R, and a column permutation matrix ⇧, such that W⇧ = QR. As
described above, each column index of  T

r corresponds to a single sensor location in the state space.
We applied QR pivoting to the transpose of our basis, i.e. W =  T

r , and use the permutation matrix
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• Prior over modal coefficients

Bayesian Inference Setting

p(a) = exp(−
1
2

aTS−2a)

• Likelihood
ln p(y |a) = −

1
2η2

(y − Θa)T(y − Θa) −
1
2

aTS−2a

a = (S−2 +
ΘTΘ

η )
−1

ΘTy
η

• MAP estimate 

Andrei Klishin Nathan Kutz
Klishin, Kutz & KM (2023) 
arXiv:2307.11838 A



D-optimal design

Klishin, Kutz & KM (2023) 
arXiv:2307.11838

a = (S−2 +
ΘTΘ

η )
−1

ΘTy
η

A

MAP estimate

ℋ(γ) ≡ − ln det A = Eb − tr ln(I +
ΘS2ΘT

η2 )

ℋ(γ) = Eb − tr ln(I +
1
η2

(D + R))
= Eb − tr ln(I + η−1D)

+
∞

∑
s=1

(−1)s

s!
tr([η−2R(I + η−2D)−1]s)

Hamiltonian of a given sensor set  γ

Decompose into sums over 1pt, 2pt, ….  pt interactions:s



Two-point Energy Approximation

hi = − ln(1 + gi ⋅ gi/η2) ≤ 0
Attracted to high-variance locations

Sensor 1-pt energy

Jij =
(gi ⋅ gj /η2)2

(1 + gi ⋅ gi/η2)(1 + gj ⋅ gj /η2)
≥ 0

Repelled from correlated sensors

Sensor 2-pt energy (crosstalk)

G ≡ ΘS

Klishin, Kutz & KM (2023) 
arXiv:2307.11838

ℋ2pt(γ) ≡ − tr ln(I + η−2D)

+
1
2

tr([η−2R(I + η−2D)−1]2)
Express as dot products of sensing vectors (columns 
of measurement-basis product) 

ℋ2pt(γ) ≡ ∑
i

hi + ∑
i,j

Jij



Two-point greedy sensor placement

Training Data

q = arg min
q∉γ

(hq + 2∑
i∈γ

Jiq); γ ← q

Greedy strategy for selection of the next sensor aims to 
minimize sensor 1- and 2- body interactions (crosstalk)

Two-point interactions provide a sensor optimization landscape  
 Alternatives to the minimizer for emerging design constraints→

O(nrp)



Two-point Energy Approximation

Training Data

B = ΦrA−1 ΘT

η2

σi = η ∑
j

B2
ij

State reconstruction fluctuation propagated from sensor reading

Compute only diagonal 
part of the covariance 
matrix ⟨ΔxΔxT⟩



Validity of approximation

For small  (no. sensors) 2pt energy is a good approximationp 6

FIG. S3. Comparison of sensor placement methods for the Olivetti faces dataset as measured by different energy expressions.
The rows (a) and (b) use the energy landscape at different values of noise η (0.5σscale and 0.05σscale, respectively), the columns
correspond to four different sensor placement methods. The curves correspond to three energy formulae. Exact energy is
evaluated by directly computing the determinant in Eqn. S2, ignoring the constant term Eb. 2-point energy is evaluated with
Eqn. S19. 1-point energy is evaluated by taking only the first term in Eqn. S19. The horizontal dashed line indicates H = 0,
the vertical line indicates the reconstruction rank p = r.

S4. SENSOR METHOD COMPARISON

Figs. S3-S3 show the comparison of sensor placement
methods and respective energies for other two empirical
datasets in the same format as Fig. 2 of the main text.

S5. SENSOR PLACEMENT FOR OLIVETTI
FACES

Fig. S5 shows the sensor placement and reconstruction
for the Olivetti faces dataset. The 1-point landscape hi

has many localized basins for placement, aligning with
the areas of high variability in human faces: eyes, nose,
lips, as well as corners of the image (panel a). The 2-point
landscape Jij shows both the local repulsion of sensors
from nearby locations, and the facial symmetry features
such as similarity between the two eyes (panel a). As
the number of sensors increases, the reconstructed face
gets progressively sharper features (panel b). The sensor
placement largely follows the many local basins of the 1-

point landscape (panel c). Since the basins are not very
deep and sensor repulsion precludes placing many sensors
close by, the 2-point algorithm effectively distributes the
sensors throughout all highly-variable features across the
domain and gradually increases the placement density
with higher sensor budgets. The uncertainty magnitude
increases (darker color) with higher sensor counts, while
the RMSE curve shows small local fluctuations along
with the overall nearly monotonic decrease. This lat-
ter property suggests that while our algorithm identifies
the principal facial features, the Olivetti faces are not
well-described with 100 linear modes, and either a higher
mode count or a nonlinear encoding are required.

S6. SENSOR PLACEMENT FOR CYLINDER
FLOW

Fig. S6 shows the sensor placement and reconstruc-
tion for the cylinder flow dataset. The 1-point landscape
shows a deep basin along the symmetry axis in the wake

7

FIG. S4. Comparison of sensor placement methods for the cylinder flow dataset as measured by different energy expressions.
The rows (a) and (b) use the energy landscape at different values of noise η (0.5σscale and 0.05σscale, respectively), the columns
correspond to four different sensor placement methods. The curves correspond to three energy formulae. Exact energy is
evaluated by directly computing the determinant in Eqn. S2, ignoring the constant term Eb. 2-point energy is evaluated with
Eqn. S19. 1-point energy is evaluated by taking only the first term in Eqn. S19. The horizontal dashed line indicates H = 0,
the vertical line indicates the reconstruction rank p = r.

behind the cylinder, as well as two more shallow basins
towards the right side of the domain symmetrically off-
set from the axis (panel a). The 2-point landscape shows
that locations outside of the wake have practically no
correlation with those inside the wake (panel a). Within
the wake, the correlation structure has a distinct wave-
like pattern corresponding to the spatial wavelength of
the vortex shedding (panel a). The reconstructions show
an error imperceptible by eye already at p = 10 sensors
(panel b). Unlike SST and Olivetti faces datasets, the
cylinder flow dataset shows a tight clustering of sensors
that gradually gets longer and wider, with only two pe-
ripheral sensors appearing for 20 < p < 30 (panel c).
The RMSE curve decays monotonically towards a very
low value without significant fluctuations.

The sensor placement pattern can be explained by the
quantitative features of the landscape. The central basin
of 1-point energy is both deep and wide, reaching the
lowest value of hcenter min ≈ −12.97. The 2-point inter-
actions of the sensors have a narrow band structure corre-
sponding to the wake wavelength, but in magnitude peak

at about Jij ≈ 0.4. It is thus advantageous to place mul-
tiple sensors very close to each other up to a point, until
the crosstalk of a new sensor with previously selected
neighbors overwhelms the advantage of the basin. As a
result, as the sensor budget grows, sensors are placed in
a band that gradually gets both longer and wider (along
and orthogonally to the symmetry axis). Fig. S6 also
shows that the sensor placement method that accounts
for crosstalk (2-point or QR) is significantly better than
those that do not (random and 1-point) in terms of reach-
ing lower energy at the same sensor budget.
Beyond the central basin, the landscape also shows

two symmetric secondary basins offset from the central
axis on the far-right end of the domain. The mini-
mal value of the 1-point term hi is reached in the last
column and is equal to hside min ≈ −12.30. Thus,
it is advantageous for the algorithm to place sensors
within the central basin until it is exhausted, i.e., when
the crosstalk with previously placed sensors cancels out
the difference between the central and side basins J >
(hside min − hcenter min) ≈ 0.7. In the regime presented
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Outlook: Analytic expression for RMSE curve
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which is valid for any η.
What are the limits of this energy approximation? The

answer to this question is intimately tied to the sensor
placement algorithm. Generically, we expect the approx-
imation to work while gi ·gj ≪ gi ·gi, i.e. the correlation
between the sensing vectors is small compared with their
magnitude. For many systems it should be possible to
choose sensors i, j so that the terms Jij are small com-
pared to the terms hi. However, the number of crosstalk
terms Jij for p sensors grows as p2 with sensor number
p. While the individual terms might be small, with in-
creasing number of desired sensors both the number of
terms grows, and the algorithm runs out of low crosstalk
locations. Due to the combination of these reasons, we
expect the approximation to inevitably break down for
large number of sensors p. How large that number is
would depend on the properties of the training data and
the placement domain, and thus would need to be estab-
lished in numerical experiments.

We note that the higher-order terms would have the
shape similar to Jij in Eqn. S21, with a large number of
indices. Due to the construction of R as a non-diagonal
matrix, the terms where adjacent indices are identical
would correspond to the diagonal of R and thus vanish.
However, the indices can repeat in non-adjacent posi-

tions, e.g. at fourth order in J (4)
ijij ̸= 0. The 2-point

expression Eqn. S19 is thus not exact even for placement
of 2 sensors, but is expected to be a good approximation.

