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Motivating example: Electrical Impedance Tomography

▶ Identify electric conductivity inside
body by boundary measurements

▶ Non-invasive and non-costly
procedure

▶ Electric potential satisfies

−∇ · σ∇u = 0 in Ω

σn · ∇u = g on ∂Ω

giving rise to the N-to-D mapping

Λ = Λ(σ) : g 7→ u|∂Ω

Inverse problem: given the Neumann-to-Dirichlet mapping Λ,
recover conductivity σ



Motivating example: Head imaging with EIT

▶ EIT is sensitive to
conductivity changes when
imaging a brain stroke

Hyvönen N, Maaninen, J and Puska J-P, Bayesian experimental design for head imaging by EIT,

SIAM J. Appl. Math. 84 (4), 2024.



Bayesian inference in inverse problems

Identify the unknown x from noisy data y
where y = G(x ; θ) + ξ.

Parameter-to-observable map:

G(·; θ) = E (θ) ◦ F : X → Y,

with the forward map F : X → X ′ and an
evaluation map E : X ′ → Y:= Rd .

Bayes formula: µ0 = prior, µy = posterior
and

dµy

dµ0
(·|θ) = π(y |·; θ)

π(y ; θ)
, where .

π(y ; θ) =

∫
X
π(y |x ; θ)µ0(dx)

EIT/Posterior mean

EIT/Posterior marginal std
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Bayesian optimal experimental design

How to choose θ? First pick a utility function1

U(θ) = E u(X ,Y ; θ)

An optimal design θ∗ ∈ D maximizes U, that is

θ∗ ∈ argmax
θ∈D

U(θ).

Typically used utility: expected information gain

U(θ) = EIG(θ) = E KL(µY , µ).

1Huan X et al., Optimal experimental design: Formulations and computations,
Acta Numerica 33, 2024



Computational challenges

Consider e.g. EIG:

θ∗ ∈ argmax
θ∈D

EIG(θ)

= argmax
θ∈D

[∫∫
Y×X

log

(
π(y |x ; θ)
π(y ; θ)

)
π(y |x ; θ)µ0(dx)dy

]
=⇒ Computational cost prohibitive (double expectation combined
with optimization)

Stable numerical approximation schemes necessary to enable study
of large-scale problems!
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Stability of expected utility

Now let
EIGN(θ) = E KL(µY

N ∥ µ)

where
dµy

N

dµ0
(·|θ) = πN(y |·; θ)

πN(y ; θ)
.

Theorem (Duong-H-Rojo Garcia 2023)

Under suitable moment bounds, there exists C > 0 such that for
all N sufficiently large,

sup
θ∈D

|EIG(θ)− EIGN(θ)| ≤ C
√
Eµ0 [KL (πN(·|X ; θ) ∥ π(·|X ; θ))].



Special case: Gaussian likelihood

Consider the inverse problem

y = G(x ; θ) + ξ

with noise ξ ∼ N (0, Γ).

Theorem (Duong-H-Rojo Garcia 2023)

Suppose G,GN ∈ L∞θ (D, L4µ0
(X ,Rd)). Then

sup
θ∈D

|EIG(θ)− EIGN(θ)| ≤ C

√
Eµ0 ∥G(X ; θ)− GN(X ; θ)∥2Γ,

for all N sufficiently large.



Stability of optimal design

Theorem (Duong-H-Rojo Garcia 2023)

On top of previous assumptions add continuity of

θ̃ 7→ Eµ0

[
KL
(
π(·|X ; θ̃) ∥ π(·|X ; θ)

)]
around some neighbourhood of any θ ∈ D. Now suppose

θ∗N ∈ argmax
θ∈D

EIGN(θ).

Then, the limit θ∗ of any converging subsequence of {θ∗N}∞N=1 is a
maximizer of EIG, that is,

θ∗ ∈ argmax
θ∈D

EIG(θ).

Moreover,
lim sup
N→∞

EIGN(θ
∗
N) = EIG(θ∗).



