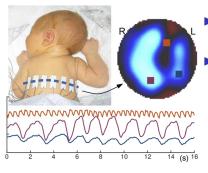
Novel information criteria in Bayesian experimental design

Tapio Helin

tapio.helin@lut.fi School of Engineering Science LUT University

October 28, 2025

Motivating example: Electrical Impedance Tomography



- Identify electric conductivity inside body by boundary measurements
- Non-invasive and non-costly procedure
- Electric potential satisfies

$$-\nabla \cdot \boldsymbol{\sigma} \nabla u = 0 \quad \text{in } \Omega$$
$$\boldsymbol{\sigma} \mathbf{n} \cdot \nabla u = g \quad \text{on } \partial \Omega$$

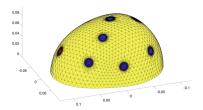
giving rise to the N-to-D mapping

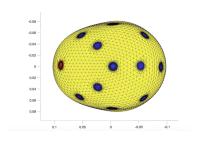
$$\Lambda = \Lambda(\sigma) : g \mapsto u|_{\partial\Omega}$$

Inverse problem: given the Neumann-to-Dirichlet mapping Λ , recover conductivity σ

Motivating example: Head imaging with EIT

► EIT is sensitive to conductivity changes when imaging a brain stroke





Hyvönen N, Maaninen, J and Puska J-P, Bayesian experimental design for head imaging by EIT, SIAM J. Appl. Math. 84 (4), 2024.

Identify the unknown x from noisy data y where $y = \mathcal{G}(x; \theta) + \xi$.

Identify the unknown x from noisy data y where $y = \mathcal{G}(x; \theta) + \xi$.

Parameter-to-observable map:

$$\mathcal{G}(\cdot;\theta) = \mathcal{E}(\theta) \circ \mathcal{F} : \mathcal{X} \to \mathcal{Y},$$

with the forward map $\mathcal{F}: \mathcal{X} \to \mathcal{X}'$ and an evaluation map $E: \mathcal{X}' \to \mathcal{Y} := \mathbb{R}^d$.

Identify the unknown x from noisy data y where $y = \mathcal{G}(x; \theta) + \xi$.

Parameter-to-observable map:

$$\mathcal{G}(\cdot;\theta) = \mathcal{E}(\theta) \circ \mathcal{F} : \mathcal{X} \to \mathcal{Y},$$

with the forward map $\mathcal{F}: \mathcal{X} \to \mathcal{X}'$ and an evaluation map $E: \mathcal{X}' \to \mathcal{Y} := \mathbb{R}^d$.

Bayes formula: $\mu_0 = \text{prior}, \ \mu^y = \text{posterior}$ and

$$\frac{\mathrm{d}\mu^{y}}{\mathrm{d}\mu_{0}}(\cdot|\theta) = \frac{\pi(y|\cdot;\theta)}{\pi(y;\theta)}, \quad \text{where} \quad .$$

$$\pi(y;\theta) = \int_{\mathcal{X}} \pi(y|x;\theta)\mu_{0}(\mathrm{d}x)$$

Identify the unknown x from noisy data y where $y = \mathcal{G}(x; \theta) + \xi$.

Parameter-to-observable map:

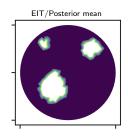
$$\mathcal{G}(\cdot;\theta) = \mathcal{E}(\theta) \circ \mathcal{F} : \mathcal{X} \to \mathcal{Y},$$

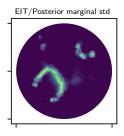
with the forward map $\mathcal{F}: \mathcal{X} \to \mathcal{X}'$ and an evaluation map $E: \mathcal{X}' \to \mathcal{Y} := \mathbb{R}^d$.

