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Motivating example: Electrical Impedance Tomography

» |dentify electric conductivity inside
body by boundary measurements

» Non-invasive and non-costly
procedure

» Electric potential satisfies

—V:-ocVu = 0 inQ
n-Vu = g onodQ

giving rise to the N-to-D mapping

0 é ‘It é é 1‘0 1‘2 1‘4 (s) 1‘6
N=N(o): g ulgn

Inverse problem: given the Neumann-to-Dirichlet mapping A,
recover conductivity o



Motivating example: Head imaging with EIT

» EIT is sensitive to -
conductivity changes when
imaging a brain stroke s

Hyvonen N, Maaninen, J and Puska J-P, Bayesian experimental design for head imaging by EIT,
SIAM J. Appl. Math. 84 (4), 2024.
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Bayesian inference in inverse problems

Identify the unknown x from noisy data y
where y = G(x; 6) + ¢£.
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Bayesian inference in inverse problems

EIT /Posterior mean

Identify the unknown x from noisy data y _
where y = G(x; 6) + ¢£.

Parameter-to-observable map: -

G(0)=E@)oF: X =Y,

with the forward map 7 : X — X’ and an
evaluation map E : X/ — Y:= RY.

EIT /Posterior marginal std

Bayes formula: 1o = prior, ;¥ = posterior
and

W gy _ T0130)

= ———=, where
dpo m(y; 0)

7r(y, 9) — / 7.(.(-y|X, Q)Mo(dx) Q@Alghamdi et al. 2024 (CUQIpy)
X



Bayesian optimal experimental design

How to choose #7? First pick a utility function?
U®)=Eu(X,Y;0)
An optimal design 6, € D maximizes U, that is
0. (o).
< arg e UO)
Typically used utility: expected information gain

U(#) = EIG(0) = E KL(uY, ).

'Huan X et al., Optimal experimental design: Formulations and computations,
Acta Numerica 33, 2024



Computational challenges

Consider e.g. EIG:

0, € arg max EIG(0)
€D

= argmax [//ym < ’9§)>W(yl><: 0)po(dx)dy

— Computational cost prohibitive (double expectation combined
with optimization)



Computational challenges

Consider e.g. EIG:

0. EIG(6
€ arg max G(60)

- [ ] i

— Computational cost prohibitive (double expectation combined
with optimization)

Stable numerical approximation schemes necessary to enable study
of large-scale problems!



Stability of expected utility

Now let
EIGy(0) = E KL(uy || 1)

where Y
duN(_ 0) — (| 0)
dpo 7n(y; 0)

Theorem (Duong-H-Rojo Garcia 2023)

Under suitable moment bounds, there exists C > 0 such that for
all N sufficiently large,

sup [BIG(0) — BIG(0)| < Cy/ER [KL (ra(1X;0) [ <(1X: )]



Special case: Gaussian likelihood

Consider the inverse problem

y=6(x;0)+¢

with noise & ~ N(0,T).

Theorem (Duong-H-Rojo Garcia 2023)

Suppose G,Gn € Lg®(D, L}, (X,R?)). Then

sup [EIG(0) — EIGn(0)] < C\/E“" 1G(X: 6) = Gn(X; O)II7,
€

for all N sufficiently large.



Stability of optimal design
Theorem (Duong-H-Rojo Garcia 2023)

On top of previous assumptions add continuity of
§ s EHO [KL (w(.\x; d) || =(1X; 9))}
around some neighbourhood of any 6 € D. Now suppose

Oy € argmax EIGy(0).
0eD

Then, the limit 0* of any converging subsequence of {0}/, is a
maximizer of EIG, that is,

0" € argmax EIG(0).
0eD

Moreover,
limsup EIGy(0y) = EIG(0%).

N—oo



EIG/stability - Key takeaways

» Numerical evaluation of EIG has received considerable
attention, whereas the impact of model approximations has
been less explored

» EIG and corresponding optimal designs are stable wrt
likelihood perturbations

» What about mispecified /empirical /data-driven priors?



Wasserstein information criterion

Define Pp(X) = {u Borel prob. measure on X' | My(p) < oo} with
Mp(p) = [ IxI1% n(dx).

For p1, p2 € P(X) and p € [1,00), we define
1/p
W) = (ot [ e wlP aptem)
pe=(p1,p2) Jxx x
where =(p1, pi2) is the set of all couplings between 11 and po.

Wasserstein information criterion:2

Up(0) = ET WP, 17 (-56)).