EIG/stability - Key takeaways

▶ Numerical evaluation of EIG has received considerable
attention, whereas the impact of model approximations has
been less explored

▶ EIG and corresponding optimal designs are stable wrt
likelihood perturbations

▶ What about mispecified/empirical/data-driven priors?



Wasserstein information criterion

Define Pp(X ) = {µ Borel prob. measure on X | Mp(µ) < ∞} with
Mp(µ) =

∫
X ∥x∥pX µ(dx).

For µ1, µ2 ∈ P(X ) and p ∈ [1,∞), we define

Wp(µ1, µ2) =

(
inf

ρ∈Ξ(µ1,µ2)

∫
X×X

∥x − w∥p dρ(x ,w)

)1/p

,

where Ξ(µ1, µ2) is the set of all couplings between µ1 and µ2.

Wasserstein information criterion:2

Up(θ) = Eπ(y ;θ)W p
p (µ, µ

y (·; θ)).

2Helin, Marzouk and Rojo-Garcia, Bayesian optimal experimental design with
Wasserstein information criteria, arxiv:2504.10092



WOED - what properties

▶ Well-defined for infinite-dimensional X
▶ Bayesian utility3; depends on µpost

▶ Information measure according to Ginebra4: (i) real-valued,
(ii) yields zero for non-informative experiment and (iii)
satisfies sufficiency ordering

Statistical sufficiency: We say Y |X , θ1 is sufficient for Y |X , θ2 if
there exists a random variable η with a known probability
distribution and a function W such that

W (Y , η)|x , θ1 = Y |x , θ2

in distribution for all x .

3Ryan E et al., A Review of Modern Computational Algorithms for Bayesian
Optimal Design, ISR 84(1) 2016

4Ginebra J, On the measure of the information in a statistical experiment,
Bayesian Analysis 2(1) 2007



W-OED: Linear and Gaussian case

Recall that we consider

y = G(x ; θ) + ξ, ξ ∼ N (0, Γ).

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G is linear and the prior µ0 is a centred Gaussian with
covariance C0 We have that the expected utility U2 satisfies

U2(θ) = 2trX (C0)− 2trX

((
C

1
2
0 Cpost(θ)C

1
2
0

) 1
2

)
,

where Cpost =
(
G∗Γ−1G + C−1

0

)−1
.



W-OED: Stability

Assumption (A)

The following conditions hold for the mapping G : X → Rd and
the Borel probability measure µ on X :

(i) (Lipschitz) There exists L1 > 0 such that∥∥G(x)− G(x ′)
∥∥
Γ
≤ L1

∥∥x − x ′
∥∥

for all x , x ′ ∈ X .

(ii) (sub-Gaussian prior) There exists L2 > 0 such that

Eµ exp
(
L2 ∥x∥2

)
< ∞.

(iii) (G is proper) There exists R, L3 > 0 such that µ(B(0,R)) > 0
and supx∈B(0,R) ∥G(x)∥Γ < L3.



W-OED: Likelihood stability p = 1

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G and G∗ satisfy Assumption A with probability measure
µ on X and with same constants. Moreover, we assume

L21 <
√
2−1
2 L2. Then there exist constants K1 and K2 such that:

(i) The evidence averaged posterior perturbation is bounded by

Eπ(y)W1(µ
y , µy

∗) ≤ K1

(
Eµ ∥G(x)− G∗(x)∥2Γ

) 1
2
.

(ii) The perturbation of the expected U1-utility satisfies

|U1 − U∗
1 | ≤ K2

(
Eµ ∥G(x)− G∗(x)∥2Γ

) 1
2
.



W-OED: Prior stability p = 1

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G satisfies Assumption (A) with two probability measures

µ and µ̃ on X , and L21 <
√
3−1
2 L2. Then there exist constants K1

and K2 such that

(i) The evidence averaged posterior perturbation is bounded by

Eπ(y)W1(µ
y , µ̃y ) ≤ K1W2(µ, µ̃),

(ii) The perturbation of the expected U1-utility satisfies

|U1 − Ũ1| ≤ W1(µ, µ̃) + K2W2(µ, µ̃).