S3. PRIOR SELECTION

The reconstruction formula (Eqn. 9 of main text) and
the sensor energy landscape both depend on the choice
of the prior variances S. We consider the prior to be
Gaussian, but it can have different patterns of variances
along each dimension: either it is isotropic S = σpriorI
(we choose σprior = 103), or it follows the singular values
(POD) of the dataset S = Σr/

√
N − 1 [12]. Since there

are two choices of prior for two different operations, we
need to consider four possible combinations.

Along with the prior-regularized reconstruction we
consider a direct reconstruction of the latent state vector
â that solves a linear least square problem:

â = argmin
a

∥y −Θa∥ = Θ†y, (S22)

which is well-defined for any number of sensors p.
We show the benchmark comparison in Fig. S2. The

least squares reconstruction is never better than regular-
ized reconstruction and demonstrates the sharp double
descent behavior at p ≈ r = 100. The regularized recon-
struction curves show strikingly different curves. When
an isotropic prior is used for both sensor placement and
reconstruction, the peak in RMSE is slightly suppressed
but not fully removed (panel c). For the other three sce-
narios, the RMSE curve is monotonic and has no peak.

FIG. S2. RMSE benchmark to select the combination of pri-
ors. Columns correspond to the choice of prior for sensor
placement at noise level η = 1.0◦C, rows correspond to the
choice of prior for reconstruction. Red curves correspond to
the reconstruction with the corresponding prior, while blue
curves correspond to the least-squares reconstruction. The
solid line and shaded region indicating average ± 1 standard
deviation across the test set.

Placing sensors with a POD prior computes the sens-
ing vector dot products gi ·gj with non-uniform weights,
and effectively reduces the dimension in which the sens-
ing vectors are selected (right column of panels). As a
result, the selected sensors are more redundant with each
other. However, using the POD prior for reconstruction
significantly reduces the RMSE while removing the dou-
ble descent peak (top row of panels). As a result, using
an isotropic prior for sensor placement results in a wide
variety of non-redundant sensors selected, while the POD
regularization improves reconstruction (panel a).

Following the conclusions of this benchmark test, we
pick sensors against an isotropic prior, yet reconstruct
states with the POD prior. This combination of meth-
ods is used for all results reported in the main text and
Figs. S5-S6.

Effect of Data-Driven Prior

‣ Data-driven prior   

‣ Isotropic prior  

‣ Mitigates CPQR instability when  
‣ Outlook: Error covariance decomposition

S = Σ2/ n − 1
S = σpriorI

p = r



Comparison to exhaustive search
11

FIG. S8. Comparison of sensor configurations between brute force search, 2-point algorithm, and QR methods for the RSS
dataset. (a-h) Two-dimensional histograms of the joint distribution in the exact energy (S2) and 2-point energy (S16) for
all configurations with sensor number p ∈ [1, 8]. The value of ρ corresponds to the Spearman correlation between the two
energies. The right and top panels show the marginal histogram in only one of the variables. The crosses indicate the sensor
configurations found by each of the three methods. All three crosses overlap in each panel since both the 2-point and the QR
method find the true best sensor set in this case. (i) The discrepancy in energy between the absolute and approximate minima
found by the two methods. Lower exact energy corresponds to more sensors.

[10] A. Murugan, J. Zou, and M. P. Brenner, Undesired usage
and the robust self-assembly of heterogeneous structures,
Nature communications 6, 6203 (2015).

[11] A. A. Klishin and M. P. Brenner, Topological de-
sign of heterogeneous self-assembly, arXiv preprint
arXiv:2103.02010 (2021).

[12] L. Kakasenko, A. Alexanderian, M. Farazmand, and
A. K. Saibaba, Bridging the gap between deterministic
and probabilistic approaches to state estimation, arXiv
preprint arXiv:2505.04004 (2025).



Minimize error covariance of estimation

Column-Pivoted QR

𝕊⋆ = arg max
𝕊

σ((𝕊Φr)T𝕊Φr)

Var(a − â) ∝ det[(𝕊Φr)T𝕊Φr]−1

← ΦT𝕊T = QR

ΦT

Efficient interpolation points 

Drmac and Gugercin 2016 

KM, Brunton, Kutz & Brunton, IEEE CSM 2018

KM, Kutz & Brunton, IEEE TAC 2021

Peherstofer et al, 2020 (ODEIM )

…. 

O(nr2)

p > r

det ΘTΘ = ∏i
R2

ii



Reconstruction results
9

FIG. 4. Comparison of reconstruction metrics for different datasets, with 4:1 randomized train/test split. (a) Examples of
dataset snapshots for different systems. The RSS dataset is non-spatial, so temporal trajectories are shown instead. (b) Exact
energies of sensor configurations selected with different methods: random placement, 1-point algorithms, 2-point algorithm,
and QR pivoting. (c) Relative root mean square error (RMSE) of state reconstruction for sensor readings corrupted with noise
of η = 0.5σscale, with solid line and shaded region indicating average ± 1 standard deviation across the test set. The vertical
dashed line indicates the number of modes r used in the reconstruction.

prior, highlighting the importance of crosstalk for sen-
sor placement (Fig. 4c). The QR sensors without prior
regularization also show consistently higher RMSE, jus-
tifying the need for a prior. The regularized random, 2-
point, and QR algorithms show nearly equivalent RMSE
error curves in contrast with the legacy unregularized QR
PS algorithm that shows the peak at p ∼ r due to the
POD mode truncation For the two synthetic datasets all
sensor placement methods have nearly equivalent perfor-
mance with regularized reconstruction; for these small
datasets, algorithmic placement can also be compared to
brute force search (see SM). We conclude that while the
2-point and the QR algorithms are based on the same un-
derlying POD modes and have nearly equivalent numer-
ical performance, the 2-point algorithm provides much
richer interpretation in terms of sensor landscapes and
interactions.

V. DISCUSSION AND OUTLOOK

The first key advance of this paper is casting the sensor
selection problem in statistical mechanics terms of inter-
action energies of progressively larger numbers of sen-

sors. While we focus the discussion on the 1-body and
2-body interactions, the mathematical formalism extends
to any higher number (see SM). The shape of the 2-body
interactions can be further connected to the properties
of the physical, mathematical, or even artistic processes
that generate data [42–44]. We used a greedy 2-point
method of sensor placement in order to limit the required
memory and computing time, but if the whole landscape
could fit in memory, better energy minima can be ob-
tained through methods such as gradient descent or sim-
ulated annealing [45]. Due to the usage of a regularizing
prior, state reconstruction can be consistently performed
for any number of sensors without the requirement that
p ≥ r [12].

The qualitative and quantitative connection between
sensor placement algorithms to the Ising model has two
main advantages. On the one hand, sensor placement
landscapes can be directly visualized and interpreted in
the data domain as shown in Fig. 1 for SST and in
Figs. S5-S6 for Olivetti faces and cylinder flow. These
landscapes highlight where the sensors “want” to be
placed and how they “repel” each other in an a priori
fashion before any sensors were placed and independently
of a sensor placement algorithm. On the other hand,

CPQR and 1pt consistently underperform 2pt greedy and data-driven prior



Constrained Sensing for Nuclear DTs
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Fig. 8: OPTI-TWIST temperature profile reconstructions through different sensor layouts and uncertainty in estimation

caused by noisy sensor measurements. Unconstrained optimization places sensors near the heater region (c), resulting in
highly accurate reconstruction with ✏ = 0.168 (a), with constrained optimized sensors resulting in comparably high accuracy
✏ = 0.174 (d). Random sensor placement (b) results in inaccurate reconstructions (✏ = 25.24) and large estimation uncertainty
(e) compared to that of optimized sensor locations (f,g).

C. Steady-state simulation of the OPTI-TWIST prototype

The next example follows the new design paradigm sug-
gested by digital twins. In traditional design practice, modeling
and simulation insights are often leveraged at the experimental
design stage in order to build physical models and place
sensors. However, limitations regarding space, installation,
cost, and signal fidelity of the experimental device pose
challenges in deploying the desired number of sensors. Our
holistic approach integrates experimental constraints, Compu-
tational Fluid Dynamics (CFD) simulations, and optimization
objectives (reconstruction) in a principled way to optimize the
placement of sensors in the design phase of the digital twin.

Here, our sensor placement optimization is demonstrated
on the OPTI-TWIST prototype, which is electronically heated
to mimic the neutronics effect of TWIST prior to insertion
into a reactor at INL. Temperature is the field of interest,
and point thermocouples will be used as the sensors. The
OPTI-TWIST prototype was designed to simulate thermal-
hydraulics behavior of TWIST during irradiation in the reactor,
as well as to measure the effect of loss of coolant on the fuel
rodlet temperature. In OPTI-TWIST, the fuel-rod specimen is
replaced by an instrumented electric cartridge heater, and loss
of coolant is controlled by a quick-opening valve at the bottom
of the capsule. To provide the temperature fields necessary to
train the sparse sensing algorithm, a simplified 2D CFD model
of the OPTI-TWIST geometry is developed using StarCCM+
(Figure 9) [61].