2Helin, Marzouk and Rojo-Garcia, Bayesian optimal experimental design with
Wasserstein information criteria, arxiv:2504.10092



WOED - what properties

» Well-defined for infinite-dimensional X
» Bayesian utility®; depends on Hpost

» Information measure according to Ginebra*: (i) real-valued,
(ii) yields zero for non-informative experiment and (iii)
satisfies sufficiency ordering

Statistical sufficiency: We say Y|X, 61 is sufficient for Y|X, 6, if
there exists a random variable n with a known probability
distribution and a function W such that

W(Yvn)‘xv 91 = Y|X> 92

in distribution for all x.

®Ryan E et al., A Review of Modern Computational Algorithms for Bayesian
Optimal Design, ISR 84(1) 2016

“Ginebra J, On the measure of the information in a statistical experiment,
Bayesian Analysis 2(1) 2007



W-OED: Linear and Gaussian case

Recall that we consider

y:g(X;9)+§v SNN(Oar)

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G is linear and the prior g is a centred Gaussian with
covariance Cy We have that the expected utility U, satisfies

1 1\ 2
U2(9) = 2try (Co) — 2try <<C02 Cpost(9) C02> 2) ,

where Cpost = (G'T~1G + C; 1)1



W-OED: Stability

Assumption (A)

The following conditions hold for the mapping G : X — RY and
the Borel probability measure p on X':

(i) (Lipschitz) There exists L1 > 0 such that
1663 = G0Nl < Lo [}x = X'

for all x,x' € X.
(ii) (sub-Gaussian prior) There exists L, > 0 such that

E* exp (L2 HXH2> < 00.

(iii) (G is proper) There exists R, L3 > 0 such that u(B(0, R)) > 0
and sup,ep(o,r) 1G(X)Ir < Ls.



W-OED: Likelihood stability p =1

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G and G, satisfy Assumption A with probability measure
w on X and with same constants. Moreover, we assume

L% < @Lg. Then there exist constants K1 and K5 such that:

(i) The evidence averaged posterior perturbation is bounded by

E WA, 1) < Ko (B 1G(x) - Gu()IR) "

(i) The perturbation of the expected Us-utility satisfies

N

UL - U] < Ko (B2 1G(x) — Gu()IF)



W-OED: Prior stability p =1

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G satisfies Assumption (A) with two probability measures

wand ji on X, and L2 < @Lz Then there exist constants Ki
and K> such that

(i) The evidence averaged posterior perturbation is bounded by
ET O WA (i, i) < KiWal(p, fi),
(i) The perturbation of the expected Us-utility satisfies

|Up — Ur| < Wa(p, i) + KoWa(p, fi).



W-OED: Prior stability p = 2

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G satisfies Assumption A with two probability measures p

and i on X, and L% < @Lz Then there exist constants K1 and
K> such that

Uz — Us| < KaWa(p, i) + Kz\/E“(Y)Wf(My,ﬂy)-

To-do: establish bound for the posterior perturbation!



Wasserstein information criterion - Key takeaways

» Novel information criterion with explicit formula for Gaussian
distributions

» WOED (p = 1) is stable with respect to prior perturbations

» Kerrigan et al. (arXiv:2510.14848) extend the idea to
general transport distances


arXiv:2510.14848

Back to EIG: maximum entropy sampling
Recall that EIG satisfies

EIG(A) = EKL(uY, 1)

:—/ log (7 (y; 0)) w(y; 6)dy
R

[ gy [0y | xi0)dy (e
RIx X
= Ent(n(-;0)) — EFEnt(n(- | X;6)),
Suppose our likelihood emerges from
y=G(x;0) +e

where € ~ 7. Since differential entropy is translation-invariant with
respect to the density, we have

E" Ent(n(- | X;6)) = Ent(n).



EIG with maximum entropy sampling

We have
EIG(6) = Ent(7(-;6)) + const

Divide the OED task into two sub-tasks:

1. Density estimation of the evidence 7(y) ~ 74 (y) based on
prior samples of the unknown x, push-forwarded through an
approximate version of G that can be obtained, e.g., via
discretization of the underlying PDE

2. Estimation of the differential entropy of the approximated
evidence — can be efficiently evaluated with off-the-shelf
kernel density estimation software packages



Evidence approximations with Gaussian mixture model

P Likelihood
y=G(x;0) +e,
where e ~ N(0,T)
> Let {xm}M_, C X be unsupervised training data
> Gk approximates G
> Set

m=1
We utilize estimator®
1 N
T n(0) = =5 > log (ki (¥ai 0))
n=1

5Chen, Helin, Hyvénen and Suzuki, Approximation of differential entropy in
Bayesian optimal experimental design, arXiv:2510.00734



Monte Carlo based Gaussian mixture models

Define

5 = /B2 G(X:6) — Gr(X: )|

Theorem (Chen-Helin-Hyvénen-Suzuki 25+ )
Suppose Assumption (A) holds for G and Gk with L3 < 1—12L2 and
let X ~pu, m=1,.... M be i.id We have

ERHES™M|J — Ji o < c(5i+%+%) (1)

for some constant C and all K, M, N > 0.