W-OED: Prior stability p = 2

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G satisfies Assumption A with two probability measures µ

and µ̃ on X , and L21 <
√
3−1
2 L2. Then there exist constants K1 and

K2 such that

|U2 − Ũ2| ≤ K1W2(µ, µ̃) + K2

√
Eπ(y)W 2

2 (µ
y , µ̃y ).

To-do: establish bound for the posterior perturbation!



Wasserstein information criterion - Key takeaways

▶ Novel information criterion with explicit formula for Gaussian
distributions

▶ WOED (p = 1) is stable with respect to prior perturbations

▶ Kerrigan et al. (arXiv:2510.14848) extend the idea to
general transport distances

arXiv:2510.14848


Back to EIG: maximum entropy sampling
Recall that EIG satisfies

EIG(θ) = EKL(µY , µ)

= −
∫
Rd

log (π (y ; θ))π(y ; θ)dy

+

∫∫
Rd×X

log (π (y | x ; θ))π(y | x ; θ) dy µ(dx)

= Ent(π( · ; θ))− Eµ Ent(π( · | X ; θ)),

Suppose our likelihood emerges from

y = G(x ; θ) + ϵ,

where ϵ ∼ η. Since differential entropy is translation-invariant with
respect to the density, we have

Eµ Ent(π( · | X ; θ)) = Ent(η).



EIG with maximum entropy sampling

We have
EIG(θ) = Ent(π( · ; θ)) + const

Divide the OED task into two sub-tasks:

1. Density estimation of the evidence π(y) ≈ πK
M(y) based on

prior samples of the unknown x , push-forwarded through an
approximate version of G that can be obtained, e.g., via
discretization of the underlying PDE

2. Estimation of the differential entropy of the approximated
evidence → can be efficiently evaluated with off-the-shelf
kernel density estimation software packages



Evidence approximations with Gaussian mixture model

▶ Likelihood
y = G(x ; θ) + ϵ,

where ϵ ∼ N(0, Γ)

▶ Let {xm}Mm=1 ⊂ X be unsupervised training data

▶ GK approximates G
▶ Set

πK
M(y) =

1

M

M∑
m=1

N (G(xm), Γ)

We utilize estimator5

ĴKM,N(θ) = − 1

N

N∑
n=1

log
(
πK
M (Yn; θ)

)

5Chen, Helin, Hyvönen and Suzuki, Approximation of differential entropy in
Bayesian optimal experimental design, arXiv:2510.00734



Monte Carlo based Gaussian mixture models

Define

δK :=

√
Eµ ∥G(X ; θ)− GK (X ; θ)∥2Γ

Theorem (Chen-Helin-Hyvönen-Suzuki 25+)

Suppose Assumption (A) holds for G and GK with L21 <
1
12L2 and

let xm ∼ µ, m = 1, . . . ,M be i.i.d. We have

E⊗µE⊗πK
M
∣∣J − ĴKM,N

∣∣2 ≤ C
(
δ2K +

1

M
+

1

N

)
(1)

for some constant C and all K ,M,N > 0.

▶ The core part of the proof relies on Goldfeld et al. 2020 (also
minimax!)



QMC-based Gaussian mixture models

Theorem (Chen-Helin-Hyvönen-Suzuki 25+)

▶ G and µ satisfy Assumption (A)

▶ XK ⊂ X , K ∈ N subspace isomorphic to RK

▶ projection of µ to XK is the uniform measure over [0, 1]K

▶ GK ∈ W 1,∞
mix ([0, 1]K )d , extended canonically to X

Let {Xm}Mm=1 be the randomized lattice points with the generating
vector z constructed by the component-by-component algorithm
(Kuo 2003). Then, for any γ > 0,

E∆E⊗πK
M
∣∣J − ĴKM,N

∣∣2 = C

(
δ2K +

1

M2−γ
+

1

N

)
, (2)

where the constant C > 0 depends on K and γ.