The CFD model accounts for steady-state turbulent natural
circulation conditions, including two controlled parameters:
heater power (q̇) and outer surface temperature (Tsur). These
two controlled parameters (i.e., heater power and surface tem-
perature) were varied, while keeping the initial temperatures
(T0 = 300K) and the system pressure (Psys = 2250psi)
constant throughout. The data are comprised of 49 steady-
state temperature fields resulting from seven heater powers
and surface temperatures uniformly sampled at 350–650W

(a) Schematic

Heat Source

Heater Region

(b)
Mesh

Fig. 9: Geometry and mesh of OPTI-TWIST. The axial
symmetry of the OPTI-TWIST is exploited by simulating only
half the domain as the cartridge heater is placed at the center
of the capsule. The geometry and mesh reveal richer dynamics
near the heater region.

and 240–420K, respectively. The convergence criterion was
the maximum liquid temperature, which showed negligible
fluctuations after 2000 time steps. First, our optimization
is run on the steady-state temperature fields, resulting in
the unconstrained optimal placement shown in Figure 8c.
Unconstrained optimization selects three sensors near the
heater (Figure 8c); however, space restrictions make these

Sensor Placement Optimization Objective Reconstruction Error (✏)

Unconstrained 5.432829081027846e-10 0.168
Constrained 4.534195929074569e-11 0.174

Random 1.026196077627373e-12 25.24

TABLE II: Summary of the relative reconstruction error (✏)
and optimization criteria (log | det S r|) for sensor placement
given in Figure 8.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3368875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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C. Steady-state simulation of the OPTI-TWIST prototype

The next example follows the new design paradigm sug-
gested by digital twins. In traditional design practice, modeling
and simulation insights are often leveraged at the experimental
design stage in order to build physical models and place
sensors. However, limitations regarding space, installation,
cost, and signal fidelity of the experimental device pose
challenges in deploying the desired number of sensors. Our
holistic approach integrates experimental constraints, Compu-
tational Fluid Dynamics (CFD) simulations, and optimization
objectives (reconstruction) in a principled way to optimize the
placement of sensors in the design phase of the digital twin.

Here, our sensor placement optimization is demonstrated
on the OPTI-TWIST prototype, which is electronically heated
to mimic the neutronics effect of TWIST prior to insertion
into a reactor at INL. Temperature is the field of interest,
and point thermocouples will be used as the sensors. The
OPTI-TWIST prototype was designed to simulate thermal-
hydraulics behavior of TWIST during irradiation in the reactor,
as well as to measure the effect of loss of coolant on the fuel
rodlet temperature. In OPTI-TWIST, the fuel-rod specimen is
replaced by an instrumented electric cartridge heater, and loss
of coolant is controlled by a quick-opening valve at the bottom
of the capsule. To provide the temperature fields necessary to
train the sparse sensing algorithm, a simplified 2D CFD model
of the OPTI-TWIST geometry is developed using StarCCM+
(Figure 9) [61].

The CFD model accounts for steady-state turbulent natural
circulation conditions, including two controlled parameters:
heater power (q̇) and outer surface temperature (Tsur). These
two controlled parameters (i.e., heater power and surface tem-
perature) were varied, while keeping the initial temperatures
(T0 = 300K) and the system pressure (Psys = 2250psi)
constant throughout. The data are comprised of 49 steady-
state temperature fields resulting from seven heater powers
and surface temperatures uniformly sampled at 350–650W

(a) Schematic

Heat Source

Heater Region

(b)
Mesh

Fig. 9: Geometry and mesh of OPTI-TWIST. The axial
symmetry of the OPTI-TWIST is exploited by simulating only
half the domain as the cartridge heater is placed at the center
of the capsule. The geometry and mesh reveal richer dynamics
near the heater region.

and 240–420K, respectively. The convergence criterion was
the maximum liquid temperature, which showed negligible
fluctuations after 2000 time steps. First, our optimization
is run on the steady-state temperature fields, resulting in
the unconstrained optimal placement shown in Figure 8c.
Unconstrained optimization selects three sensors near the
heater (Figure 8c); however, space restrictions make these

Sensor Placement Optimization Objective Reconstruction Error (✏)

Unconstrained 5.432829081027846e-10 0.168
Constrained 4.534195929074569e-11 0.174

Random 1.026196077627373e-12 25.24

TABLE II: Summary of the relative reconstruction error (✏)
and optimization criteria (log | det S r|) for sensor placement
given in Figure 8.
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• A set function submodular if  is monotone decreasing  
(Diminishing returns) 

• Ex. Observability/controllability metrics, mutual information, neural estimation

f(γ ∪ {s}) − f(γ) ∀s ∈ V

Outlook: sensor information criteria

ln det 𝕊Wc𝕊T

Summers et al, 2016

arg min
γ

I(Xγ; XS \ γ)

Krause et al, JMLR, 2008

Gaussian Processes

Belghazi, Bengio, et al., ICML (2018)

Distance between greedy 
and optimal in toy system 

(25 states)

log det(ΘTΘ)



PySensors 2.0

The SSPOR model integrates the basis, optimizer and the model is fit on the input data X train

with the specified optimizer key word arguments, yielding an optimal sensor placement that balances
reconstruction accuracy with the imposed spatial constraints.

Following model optimization, the algorithm identifies the optimal sensor placement using the
function get selected sensors(), which returns a subset of sensors (top sensors) determined to be
most e↵ective for the given constraints. These sensors can subsequently be extracted into a structured
dataframe via the sensors dataframe() method for detailed analysis. The spatial distribution of
constraints is then visualized through the plot constraint on data() method, which generates a
representation of the constraint boundaries superimposed on the underlying data field. To facilitate
comparative assessment, the plot selected sensors() method graphically di↵erentiates between the
optimal sensor locations and the complete sensor array, while the annotate sensors() method applies
appropriate metadata labels to each sensor position, enabling e�cient interpretation of the optimization
results. Figure 2 illustrates the diverse constraint geometries, constraint typologies, and visualization
capabilities implemented in PySensors 2.0, demonstrating the framework’s enhanced flexibility for
sensor placement optimization.

3.2 Sensor Landscapes and the TPGR Optimizer

The D-optimal objective in Eqn. 4 su↵ers from two limitations: it is not defined for the under-sampling
case p < r, and it is hard to interpret and visualize directly. Ref. [14] resolves these limitations by
adding a prior regularization and decomposing the resulting objective into sums over the placed sensors:

H ⌘ � log det(S�2 + (S r)
T (S r)/⌘

2) ⇡ Eb +
X

i2�

hi +
X

i 6=j2�

Jij , (5)

where S is the assumed prior covariance matrix of the coe�cients a and ⌘ is the assumed sensor noise
magnitude. The typical prior covariances are S / I (isotropic Gaussian) or S = ⌃r/

p
N (normalized

singular values of training data). The series expansion over terms with more sensors is in principle
exact, but we approximate it with the first two terms. In the approximation, Eb is a constant term
that does not a↵ect sensor selection, hi, Jij are the interaction landscapes computed from the basis
and the prior. The objective in Eqn. 5 involves only summation over the selected sensors and is thus
cheaper to evaluate and update than the original objective in Eqn. 4.

The approximate objective is used in the Two Point GReedy (TPGR) optimizer that can return
a user-specified number of sensors p for any mode number r. In contrast, the QR algorithm returns
exactly p = r sensors in order of decreasing importance through pivoting, and all following sensors are
random. The sensor sets returned by TPGR are nearly equivalent to QR for isotropic prior S / I and
small noise ⌘.

After a SSPOR model is fit using the TPGR Optimizer, the one point and two point energy
landscapes can be computed as seen in Code 2. For prior values, the input can either be a numpy
array, corresponding to the diagonal part of the covariance matrix (e.g. all equal for an isotropic prior),
or the string ’decreasing’, which computes the normalized singular values from the training data.

Code 2: Implementation of the Two Point Greedy Optimizer

basis = ps.basis.SVD(n_basis_modes=r)

optimizer = ps.optimizers.TPGR(n_sensors , noise , prior)

model = ps.SSPOR(basis=basis , optimizer=optimizer)

model.fit(data)

sensors=model.get_selected_sensors ()

one_pt_landscape = model.one_pt_energy_landscape(prior , noise)

two_pt_landscape = model.two_pt_energy_landscape(prior , noise , sensors)

3.3 Reconstruction Solvers

Once the set of p sensors has been determined using any of the methods, the sensor measurements y
can be used to determine the state coe�cients a. Under the assumption of linearity, the reconstruction
always takes the shape â = Ay for some matrix A : r ⇥ p.

7
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Figure 7: When selecting a sensing method in PySensors, consider your primary objective: For field
reconstruction in standard settings, use QR with Identity or SVD basis. For classification tasks,
leverage SVD basis with SSPOC optimizer. When facing spatial constraints, choose GQR optimizer.
For under-sampling (p < r) and over-sampling cases (p > r) scenarios , select TPGR optimizer. In
noisy environments enable uncertainty quantification for robust results.

place sensors randomly, resulting in loss of control over sensor placement within the constrained region.
This random allocation risks potential selection of sensors within the constrained region when p > r.