Bayes formula: $\mu_0 = \text{prior}, \ \mu^y = \text{posterior}$ and

$$\frac{\mathrm{d}\mu^y}{\mathrm{d}\mu_0}(\cdot|\theta) = \frac{\pi(y|\cdot;\theta)}{\pi(y;\theta)}, \quad \text{where} \quad .$$

$$\pi(y;\theta) = \int_{\mathcal{X}} \pi(y|x;\theta) \mu_0(\mathrm{d}x)$$





@Alghamdi et al. 2024 (CUQIpy)

Bayesian optimal experimental design

How to choose θ ? First pick a utility function¹

$$U(\theta) = \mathbb{E} u(X, Y; \theta)$$

An optimal design $\theta_* \in \mathcal{D}$ maximizes U, that is

$$\theta_* \in \arg\max_{\theta \in \mathcal{D}} U(\theta).$$

Typically used utility: expected information gain

$$U(\theta) = \mathrm{EIG}(\theta) = \mathbb{E} \ \mathsf{KL}(\mu^Y, \mu).$$

¹Huan X et al., Optimal experimental design: Formulations and computations, Acta Numerica 33, 2024

Computational challenges

Consider e.g. EIG:

$$\begin{array}{lcl} \theta_{*} & \in & \arg\max_{\theta \in \mathcal{D}} \mathrm{EIG}(\theta) \\ \\ & = & \arg\max_{\theta \in \mathcal{D}} \left[\iint_{\mathcal{Y} \times \mathcal{X}} \log \left(\frac{\pi(y|x;\theta)}{\pi(y;\theta)} \right) \pi(y|x;\theta) \mu_{0}(\mathrm{d}x) \mathrm{d}y \right] \end{array}$$

⇒ Computational cost prohibitive (double expectation combined with optimization)

Computational challenges

Consider e.g. EIG:

$$\begin{array}{ll} \theta_* & \in & \arg\max_{\theta \in \mathcal{D}} \mathrm{EIG}(\theta) \\ \\ & = & \arg\max_{\theta \in \mathcal{D}} \left[\iint_{\mathcal{V} \times \mathcal{X}} \log \left(\frac{\pi(y|x;\theta)}{\pi(y;\theta)} \right) \pi(y|x;\theta) \mu_0(\mathrm{d}x) \mathrm{d}y \right] \end{array}$$

 \Longrightarrow Computational cost prohibitive (double expectation combined with optimization)

Stable numerical approximation schemes necessary to enable study of large-scale problems!

Stability of expected utility

Now let

$$\mathrm{EIG}_{N}(\theta) = \mathbb{E} \ \mathrm{KL}(\mu_{N}^{Y} \parallel \mu)$$

where

$$\frac{\mathrm{d}\mu_N^{\mathsf{y}}}{\mathrm{d}\mu_0}(\cdot|\theta) = \frac{\pi_N(\mathsf{y}|\cdot;\theta)}{\pi_N(\mathsf{y};\theta)}.$$

Theorem (Duong-H-Rojo Garcia 2023)

Under suitable moment bounds, there exists C>0 such that for all N sufficiently large,

$$\sup_{\theta \in \mathcal{D}} |\mathrm{EIG}(\theta) - \mathrm{EIG}_{N}(\theta)| \leq C \sqrt{\mathbb{E}^{\mu_{0}} \left[\mathrm{KL} \left(\pi_{N}(\cdot | X; \theta) \parallel \pi(\cdot | X; \theta) \right) \right]}.$$

Special case: Gaussian likelihood

Consider the inverse problem

$$y = \mathcal{G}(x; \theta) + \xi$$

with noise $\xi \sim \mathcal{N}(0, \Gamma)$.

Theorem (Duong-H-Rojo Garcia 2023)

Suppose $\mathcal{G}, \mathcal{G}_N \in L^{\infty}_{\theta}(\mathcal{D}, L^4_{\mu_0}(\mathcal{X}, \mathbb{R}^d))$. Then

$$\sup_{\theta \in \mathcal{D}} |\mathrm{EIG}(\theta) - \mathrm{EIG}_{N}(\theta)| \leq C \sqrt{\mathbb{E}^{\mu_{0}} \left\| \mathcal{G}(X; \theta) - \mathcal{G}_{N}(X; \theta) \right\|_{\Gamma}^{2}},$$

for all N sufficiently large.