Maximum entropy sampling - key takeaways

▶ Applicable when the noise model is well-understood

▶ Evidence approximation through push-forward samples and
estimation of the differential entropy decouple

▶ We applied GMM approximation to evidence motivated by
convergence results from Goldfeld et al. 2020 - other density
estimation methods apply as well

▶ Being able to design the training points for density estimation
(QMC) improves convergence rate



Conclusions
▶ Bayesian OED in large-scale inverse problems requires

significant computational effort

▶ Stability under numerical approximations is key for efficient
algorithms

▶ Wasserstein information criterion provides a novel utility for
Bayesian OED

▶ For EIG, maximum entropy sampling is a potential alternative
for nested methods when applicable

Helin T, Marzouk Y and Rojo-Garcia R,
Bayesian optimal experimental design with Wasserstein information criteria,
arxiv:2504.10092

Duong D-L, Helin T and Rojo-Garcia R,
Stability estimates for the expected utility in Bayesian optimal experimental
design, Inverse Problems 39 (12), 2023.

Chen C, Helin T, Hyvönen N and Suzuki Y,
Approximation of differential entropy in Bayesian optimal experimental design,
arXiv:2510.00734



If time permits: Numerical tests for WOED

▶ Approximate prior µ by empirical measure:
µM = 1

M

∑M
m=1 δ(x − xm), xm ∼ µ i.i.d.

▶ Corresponding posterior:

µy
M =

1

M

M∑
m=1

w y
mδ(x − xm), w y

m =
exp(−Φ(xm, y))∑
k exp(−Φ(xk , y))

.

▶ It is well-known that empirical approximations of one-dimensional
Gaussian distributions satisfy

E⊗µW1(µ, µM) ≲
1√
M

and E⊗µW2(µ, µM) ≲

√
log logM

M
,

where E⊗µ stands for the ensemble average and the proportionality
constants are universal.

▶ Toy example: G(x ; θ) = 5θ6x on R× [−1, 1], prior µ = N (0, 1),
noise ϵ ∼ N (0, 0.052). Posterior is Gaussian ⇒ exact utility
evaluation.



Numerical tests: Stability in 1d
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Figure: Expected utility in the one-dimensional linear problem: (a) true
expected utility U1(θ); (b) convergence behavior under empirical prior
approximations.



Numerical tests: Heat diffusion

Theorem (Brenier’s theorem)

Let µ1, µ2 ∈ Pp(X ) be probability measures. There exist an
optimal coupling γ∗ ∈ Γ(µ1, µ2), such that

W p
p (µ1, µ2) =

∫
X×X

∥x1 − x2∥pγ∗(dx1, dx2).

Moreover, if X = Rn, p = 2 and µ1 is absolutely continuous
respect to the Lebesgue measure, then there exists a unique (up to
a constant) convex and almost everywhere differentiable potential
function φ such that T (x) = ∇φ(x) and

W 2
2 (µ1, µ2) =

∫
Rn

∥x − T (x)∥2 µ1(dx).

We solve ϕ through the Monge-Ampere equations on R2.



Numerical tests: Heat diffusion

▶ Consider heat diffusion in the unit square Ω with source S and
Neumann boundary conditions:

∂v

∂t
= ∆v + S(z , t, x), ∇v · n = 0, v(z , 0) = 0,

where the source term satisfies

S(z , t, x) =

{
1

πh2 exp
(
−∥z−x∥2

2h2

)
, 0 ≤ t < τ

0, t ≥ τ
, h = 0.05, τ = 0.3.

▶ Design goal: find optimal sensor location θ ∈ Ω to recover the
source x from observations y = [v(θ, t1), . . . , v(θ, t5)] ∈ R5.

▶ Forward map: G : Ω× Ω → R5, where y = G(x ; θ).



Numerical tests: Heat diffusion
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Figure: Expected utility functions U(θ) for heat diffusion. Left:
Wasserstein-2 information criterion. Right: EIG criterion.



Numerical tests: Heat diffusion
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Figure: Posterior densities generated at optimal design nodes. Each row
shows posteriors for different ground truth x : (a) x = (0.25, 0.75) and
(b) x = (0.75, 0.75). In each subfigure, the left panel corresponds to the
EIG optimal design and the right to the Wasserstein-2 distance optimal
design.
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