In conclusion, Figure 7 presents a comprehensive flowchart for near-optimal sensor placement using
PySensors 2.0. Users can select a basis for their data, and then determine whether to place sensors
for reconstruction or classification purposes. For reconstruction applications, di↵erent optimizers are
available based on specific requirements such as cost limitations, spatial constraints, or prior knowledge
of the data. The current default method for reconstruction is regularized least squares, where users
can either provide their own prior or allow PySensors to calculate it automatically. Alternatively,
users can opt for the standard least squares solver if regularization is not desired. After obtaining the
optimal sensor configuration, we recommend analyzing the placement e↵ectiveness through uncertainty
heatmaps and reconstruction error metrics to validate the solution for your specific application.

6 Future Functionality

Future work to enhance PySensors functionality includes integrating the two-point greedy (TPGR)
method for sensor placement with additional cost landscapes and spatial constraints. This will prove
beneficial in both under- and over-sampling scenarios where spatial constraints limit sensor placement
options, a common challenge in most engineering applications. Another critical development involves
incorporating all uncertainty sources beyond measurement noise into the UQ heatmap and risk curve
predictions. This comprehensive uncertainty quantification would help explain the double descent
phenomenon observed in sensor-based reconstruction, where reconstruction error initially decreases
with additional sensors but then increases due to overfitting or noise amplification.
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‣ Goal: learn ODEs, laws of motion from trajectory data 
‣ Nonconvex optimization =  many solutions 
‣ When is recovery possible: trajectory length ,  , noise   

‣ Hyperparameters: sparsity , resolution 

n Δt η
λ ρ

Nonlinear System Identification

290 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Figure 7.4: Schematic of the sparse identification of nonlinear dynamics
(SINDy) algorithm [95]. Parsimonious models are selected from a library of
candidate nonlinear terms using sparse regression. This library ⇥(X) may be
constructed purely from measurement data. Modified from Brunton et al. [95].

The sparse vectors ⇠k may be synthesized into a dynamical system:

ẋk = ⇥(x)⇠k. (7.40)

Note that xk is the k-th element of x and ⇥(x) is a row vector of symbolic
functions of x, as opposed to the data matrix ⇥(X). Fig. 7.4 shows how SINDy
may be used to discover the Lorenz equations from data. Code 7.2 generates
data and performs the SINDy regression for the Lorenz system.

Code 7.2: SINDy regression to identify the Lorenz system from data.
%% Generate Data
Beta = [10; 28; 8/3]; % Lorenz’s parameters (chaotic)
n = 3;
x0=[-8; 8; 27]; % Initial condition
tspan=[.01:.01:50];
options = odeset(’RelTol’,1e-12,’AbsTol’,1e-12*ones(1,n));
[t,x]=ode45(@(t,x) lorenz(t,x,Beta),tspan,x0,options);

%% Compute Derivative
for i=1:length(x)

dx(i,:) = lorenz(0,x(i,:),Beta);
end

%% Build library and compute sparse regression
Theta = poolData(x,n,3); % up to third order polynomials
lambda = 0.025; % lambda is our sparsification knob.
Xi = sparsifyDynamics(Theta,dx,lambda,n)

Copyright © 2017 Brunton & Kutz. All Rights Reserved.
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Statistical mechanics for SINDy

Sparsifying for p ≤ 1

Ξl = arg min
Ξ

1
2ρ2 ∑

t

( ·xl − ΘT(x) ⋅ Ξl)2 + λ∥Ξl∥p

SINDy sparse regression loss function



Sparse Identification of Nonlinear Dynamics

Identify ODE from trajectory data
·xl = fl( ⃗x ) ≈

N

∑
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Θi( ⃗x )Ξil
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Figure 7.4: Schematic of the sparse identification of nonlinear dynamics
(SINDy) algorithm [95]. Parsimonious models are selected from a library of
candidate nonlinear terms using sparse regression. This library ⇥(X) may be
constructed purely from measurement data. Modified from Brunton et al. [95].

The sparse vectors ⇠k may be synthesized into a dynamical system:

ẋk = ⇥(x)⇠k. (7.40)

Note that xk is the k-th element of x and ⇥(x) is a row vector of symbolic
functions of x, as opposed to the data matrix ⇥(X). Fig. 7.4 shows how SINDy
may be used to discover the Lorenz equations from data. Code 7.2 generates
data and performs the SINDy regression for the Lorenz system.

Code 7.2: SINDy regression to identify the Lorenz system from data.
%% Generate Data
Beta = [10; 28; 8/3]; % Lorenz’s parameters (chaotic)
n = 3;
x0=[-8; 8; 27]; % Initial condition
tspan=[.01:.01:50];
options = odeset(’RelTol’,1e-12,’AbsTol’,1e-12*ones(1,n));
[t,x]=ode45(@(t,x) lorenz(t,x,Beta),tspan,x0,options);

%% Compute Derivative
for i=1:length(x)

dx(i,:) = lorenz(0,x(i,:),Beta);
end

%% Build library and compute sparse regression
Theta = poolData(x,n,3); % up to third order polynomials
lambda = 0.025; % lambda is our sparsification knob.
Xi = sparsifyDynamics(Theta,dx,lambda,n)
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• Closed form posterior for  SINDy: 

• Free energy criterion ranks models  

• Predicts model transition behavior with changing  

• Identifies Lotka-Volterra from Mahaffy population dataset

l0

Λ

Nonlinear System Identification - ZSINDy

DRAFT
Data

<latexit sha1_base64="csVbf27Va8uZv6qb9x+smyfYvK8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWw2m3bpZjfsbgol9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJR8tUEdomkkvVC7CmnAnaNsxw2ksUxXHAaTeY3Od+d0qVZlI8mVlC/RiPBIsYwcZK3cE0lEZXhtWaW3cXQOvEK0gNCrSG1a9BKEkaU2EIx1r3PTcxfoaVYYTTeWWQappgMsEj2rdU4JhqP1ucO0cXVglRJJUtYdBC/T2R4VjrWRzYzhibsV71cvE/r5+a6NbPmEhSQwVZLopSjoxE+e8oZIoSw2eWYKKYvRWRMVaYGJtQHoK3+vI66VzVvet647FRa94VcZThDM7hEjy4gSY8QAvaQGACz/AKb07ivDjvzseyteQUM6fwB87nDwUOj18=</latexit>...

<latexit sha1_base64="8+HvYk3i0LG3aywxq5svWAiWB4s=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBg5RdKdVjsRePFewHtEvJptk2NMkuSVYoS/+CFw+KePUPefPfmG33oK0PBh7vzTAzL4g508Z1v53CxubW9k5xt7S3f3B4VD4+6egoUYS2ScQj1QuwppxJ2jbMcNqLFcUi4LQbTJuZ332iSrNIPppZTH2Bx5KFjGCTSc0r1BmWK27VXQCtEy8nFcjRGpa/BqOIJIJKQzjWuu+5sfFTrAwjnM5Lg0TTGJMpHtO+pRILqv10cescXVhlhMJI2ZIGLdTfEykWWs9EYDsFNhO96mXif14/MeGtnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSua569WrtoVZp3OVxFOEMzuESPLiBBtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MH/l2NkA==</latexit>

C, V
<latexit sha1_base64="wsbZHKn/xZIAe7BRDIejNqvCN3g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU02kqMeiF48V7Ae0oWw2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8CaciZp2zDDaS9RFIuA024wucv97hNVmsXy0UwT6gs8kixiBJtcCi9CM6zW3Lo7B1olXkFqUKA1rH4NwpikgkpDONa677mJ8TOsDCOcziqDVNMEkwke0b6lEguq/Wx+6wydWSVEUaxsSYPm6u+JDAutpyKwnQKbsV72cvE/r5+a6MbPmExSQyVZLIpSjkyM8sdRyBQlhk8twUQxeysiY6wwMTaeig3BW355lXQu695VvfHQqDVvizjKcAKncA4eXEMT7qEFbSAwhmd4hTdHOC/Ou/OxaC05xcwx/IHz+QPKMY4W</latexit>

d/dt
Covariances

Coefficient setsLibrary

Free energy, F

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t

Optimal
coefficient
set, <latexit sha1_base64="csVbf27Va8uZv6qb9x+smyfYvK8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWw2m3bpZjfsbgol9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJR8tUEdomkkvVC7CmnAnaNsxw2ksUxXHAaTeY3Od+d0qVZlI8mVlC/RiPBIsYwcZK3cE0lEZXhtWaW3cXQOvEK0gNCrSG1a9BKEkaU2EIx1r3PTcxfoaVYYTTeWWQappgMsEj2rdU4JhqP1ucO0cXVglRJJUtYdBC/T2R4VjrWRzYzhibsV71cvE/r5+a6NbPmEhSQwVZLopSjoxE+e8oZIoSw2eWYKKYvRWRMVaYGJtQHoK3+vI66VzVvet647FRa94VcZThDM7hEjy4gSY8QAvaQGACz/AKb07ivDjvzseyteQUM6fwB87nDwUOj18=</latexit>...