Stability of optimal design

Theorem (Duong-H-Rojo Garcia 2023)

On top of previous assumptions add continuity of

$$oldsymbol{ ilde{ heta}} \mapsto \mathbb{E}^{\mu_0} \left[\mathrm{KL} \left(\pi(\cdot|X; oldsymbol{ ilde{ heta}}) \parallel \pi(\cdot|X; heta)
ight)
ight]$$

around some neighbourhood of any $\theta \in \mathcal{D}$. Now suppose

$$\theta_N^* \in \underset{\theta \in \mathcal{D}}{\operatorname{arg max}} \operatorname{EIG}_N(\theta).$$

Then, the limit θ^* of any converging subsequence of $\{\theta_N^*\}_{N=1}^{\infty}$ is a maximizer of EIG, that is,

$$\theta^* \in \arg\max_{\theta \in \mathcal{D}} \mathrm{EIG}(\theta).$$

Moreover,

$$\limsup_{N \to \infty} \mathrm{EIG}_N(\theta_N^*) = \mathrm{EIG}(\theta^*).$$

EIG/stability - Key takeaways

- Numerical evaluation of EIG has received considerable attention, whereas the impact of model approximations has been less explored
- EIG and corresponding optimal designs are stable wrt likelihood perturbations
- What about mispecified/empirical/data-driven priors?

Wasserstein information criterion

Define $\mathcal{P}_p(\mathcal{X}) = \{ \mu \text{ Borel prob. measure on } \mathcal{X} \mid M_p(\mu) < \infty \}$ with $M_p(\mu) = \int_{\mathcal{X}} \|x\|_{\mathcal{X}}^p \, \mu(dx)$.

For $\mu_1, \mu_2 \in \mathcal{P}(\mathcal{X})$ and $p \in [1, \infty)$, we define

$$W_p(\mu_1, \mu_2) = \left(\inf_{\rho \in \Xi(\mu_1, \mu_2)} \int_{\mathcal{X} \times \mathcal{X}} \|x - w\|^p \, \mathrm{d}\rho(x, w)\right)^{1/p},$$

where $\Xi(\mu_1, \mu_2)$ is the set of all couplings between μ_1 and μ_2 .

Wasserstein information criterion:²

$$U_{P}(\theta) = \mathbb{E}^{\pi(y;\theta)} W_{P}^{P}(\mu, \mu^{y}(\cdot; \theta)).$$

²**Helin, Marzouk and Rojo-Garcia**, *Bayesian optimal experimental design with Wasserstein information criteria*, arxiv:2504.10092

WOED - what properties

- ightharpoonup Well-defined for infinite-dimensional ${\mathcal X}$
- ▶ Bayesian utility³; depends on μ_{post}
- ► Information measure according to Ginebra⁴: (i) real-valued, (ii) yields zero for non-informative experiment and (iii) satisfies sufficiency ordering

Statistical sufficiency: We say $Y|X,\theta_1$ is sufficient for $Y|X,\theta_2$ if there exists a random variable η with a known probability distribution and a function W such that

$$W(Y, \eta)|x, \theta_1 = Y|x, \theta_2$$

in distribution for all x.

³Ryan E et al., A Review of Modern Computational Algorithms for Bayesian Optimal Design, ISR 84(1) 2016

⁴**Ginebra J**, On the measure of the information in a statistical experiment, Bayesian Analysis 2(1) 2007

W-OED: Linear and Gaussian case

Recall that we consider

$$y = \mathcal{G}(x; \theta) + \xi, \quad \xi \sim \mathcal{N}(0, \Gamma).$$

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose G is linear and the prior μ_0 is a centred Gaussian with covariance C_0 We have that the expected utility U_2 satisfies

$$U_2(\theta) = 2 \operatorname{tr}_{\mathcal{X}} \left(C_0 \right) - 2 \operatorname{tr}_{\mathcal{X}} \left(\left(C_0^{\frac{1}{2}} C_{post}(\theta) C_0^{\frac{1}{2}} \right)^{\frac{1}{2}} \right),$$

where
$$C_{post} = (\mathcal{G}^* \Gamma^{-1} \mathcal{G} + C_0^{-1})^{-1}$$
.