» The core part of the proof relies on Goldfeld et al. 2020 (also
minimax!)



QMC-based Gaussian mixture models

Theorem (Chen-Helin-Hyvénen-Suzuki 25+)

» G and p satisfy Assumption (A)

> Xyx C X, K € N subspace isomorphic to R¥

> projection of ji to X is the uniform measure over [0, 1]1X
> Gx € Wh([0,1]%)?, extended canonically to X

mix
Let {Xm}M_, be the randomized lattice points with the generating
vector z constructed by the component-by-component algorithm

(Kuo 2003). Then, for any v > 0,

K 2 1 1
EAE®™|J — I o] _C(5%<+M2—7+N>’ (2)

where the constant C > 0 depends on K and ~.



Maximum entropy sampling - key takeaways

» Applicable when the noise model is well-understood
» Evidence approximation through push-forward samples and
estimation of the differential entropy decouple

> We applied GMM approximation to evidence motivated by
convergence results from Goldfeld et al. 2020 - other density
estimation methods apply as well

» Being able to design the training points for density estimation
(QMC) improves convergence rate



Conclusions

» Bayesian OED in large-scale inverse problems requires
significant computational effort

» Stability under numerical approximations is key for efficient
algorithms

> Wasserstein information criterion provides a novel utility for
Bayesian OED

» For EIG, maximum entropy sampling is a potential alternative
for nested methods when applicable

Helin T, Marzouk Y and Rojo-Garcia R,
Bayesian optimal experimental design with Wasserstein information criteria,
arxiv:2504.10092

Duong D-L, Helin T and Rojo-Garcia R,
Stability estimates for the expected utility in Bayesian optimal experimental
design, Inverse Problems 39 (12), 2023.

Chen C, Helin T, Hyvonen N and Suzuki Y,
Approximation of differential entropy in Bayesian optimal experimental design,
arXiv:2510.00734



If time permits: Numerical tests for WOED

» Approximate prior 1 by empirical measure:
pim = g S O(x — x™), XM~ g,

» Corresponding posterior:

wlo(x —x™), wl = exp(= (", y)) .
" kexp(=0(xk, y))

Mz

m=1

» It is well-known that empirical approximations of one-dimensional
Gaussian distributions satisfy

loglog M
E W (s, uM)Nf and B Wa(yu ) S || 2 e,

where E®# stands for the ensemble average and the proportionality
constants are universal.

» Toy example: G(x;0) =50°x on R x [-1,1], prior u = N(0,1),
noise € ~ N(0,0.052). Posterior is Gaussian = exact utility
evaluation.



Numerical tests: Stability in 1d

— E|U(A) - Un(A)|
— E|U(B) - Un(B)|

Figure: Expected utility in the one-dimensional linear problem: (a) true
expected utility U;(0); (b) convergence behavior under empirical prior
approximations.



Numerical tests: Heat diffusion

Theorem (Brenier's theorem)

Let p1, o € Pp(X) be probability measures. There exist an
optimal coupling ~v* € T (u1, pu2), such that

We(us,i2) = [ = lPy" (v, d)
XxX

Moreover, if X = R", p =2 and 1 is absolutely continuous
respect to the Lebesgue measure, then there exists a unique (up to
a constant) convex and almost everywhere differentiable potential
function ¢ such that T(x) = Vy(x) and

W2(un, p2) = / I = T2 ua( ).

We solve ¢ through the Monge-Ampere equations on R?.



Numerical tests: Heat diffusion

» Consider heat diffusion in the unit square £ with source S and
Neumann boundary conditions:

%:AV+S(Z,t,X)7 VV'HZO, V(Z7O):O,

where the source term satisfies

%eXp(—M), o<t<r
S(z,t,x) =< ™" 2h - ., h=0.05 7=0.3.
0, t>T

» Design goal: find optimal sensor location 6 € Q to recover the
source x from observations y = [v(0, t1),...,v(0,t5)] € R>.

» Forward map: G : Q x Q — R5, where y = G(x; 6).



Numerical tests: Heat diffusion
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Figure: Expected utility functions U(6) for heat diffusion. Left:
Wasserstein-2 information criterion. Right: EIG criterion.
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Numerical tests: Heat diffusion

g 42

0.0

0.0

Figure: Posterior densities generated at optimal design nodes. Each row
shows posteriors for different ground truth x: (a) x = (0.25,0.75) and
(b) x = (0.75,0.75). In each subfigure, the left panel corresponds to the
EIG optimal design and the right to the Wasserstein-2 distance optimal
design.
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