<latexit sha1_base64="csVbf27Va8uZv6qb9x+smyfYvK8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWw2m3bpZjfsbgol9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJR8tUEdomkkvVC7CmnAnaNsxw2ksUxXHAaTeY3Od+d0qVZlI8mVlC/RiPBIsYwcZK3cE0lEZXhtWaW3cXQOvEK0gNCrSG1a9BKEkaU2EIx1r3PTcxfoaVYYTTeWWQappgMsEj2rdU4JhqP1ucO0cXVglRJJUtYdBC/T2R4VjrWRzYzhibsV71cvE/r5+a6NbPmEhSQwVZLopSjoxE+e8oZIoSw2eWYKKYvRWRMVaYGJtQHoK3+vI66VzVvet647FRa94VcZThDM7hEjy4gSY8QAvaQGACz/AKb07ivDjvzseyteQUM6fwB87nDwUOj18=</latexit>...

x

y

z

1
x
y

yz

z2

{x}
{1}

{x, y}
{1, x}

{y , yz, z }2 2
{xz, yz, z }2

x y z

<latexit sha1_base64="5OG43NzuWwIr7CbhZB8fPsTzas0=">AAAB+nicbVBNS8NAEN34WetXqkcvwSp4KokU9Vjw4rGC/YAmhM120y7d3YTdiVpif4oXD4p49Zd489+4bXPQ1gcDj/dmmJkXpZxpcN1va2V1bX1js7RV3t7Z3du3KwdtnWSK0BZJeKK6EdaUM0lbwIDTbqooFhGnnWh0PfU791Rplsg7GKc0EHggWcwIBiOFdsUfYCFw6AN9hFwwOQntqltzZ3CWiVeQKirQDO0vv5+QTFAJhGOte56bQpBjBYxwOin7maYpJiM8oD1DJRZUB/ns9IlzapS+EyfKlARnpv6eyLHQeiwi0ykwDPWiNxX/83oZxFdBzmSaAZVkvijOuAOJM83B6TNFCfCxIZgoZm51yBArTMCkVTYheIsvL5P2ec27qNVv69XGSRFHCR2hY3SGPHSJGugGNVELEfSAntErerOerBfr3fqYt65Yxcwh+gPr8wft1pRb</latexit>�min

<latexit sha1_base64="2zk0RPOtJXBvLE00MhjeQTgzJ20=">AAAB73icbVBNS8NAEJ34WetX1aOXxSp4KokU9VjQg8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6wHHC/YgOlAgFo2ildveWS6QEe6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn83unZAzq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9HnSF5ozlGNLKNPC3krYkGrK0EZUtCF4iy8vk+ZFxbusVO+r5dppHkcBjuEEzsGDK6jBHdShAQwkPMMrvDmPzovz7nzMW1ecfOYI/sD5/AGJXY+P</latexit>

�t
<latexit sha1_base64="/gXdpp3964iGTMaJc/aPgtyDHNY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BLx4TyAuSJcxOOsmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsriAXXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ShRDJssEpHqBFSj4BKbhhuBnVghDQOB7WByP/fbT6g0j2TDTGP0QzqSfMgZNVaqN/rFklt2FyDrxMtICTLU+sWv3iBiSYjSMEG17npubPyUKsOZwFmhl2iMKZvQEXYtlTRE7aeLQ2fk0ioDMoyULWnIQv09kdJQ62kY2M6QmrFe9ebif143McM7P+UyTgxKtlw0TAQxEZl/TQZcITNiagllittbCRtTRZmx2RRsCN7qy+ukdV32bsqVeqVUvcjiyMMZnMMVeHALVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPqZGMww==</latexit>

T
<latexit sha1_base64="a1zwbcLZysdmPwr2XSPr9NlFmqU=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4KokU9Vjw4rGC/YA2lM120i7dTcLuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pR8AhbhhuB3UQhlYHATjC5y/3OEyrN4+jRTBP0JR1FPOSMmlzqo6GDStWtuXOQVeIVpAoFmoPKV38Ys1RiZJigWvc8NzF+RpXhTOCs3E81JpRN6Ah7lkZUovaz+a0zcmGVIQljZSsyZK7+nsio1HoqA9spqRnrZS8X//N6qQlv/YxHSWowYotFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlO2IXjLL6+S9lXNu67VH+rVxnkRRwlO4QwuwYMbaMA9NKEFDMbwDK/w5kjnxXl3Phata04xcwJ/4Hz+AALKjiM=</latexit>�

<latexit sha1_base64="osNt08vFtckLcOMf5cnIauq2MYU=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBVclUSKuiy4cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UXFglJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqJbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ippX9W861r9oV5tnBd1lOAUzuASPLiBBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPNq2PaA==</latexit>

� <latexit sha1_base64="Dvt3yaeggzQW6sPv/Qetu/6AQ6o=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jHgxWME84BkCbOT2eyQeSwzs0JY8gtePCji1R/y5t84SfagiQUNRVU33V1Rypmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UZkmtEUUV7obYUM5k7RlmeW0m2qKRcRpJxrfzfzOE9WGKfloJykNBR5JFjOC7Uzq60QNKlW/5s+BVklQkCoUaA4qX/2hIpmg0hKOjekFfmrDHGvLCKfTcj8zNMVkjEe056jEgpown986RRdOGaJYaVfSorn6eyLHwpiJiFynwDYxy95M/M/rZTa+DXMm08xSSRaL4owjq9DscTRkmhLLJ45gopm7FZEEa0ysi6fsQgiWX14l7atacF2rP9SrjfMijhKcwhlcQgA30IB7aEILCCTwDK/w5gnvxXv3Phata14xcwJ/4H3+ABmUjjI=</latexit>�

<latexit sha1_base64="6I1qKDDzhI9rd8FSwVsGJkEiRvU=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBU8lUSKeix48VihX9CGstlu2rWb3bA7EUrof/DiQRGv/h9v/hu3bQ7a+mDg8d4MM/PCRHCDnvftrK1vbG5tF3aKu3v7B4elo+OWUammrEmVULoTEsMEl6yJHAXrJJqROBSsHY7vZn77iWnDlWzgJGFBTIaSR5wStFKr1xgxJP1S2at4c7irxM9JGXLU+6Wv3kDRNGYSqSDGdH0vwSAjGjkVbFrspYYlhI7JkHUtlSRmJsjm107dC6sM3EhpWxLdufp7IiOxMZM4tJ0xwZFZ9mbif143xeg2yLhMUmSSLhZFqXBRubPX3QHXjKKYWEKo5vZWl46IJhRtQEUbgr/88ippXVX860r1oVqunedxFOAUzuASfLiBGtxDHZpA4RGe4RXeHOW8OO/Ox6J1zclnTuAPnM8fbN+O8w==</latexit>

�
<latexit sha1_base64="7RDSeqOpklg4a6KyCYQ91BDHnmU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1ekMsBO6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzp0yQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vgmzJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVaDq2rtvlapn+VxFOEETuECAriGOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPgNOPAA==</latexit>�

Fig. 1. Schematic representation of the questions Z-SINDy aims to answer. A dataset consists of a trajectory of time length T sampled with time step �t and measurement
noise of magnitude ÷ (left blue box). From the data, a library of nonlinear functions �i(x̨) is computer. The library functions are combined with empirical derivatives of the
trajectory to compute the covariance matrices C and vectors V̨ . The covariances along with the algorithm hyperparameters of sparsity ⁄ and resolution fl (right blue box) are
used to compute the free energies F (l)“l

that quantify the balance between goodness of fit and number of fitting solutions. The best fit coefficient set “min is the one that
corresponds to the lowest free energy. In this paper we study how the probability of choosing the correct coefficient set depends on the parameters in blue boxes.

directly informing the tradeo� between model fidelity and
sparsity. The statistical mechanics analysis can be further
integrated with other SINDy advancements or applied to other
cases of sparse inference.

Statistical Mechanics for Sparse Inference

Background. System identification begins with an observed
trajectory x̨(t) of a d-dimensional dynamical system. The
trajectory covers the length of time T sampled with period
�t, resulting in n = T/�t data points. For synthetic trajec-
tory data, we presume that the integration time step is much
smaller than �t, making the integration error negligible. Tra-
jectory measurement incurs uncorrelated additive Gaussian
noise of magnitude ÷ in each dimension of dynamics. From
the trajectory we compute the empirical derivative ˙̨x with
second-order centered finite di�erence method to simplify the
interpretation.

The goal of sparse equation discovery is to extract a dy-
namical equation ˙̨x = f(x̨) from the observed trajectories of
x̨, where f(·) is a sparse analytical expression. When f(·) is
given by a library of candidate nonlinear functions, we seek
an equation of the form:

ẋl ¥

Nÿ

i=1

�i(x̨)T �il, [1]

where the index l enumerates the dynamical variables, the left
hand side is the empirical derivative and right hand side is
a linear combination of N nonlinear functions of dynamical
variables �i(x̨) (i.e. the library) with a matrix of coe�cients
�il. The Sparse Identification of Nonlinear Dynamics (SINDy)
seeks to optimize for the sparsest matrix of coe�cients �il that
minimizes the residual of Eq. (1). This optimization problem
involving two competing objectives - sparsity and fitness -
leads to a challenging non-uniqueness in the resulting models.
In practice, the problem is typically solved by optimizing a loss
function that combines linear regression with a sparsity penalty.