W-OED: Stability

Assumption (A)

The following conditions hold for the mapping $\mathcal{G}: \mathcal{X} \to \mathbb{R}^d$ and the Borel probability measure μ on \mathcal{X} :

(i) (Lipschitz) There exists $L_1 > 0$ such that

$$\|\mathcal{G}(x) - \mathcal{G}(x')\|_{\Gamma} \le L_1 \|x - x'\|$$

for all $x, x' \in \mathcal{X}$.

(ii) (sub-Gaussian prior) There exists $L_2 > 0$ such that

$$\mathbb{E}^{\mu}\exp\left(L_{2}\left\Vert x\right\Vert ^{2}\right)<\infty.$$

(iii) (G is proper) There exists $R, L_3 > 0$ such that $\mu(B(0,R)) > 0$ and $\sup_{x \in B(0,R)} \|\mathcal{G}(x)\|_{\Gamma} < L_3$.

W-OED: Likelihood stability p = 1

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose \mathcal{G} and \mathcal{G}_* satisfy Assumption A with probability measure μ on \mathcal{X} and with same constants. Moreover, we assume $L_1^2 < \frac{\sqrt{2}-1}{2}L_2$. Then there exist constants K_1 and K_2 such that:

(i) The evidence averaged posterior perturbation is bounded by

$$\mathbb{E}^{\pi(y)}W_1(\mu^y,\mu_*^y) \leq K_1 \left(\mathbb{E}^{\mu} \left\| \mathcal{G}(x) - \mathcal{G}_*(x) \right\|_{\Gamma}^2 \right)^{\frac{1}{2}}.$$

(ii) The perturbation of the expected U_1 -utility satisfies

$$|U_1-U_1^*| \leq \mathcal{K}_2 \left(\mathbb{E}^{\mu} \left\|\mathcal{G}(x)-\mathcal{G}_*(x)
ight\|_{\Gamma}^2
ight)^{\frac{1}{2}}.$$

W-OED: Prior stability p = 1

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose $\mathcal G$ satisfies Assumption (A) with two probability measures μ and $\tilde{\mu}$ on $\mathcal X$, and $\frac{L_1^2}{2} < \frac{\sqrt{3}-1}{2} L_2$. Then there exist constants K_1 and K_2 such that

(i) The evidence averaged posterior perturbation is bounded by

$$\mathbb{E}^{\pi(y)}W_1(\mu^y, \tilde{\mu}^y) \leq K_1W_2(\mu, \tilde{\mu}),$$

(ii) The perturbation of the expected U_1 -utility satisfies

$$|U_1-\widetilde{U}_1|\leq W_1(\mu,\widetilde{\mu})+K_2W_2(\mu,\widetilde{\mu}).$$

W-OED: Prior stability p = 2

Theorem (H-Marzouk-Rojo-Garcia 25+)

Suppose $\mathcal G$ satisfies Assumption A with two probability measures μ and $\tilde \mu$ on $\mathcal X$, and $L_1^2<\frac{\sqrt{3}-1}{2}L_2$. Then there exist constants K_1 and K_2 such that

$$|U_2-\widetilde{U}_2|\leq K_1W_2(\mu,\widetilde{\mu})+K_2\sqrt{\mathbb{E}^{\pi(y)}W_2^2(\mu^y,\widetilde{\mu}^y)}.$$

To-do: establish bound for the posterior perturbation!