While sparsity is directly measured by the Î�Î0 pseudonorm
on the model coe�cients, it is usually approximated by either
the Î�Î1 norm or sequential thresholded least squares (7, 35).

Where optimization-based SINDy provides a point estimate
of the coe�cients, Bayesian approaches aim to extract the max-
imum amount of information from the data, while providing
an uncertainty quantification of the resulting equation. In the
Bayesian setting, sparsity can be promoted by the choice of a
sparsifying prior, such as Laplace, spike-and-slab, or horseshoe
(31, 33, 36). These priors aim to concentrate the posterior
probability near �il = 0, while remaining di�erentiable to
enable Monte Carlo sampling.

The interplay of sparsity with large numbers of variables
and data points in a probabilistic setting attracted significant
attention of the statistical mechanics community, particularly
the theory of disordered systems (28). By using the so-called
replica trick, researchers averaged over random data matrices
to obtain the average behavior of di�erent classes of inference
problems, revealing multiple detectability and algorithmic
phase transitions (24, 26, 27, 37). Our approach here is dif-
ferent in two key aspects: first, we focus on identifying not a
finite fraction of relevant variables but a finite number, thus
attaching more interpretation to each term; second, instead
of averaging over generic random Gaussian data matrices, we
work with trajectory data, including the sampling period and
numerical di�erentiation e�ects.

Z-SINDy. In the present paper we separate the Bayesian infer-
ence problem into two layers: the discrete layer describes which
coe�cients are active (non-zero), while the continuous layer
describes the values of active coe�cients. In particular, this
new setting does not require the prior to be di�erentiable, al-
lowing us to use a much simpler Bernoulli-Gaussian functional

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Klishin et al.
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1
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Figure 4.16: For model selection, the criteria of accuracy (low error) is balanced
against parsimony. There can be a variety of models with the same number of
terms (green and magenta points), but the Pareto Frontier (magenta points) is
defined by the envelope of models that produce the lowest error for a given
number of terms. The solid line provides an approximation to the Pareto fron-
tier. The Pareto optimal solutions (shaded region) are those models that produce
accurate models while remaining parsimonious.

4.5 The Pareto front and Lex Parsimoniae

The preceding chapters show that regression is more nuanced than simply
choosing a model and performing a least-square fit. Not only are there numer-
ous metrics for constraining the solution, the model itself should be carefully
selected in order to achieve a better, more interpretable description of the data.
Such considerations on an appropriate model date back to William of Occam
(c. 1287–1347), who was an English Franciscan friar, scholastic philosopher,
and theologian. Occam proposed his law of parsimony (in latin lex parsimo-
niae), commonly known as Occam’s razor, whereby he stated that among com-
peting hypotheses, the one with the fewest assumptions should be selected, or
when you have two competing theories that make exactly the same predictions,
the simpler one is the more likely. The philosophy of Occam’s razor has been
used extensively throughout the physical and biological sciences for develop-
ing governing equations to model observed phenomena.
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Fig. 1. Schematic representation of the questions Z-SINDy aims to answer. A dataset consists of a trajectory of time length T sampled with time step �t and measurement
noise of magnitude ÷ (left blue box). From the data, a library of nonlinear functions �i(x̨) is computer. The library functions are combined with empirical derivatives of the
trajectory to compute the covariance matrices C and vectors V̨ . The covariances along with the algorithm hyperparameters of sparsity ⁄ and resolution fl (right blue box) are
used to compute the free energies F (l)“l

that quantify the balance between goodness of fit and number of fitting solutions. The best fit coefficient set “min is the one that
corresponds to the lowest free energy. In this paper we study how the probability of choosing the correct coefficient set depends on the parameters in blue boxes.

directly informing the tradeo� between model fidelity and
sparsity. The statistical mechanics analysis can be further
integrated with other SINDy advancements or applied to other
cases of sparse inference.

Statistical Mechanics for Sparse Inference

Background. System identification begins with an observed
trajectory x̨(t) of a d-dimensional dynamical system. The
trajectory covers the length of time T sampled with period
�t, resulting in n = T/�t data points. For synthetic trajec-
tory data, we presume that the integration time step is much
smaller than �t, making the integration error negligible. Tra-
jectory measurement incurs uncorrelated additive Gaussian
noise of magnitude ÷ in each dimension of dynamics. From
the trajectory we compute the empirical derivative ˙̨x with
second-order centered finite di�erence method to simplify the
interpretation.

The goal of sparse equation discovery is to extract a dy-
namical equation ˙̨x = f(x̨) from the observed trajectories of
x̨, where f(·) is a sparse analytical expression. When f(·) is
given by a library of candidate nonlinear functions, we seek
an equation of the form:

ẋl ¥

Nÿ

i=1

�i(x̨)T �il, [1]

where the index l enumerates the dynamical variables, the left
hand side is the empirical derivative and right hand side is
a linear combination of N nonlinear functions of dynamical
variables �i(x̨) (i.e. the library) with a matrix of coe�cients
�il. The Sparse Identification of Nonlinear Dynamics (SINDy)
seeks to optimize for the sparsest matrix of coe�cients �il that
minimizes the residual of Eq. (1). This optimization problem
involving two competing objectives - sparsity and fitness -
leads to a challenging non-uniqueness in the resulting models.
In practice, the problem is typically solved by optimizing a loss
function that combines linear regression with a sparsity penalty.

While sparsity is directly measured by the Î�Î0 pseudonorm
on the model coe�cients, it is usually approximated by either
the Î�Î1 norm or sequential thresholded least squares (7, 35).

Where optimization-based SINDy provides a point estimate
of the coe�cients, Bayesian approaches aim to extract the max-
imum amount of information from the data, while providing
an uncertainty quantification of the resulting equation. In the
Bayesian setting, sparsity can be promoted by the choice of a
sparsifying prior, such as Laplace, spike-and-slab, or horseshoe
(31, 33, 36). These priors aim to concentrate the posterior
probability near �il = 0, while remaining di�erentiable to
enable Monte Carlo sampling.

The interplay of sparsity with large numbers of variables
and data points in a probabilistic setting attracted significant
attention of the statistical mechanics community, particularly
the theory of disordered systems (28). By using the so-called
replica trick, researchers averaged over random data matrices
to obtain the average behavior of di�erent classes of inference
problems, revealing multiple detectability and algorithmic
phase transitions (24, 26, 27, 37). Our approach here is dif-
ferent in two key aspects: first, we focus on identifying not a
finite fraction of relevant variables but a finite number, thus
attaching more interpretation to each term; second, instead
of averaging over generic random Gaussian data matrices, we
work with trajectory data, including the sampling period and
numerical di�erentiation e�ects.

Z-SINDy. In the present paper we separate the Bayesian infer-
ence problem into two layers: the discrete layer describes which
coe�cients are active (non-zero), while the continuous layer
describes the values of active coe�cients. In particular, this
new setting does not require the prior to be di�erentiable, al-
lowing us to use a much simpler Bernoulli-Gaussian functional
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Identification of optimal coefficient set

·x = σ(y − x)
·y = x(ρ − z) − y
·z = xy − βz

DRAFT
Fig. 2. Free energy trends in Z-SINDy inference. (a) Sample trajectories of the Lorenz attractor sampled with time sampling period of �t = 0.01 and no noise. (b) Free
energies of different coefficient sets for each dimension of dynamics relative to the best fit set “ú computed at fl = 1.0. Other coefficient sets are labeled by the extra library
terms with respect to “ú. (c) Free energy F“ of each of the 2N = 1024 coefficient sets over time. (d) Free energy per data point f“ of each coefficient set. (e) Relative free
energy per data point f“ ≠ fú of each coefficient set, stratified by the sparsity penalty ⁄ = 0.006 and the natural sparsity penalty ⁄n. The color of markers and curves
corresponds to the number of coefficients in each set |“|.

the next several sets with higher free energies all have extra
terms. If the trajectory data is only considered up to a variable
upper limit of time t, the free energies of each variable set have
asymptotically linear trajectories of di�erent slopes (Fig. 2c).
In order to compare the slopes, we compute the intensive free
energy per data point f“ = F“/n that is asymptotically con-
stant for each variable set (Fig. 2d). We further disentangle the
di�erent sets by computing the intensive free energy relative to
its lowest value �f“ = f“ ≠ f

ú (Fig. 2e). By construction the
relative free energy of the correct variable set is zero, and free
energies of other sets are asymptotically stratified by the con-
stant intensive sparsity penalty ⁄. While the sparsity penalty
is an externally chosen hyperparameter of Z-SINDy, at low
sample sizes the Bayesian inference procedure itself introduces
an additional “natural” sparsity ⁄n = ln

!
n/2fifl

2"
/2n that

enhances the selection for sparse coe�cient sets similar to the
BIC (see SI for derivation).

The asymptotically constant free energy per data point in
this inference problem is similar to the thermodynamic free
energy of interacting particle systems. For particle systems,
nonlinear scaling of free energy with system size usually implies
either long-range particle interactions or strong boundary
e�ects. Indeed, the inference free energy has a nonlinear

scaling at early times (t < 10 on Fig. 2c), when the Lorenz
dynamical system has only explored one lobe of the attractor
and has not yet demonstrated the switching behavior. At
longer times, the chaotic dynamics forget the initial condition
and the e�ective sample size scales linearly with the amount
of data, leading to a condensation of inference, as we explore
in the following section.

Inference condensation. In order to connect the scaling of free
energy to the outcomes of the inference procedure, we consider
the limiting case of the posterior distribution Eq. (6). The
probability of selecting the lowest free energy set is driven by
the free energy gap between it and the next set:

p(“ú) = 1
1 +

q
“ ”=“ú

e
≠(F“ ≠F“ú ) ¥ 1 ≠ e

≠n�f
, [10]

where �f is the asymptotic di�erence of free energy per data
point between the best and the second-best fitting coe�cient
sets. This expression implies that the probability of selecting
any other variable set decays exponentially with trajectory
length across a wide range of sampling frequencies (Fig. 3a).
While the statistical weights Z“ can get exponentially large
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DRAFT
Fig. 3. Condensation of Z-SINDy inference for trajectory datasets of variable runtime
t, sampling time period �t, resolution parameter fl œ {0.1, 1.0, 10}. (a) The
probability of choosing any variable set other than the one with lowest free energy
decays exponentially with trajectory length. (b) The posterior standard deviation of
each inferred coefficient decays as inverse square root of the trajectory length. (c)
The absolute error of the posterior mean coefficient is limited by the systematic error
of the finite difference derivative of the trajectory. Trend lines guide the eye to illustrate
the functional form of the scalings. The line labels in (b-c) indicate which coefficient
the standard deviation and the mean correspond to. Rows correspond to the three
dimensions of dynamics. The standard deviation and error of the mean for the two
variables explaining ẋ coincide.

or small, risking numerical overflow or underflow problems,
the values of free energies do not face that problem. The
exponential suppression of sub-optimal coe�cient sets implies
that it is su�cient to look for the lowest free energy coe�cient
set at given dataset parameters and inference hyperparameters.

Given the condensation of the discrete part of inference,
what happens to the continuous part? Per Eq. (6), the Gaus-
sian mixture reduces to a single multivariate Gaussian dis-
tribution with the covariance and mean parameters driven
by the empirical correlations C“ú and V̨l,“ú . The posterior
covariance matrix is given by �“ú = fl

2
C

≠1
“ú , scaling with the

resolution parameter fl but decaying with increasing trajec-
tory length, which can be combined into an e�ective time
scale ne = t/�tfl

2. The standard deviations of the posterior
along each coe�cient direction have di�erent magnitudes but
identical scaling of n

≠1/2
e as in the Central Limit Theorem

(Fig. 3b).
The posterior Gaussian mean is given by µ̨ = C

≠1
“ V̨l,“ ,

which quickly converges to a constant value, which is not
necessarily equal to the ground truth µ̨true. Since the linear
regression against the nonlinear library terms aims to explain
the empirical derivative, it inherits the systematic error of the
numerical di�erentiation procedure, well known in the studies
of numerical integration (46) but rarely highlighted in system
identification. For the second-order finite di�erence derivative
employed here the systematic error scales as O

!
�t

2"
, and this

scaling propagates to the error of the mean (Fig. 3c). For
large enough trajectory length the standard deviation becomes
smaller than error of the mean ‡i < |µi ≠ µtrue|, and thus the
inference converges to a small region that does not include the
ground truth values.

Increasing the trajectory length leads to a condensation
of inference to a particular set of coe�cients with a narrow
range of values. However, if the amount of data asymptoti-
cally does not distinguish between inferred models, then what
does? In thermodynamic systems, free energy per particle is
typically a function of external thermodynamic variables, such
as temperature, magnetic field, or chemical potential. Small
changes of the external parameter can shift the global free
energy to a di�erent state, leading to a thermodynamic phase
transition. In a similar way, small changes in the inference
hyperparameter ⁄ or noise in the data ÷ can lead to abrupt
changes in the inferred model, as we show in the following
sections.

Sparsity transitions. The goal of SINDy-family approaches is
to balance the data fit with the parsimony of the inferred
models, operationalized by sparsity. Instead of prescribing a
particular number of equation terms, the algorithm is supposed
to find it adaptively, but how exactly does the sparsity penalty
parameter ⁄ lead to sparse solutions?

We have established in the previous section that with
enough data, Z-SINDy would always select the model with
lowest free energy. Given a constant dataset, the penalized
free energies are linear functions of the penalty (Eq. (9)), with
the intercept given by data fit at zero penalty, and the slope
given by the number of terms. Graphically, the ensemble of
all the linear functions looks like a fan plot with all-integer
slopes 1, 2, 3, . . . (Fig. 4a). As the external sparsity penalty
⁄ increases, the lowest free energy line changes in a series of
abrupt transitions from lower-intercept higher-slope to higher-
intercept lower-slope (shown in vertical dashed lines), similar
to the plots produced by Least Angle Regression (LARS) (47).
However, because of the natural sparsity e�ect, the inference
selects for sparse solutions even at ⁄ = 0. In order to include
both external and natural sparsity, we therefore vary both ⁄

and the trajectory length t.
At moderate to high sparsity penalty ⁄ the selected variable

sets are practically independent of trajectory length (Fig. 4b),
but at low ⁄ the selection changes in two ways. Very short
trajectories do not explore the entirety of available phase
space: for the Lorenz system, the trajectory stays within a
single lobe of the attractor for t < 15 (Fig. 2a), and thus
Z-SINDy identifies less sparse models (bottom-left corner of
Fig. 4b panels). For moderate trajectory length the correct
coe�cient set is recovered for a wide range of ⁄ because of the
natural sparsity ⁄n. For long trajectories the natural sparsity
disappears, leading to identification of less sparse sets (top-left
corner of Fig. 4b panels). We conclude that Z-SINDy correctly
identifies the sparse set of coe�cients within a window of
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Probability of selecting suboptimal set 
decays exponentially w/ trajectory 
length p(γ*) ≈ 1 − e−nΔf

DRAFT
Fig. 4. Sparsity penalty selects sparse solutions. (a) For a fixed trajectory of length
t = 100, the penalized intensive free energies of each coefficient set are linear
functions of the sparsity penalty ⁄ with the slope given by the number of terms and
the intercept by the goodness of fit. At any value of ⁄, the posterior condenses on
the lowest free energy set (piecewise linear dotted lines), switching abruptly between
solutions of different sparsity (vertical dashed lines). (b) As the sparsity penalty varies
over many orders of magnitude, the best fit coefficient set changes abruptly several
times from large to sparse, with a finite range of ⁄ recovering the correct set. The
color of lines and backgrounds corresponds to the number of coefficient in each set.

several orders of magnitude of sparsity penalty ⁄, but the
boundaries of the region are quite abrupt.

Noise transition. Along with sparsity, another important limi-
tation to the performance of SINDy algorithms is the noise
in the data. The robustness of SINDy is usually measured
by how fast the error in the inferred coe�cients grows with
noise magnitude, and thus how much noise can the inference
tolerate. While the denoising approaches (48, 49) and the
weak form SINDy (10) improve noise tolerance significantly,
they do not explain how the noise-induced breakdown hap-
pens, whether collecting a longer trajectory helps, and why
denoising improves performance so much.

We seek to explain the noise-induced breakdown in free
energy terms. The free energy of any variable set “ depends
not only on the trajectory length t, sparsity penalty ⁄, and
noise magnitude ÷, but also on the noise realization. Within
each realization, we compute the deterministic free energy per
data point relative to the correct set “

ú in each dimension,
and then collect free energy statistics across multiple noise
realizations. The relevant free energy statistic is not its mean

Fig. 5. Additive noise prevents the identification of the correct coefficient set. (a)
Each panel shows the free energies per data point with respect to the correct set for
a trajectory of length t = 60 at sampling period �t = 0.01. For each coefficient set,
the shaded region shows the range of free energies across 10 realizations of random
noise of given relative magnitude ÷/‡̄data, stratified by sparsity penalty ⁄ = 0.5.
The color of the shaded regions corresponds to the number of coefficients in each
set. (b) Coefficient of determination R2 of the noisy left and right hand sides of the
equation of motion with the correct right hand side for each dimension of dynamics,
averaged over 5 noise realizations.

but its range of fluctuations, since the inference condenses to
the coe�cient set with the lowest free energy.

The noise-induced transition graphically looks like an over-
lap between the horizontal line of the correct set and the free
energy range of one of the competing sets (shaded regions in
Fig. 5a). We normalize the noise magnitude by the standard
deviation of the original trajectory averaged across the dimen-
sions ÷norm = ÷/‡data. At low noise magnitude ÷norm, the
correct coe�cient set “

ú
l has the lowest free energy, clearly

stratified from all other ones by the sparsity penalty, and
is thus selected in inference. As noise magnitude increases,
at about ÷norm ¥ 4% the model for ẏ changes as the set
“

ú = {x, y, xz} first overlaps with the range of free energies of
“ = {x, xz, yz} and then lies entirely above the range. Within
the free energy range overlap, the inference condenses to a
single coe�cient set that depends on the realization of the ran-
dom noise, and thus the inference is unstable. At higher levels
of noise above ÷norm ¥ 6% the horizontal line of the correct
set lies fully above multiple overlapping free energy ranges,
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with increasing sparsity penalty

·x = σ(y − x)
·y = x(ρ − z) − y
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DRAFT
Fig. 7. Inference of the correct dynamical equations is limited by the data noise ÷,
sampling period �t, and sparsity penalty ⁄. (a) Inference fails when either the noise
level crosses a threshold (noise limited), or the sampling period becomes too large
to resolve the smallest time scale of the dynamical system (systematic error limited),
with the boundaries consistent across the three dimensions of dynamics. (b) The
region of correct inference in noise and sparsity parameters is limited on three sides:
too few terms at high ⁄, and too many terms at low ⁄ or high ÷. The dashed line
guides the eye to illustrate a speculative power law on critical noise level ÷ Ã ⁄1/3.

dynamical system trajectories (51).

The connections between statistical mechanics, statistical
inference, and machine learning have a rich history, focusing
primarily on the average-case behavior of prediction risk (23).
Statistical mechanics helped identify and describe multiple
inference regimes and phase transitions between them, from
network structure inference to constraint satisfaction to com-
pressed sensing (24–26, 28). The so-called replica method has
been used to characterize the regularized least squares regres-
sion that also lies at the core of SINDy (37), identifying the
regimes where local greedy algorithms can e�ciently identify
the optimal set of predictor variables (27). However, statistical
physics studies often consider the large-data case n æ Œ in
which, in our notation, |“|/n = const, i.e. the set of selected
coe�cients is sparse but growing. This paper enriches the dis-
cussion by analyzing the case of dynamical systems in which
the number of di�erential equation terms staying constant
regardless of trajectory length |“| = const, paying attention
to the specific interpretable nature of individual terms, and
painting a detailed picture of inference breakdown.

Integration with other SINDy techniques. The system identifi-
cation scenario considered here aims to extract a parsimonious
model (21), but focuses only on one aspect of parsimony—
sparsity—over other aspects such as discovery of coordinates
and parametric dependencies, both of which have been in-
cluded in other data-driven methods. The coordinate discov-
ery has been addressed by combining dynamics discovery with
an autoencoder neural network that automatically discovers
the sparse coordinates either in the optimization framework
(52, 53) or the Bayesian framework (33). The parametric de-
pendence can be inferred by including a parameter library
along with the dynamical equation library (54). The par-
simony requirements can be supplemented by other desired
features of dynamical systems such as global stability (55).
Integrating fast posterior computations from the present paper
with nonlinear coordinate transformation discovery, paramet-
ric inference, and dynamic stability remain important avenues
for further work. Within the analysis of trajectories, addi-
tional improvements can be achieved by a finer-scale analysis
of free energy fluctuations with respect to the general trend
F ≥ f · n, as well as active learning to proactively sample
the unexplored parts of phase space akin to the technique
suggested in Refs. (30, 40).

All SINDy approaches rely on regression and thus require
a reliable estimation of the dependent variable, the trajec-
tory derivative. While here we employ the simplest derivative
method, finite di�erence, most other contemporary SINDy
algorithms rely on some version of denoising derivative, such
as total variation (56), spectral derivative (57), weak form
(10), or basis expansion (11, 32), which drastically improve
the benchmark noise tolerance. However, such performance
improvement might be misleading in quantifying the parame-
ter uncertainty since the data uncertainty is discarded (32).
Moreover, the denoising process is itself parametric and trades
random noise for a systematic error in the derivative and the
library terms (46, 56), requiring hyperparameter optimization
(22, 58). For an experimental system where the ground truth
equations are unknown, it is thus unclear whether small varia-
tions of the dynamical variables are due to measurement noise
or genuine fine-scale dynamics. Z-SINDy does not make a
choice between those options by keeping fl as a free parameter
of how closely the linear combination of library terms should
approximate the derivative. Since both the derivative and the
library terms su�er from noise contamination, it is challenging
to pick fl a priori but it can be estimated after the SINDy
fit from the remaining unexplained variance in the derivative
ẋ ≠ �T

· � (see SI for additional discussion).

The free energy analysis presented here makes a predic-
tion of the identification phase diagram for a known ground
truth dynamical model. On one side, the residual distribution
(Fig. 6a-b), the phase diagrams (Fig. 7), and the R

2 plots
(Fig. 5b) are powerful diagnostic tools that quantify the limits
of performance of a particular numerical algorithm and thus
suggest how the boundary of detectability can be pushed, with
the most immediate gains available through denoising. On the
other side, the analysis establishes the noise tolerance that
can be part of a closed-loop inference system: for a given
dataset one can fit and integrate a SINDy model, compute its
noise tolerance, and estimate the empirical noise magnitude.
If the empirical noise is above the tolerance, then the model
is misleading and should be rejected.
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‣ E-SINDy fits distributions to bootstrapped ensemble models 
‣ Z-SINDy consistently identifies sparser solutions
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data) for 50 aircraft 
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manufacturing procedures to improve the performance of future
aircraft. Similarly, a more holistic digital twin, including models
for aging and degradation, will be useful for maintaining and services
fleets more effectively. These models will facilitate more accurate
sensor filtering and data assimilation, as well as downstream tasks of
anomaly diagnosis and detection.

VIII. Case Study: Predictive Assembly and Shimming
Aircraft are built to exceedingly high tolerances, with components

sourced from around the globe. Even when parts are manufactured to
specification, there may be significant gaps between structural com-
ponents upon assembly due to manufacturing tolerances adding up
across large structures.One of themost time-consuming and expensive
efforts in part-to-part assembly is the shimming required to bring an
aircraft into the engineering nominal shape. A modern aircraft may
require on the order of thousands of custom shims to fill gaps between
structural components in the airframe. These shims, whether liquid or
solid, are necessary to eliminategaps,maintain structural performance,
and minimize pull-down forces required to bring the aircraft into
engineering nominal configuration for peak aerodynamic efficiency.
Historically, parts have been dry-fit, gaps measured manually, and

custom shims manufactured and inserted, often involving disassem-
bly and reassembly. Recent advancements in three-dimensional
scanning have enabled their use for surface measurement before
assembly, known as predictive shimming [174–186]. Gap filling is
a time-consuming process, involving either expensive by-hand
inspection or computations on vast measurement data from increas-
ingly sophisticatedmetrology equipment. In either case, this amounts
to significant delays in production, with much of the time being spent
in the critical path of the aircraft assembly.
In this case study, we present a recent strategy for predictive

shimming [159], based on ML and sparse sensing to learn gap
distributions from historical data and then design optimized sparse
sensing strategies to streamline the collection and processing of data;
see Fig. 12. This new approach is based on the assumption that

patterns exist in shim distributions across aircraft, and that these
patterns may be mined from historical production data and used to
reduce the burden of data collection and processing in future aircraft.
Specifically, robust PCA (RPCA) [110] from Sec. II is used to extract
low-dimensional patterns in the gap measurements while rejecting
outliers. RPCA is based on the computationally efficient SVD
[9,187] and yields themost correlated spatial structures in the aircraft
measurements, identifying areas of high variance across different
aircraft. Next, optimized sparse sensors [76,132,188] are obtained
that are most informative about the dimensions of a new aircraft in
these low-dimensional principal components. The success of the
proposed approach, known within Boeing as PIXel Identification
Despite Uncertainty in Sensor Technology (PIXI-DUST), is demon-
strated on historical production data from 54 representative Boeing
commercial aircraft. This algorithm successfully predicts 99% of the
shim gaps within the desired measurement tolerance using around
3% of the laser scan points that are typically required; all results are
rigorously cross-validated.
This approach to predictive shimming combines robust dimen-

sionality reduction and sparse sensor optimization algorithms to
dramatically reduce the number of measurements required to shim
a modern aircraft. In particular, RPCA from Sec. II is used to extract
coherent patterns from historical aircraft production data. Thus,
RPCA is used to develop low-dimensional representations for
high-dimensional aircraft metrology data (e.g., laser scans or point
cloud measurements). Shim scan data is collected across multiple
aircraft, either leveraging historical data, or collecting data in a
streaming fashion as each new aircraft is assembled. The shim
measurements for a region of interest are flattened into column
vectors xk ∈ Rn, where n corresponds to the number of measure-
ments and k refers to the aircraft line number. These vectors are then
stacked as columns of a matrixX ! " x1 x2 · · · xm #, where the
total number of aircraftm is assumed to be significantly smaller than
the number of measurements per aircraft, that is, m ≪ n.
Because of tight manufacturing tolerances and a high degree of

reproducibility from part to part, it is assumed that the matrix X

Fig. 12 Cartoon illustrating recent progress in predictive shimming in the last decade.
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machining 
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log10( |x − ̂x | )

 99% unknown gaps within 0.005” with 30X less measurement
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