Wasserstein information criterion - Key takeaways

- Novel information criterion with explicit formula for Gaussian distributions
- ▶ WOED (p = 1) is stable with respect to prior perturbations
- ► Kerrigan et al. (arXiv:2510.14848) extend the idea to general transport distances

Back to EIG: maximum entropy sampling

Recall that EIG satisfies

$$\begin{split} \operatorname{EIG}(\theta) &= \mathbb{E} \operatorname{KL}(\mu^{Y}, \mu) \\ &= -\int_{\mathbb{R}^{d}} \log \left(\pi \left(y; \theta\right)\right) \pi(y; \theta) \, \mathrm{d}y \\ &+ \iint_{\mathbb{R}^{d} \times \mathcal{X}} \log \left(\pi \left(y \mid x; \theta\right)\right) \pi(y \mid x; \theta) \, \mathrm{d}y \, \mu(\mathrm{d}x) \\ &= \operatorname{Ent}(\pi(\cdot; \theta)) - \mathbb{E}^{\mu} \operatorname{Ent}(\pi(\cdot \mid X; \theta)), \end{split}$$

Suppose our likelihood emerges from

$$y = \mathcal{G}(x; \theta) + \epsilon,$$

where $\epsilon \sim \eta$. Since differential entropy is translation-invariant with respect to the density, we have

$$\mathbb{E}^{\mu}\operatorname{Ent}(\pi(\,\cdot\mid X;\theta))=\operatorname{Ent}(\eta).$$

EIG with maximum entropy sampling

We have

$$\mathrm{EIG}(\theta) = \mathrm{Ent}(\pi(\,\cdot\,;\theta)) + \mathrm{const}$$

Divide the OED task into two sub-tasks:

- 1. Density estimation of the evidence $\pi(y) \approx \pi_M^K(y)$ based on prior samples of the unknown x, push-forwarded through an approximate version of $\mathcal G$ that can be obtained, e.g., via discretization of the underlying PDE
- Estimation of the differential entropy of the approximated evidence → can be efficiently evaluated with off-the-shelf kernel density estimation software packages

Evidence approximations with Gaussian mixture model

Likelihood

$$y = \mathcal{G}(x; \theta) + \epsilon,$$

where $\epsilon \sim N(0, \Gamma)$

- ▶ Let $\{x_m\}_{m=1}^M \subset \mathcal{X}$ be unsupervised training data
- $\triangleright \mathcal{G}_K$ approximates \mathcal{G}
- Set

$$\pi_M^K(y) = \frac{1}{M} \sum_{m=1}^M \mathcal{N}(\mathcal{G}(x_m), \Gamma)$$

We utilize estimator⁵

$$\widehat{J}_{M,N}^{K}(\theta) = -\frac{1}{N} \sum_{n=1}^{N} \log \left(\pi_{M}^{K}(Y_{n}; \theta) \right)$$

⁵Chen, Helin, Hyvönen and Suzuki, Approximation of differential entropy in Bayesian optimal experimental design, arXiv:2510.00734

Monte Carlo based Gaussian mixture models

Define

$$\delta_{\mathcal{K}} := \sqrt{\mathbb{E}^{\mu} \left\| \mathcal{G}(X; heta) - \mathcal{G}_{\mathcal{K}}(X; heta)
ight\|_{\mathsf{\Gamma}}^2}$$

Theorem (Chen-Helin-Hyvönen-Suzuki 25+)

Suppose Assumption (A) holds for \mathcal{G} and \mathcal{G}_K with $L_1^2 < \frac{1}{12}L_2$ and let $x_m \sim \mu$, $m=1,\ldots,M$ be i.i.d. We have

$$\mathbb{E}^{\otimes \mu} \mathbb{E}^{\otimes \pi_{M}^{K}} \left| J - \widehat{J}_{M,N}^{K} \right|^{2} \leq C \left(\delta_{K}^{2} + \frac{1}{M} + \frac{1}{N} \right) \tag{1}$$

for some constant C and all K, M, N > 0.

► The core part of the proof relies on Goldfeld et al. 2020 (also minimax!)

QMC-based Gaussian mixture models

Theorem (Chen-Helin-Hyvönen-Suzuki 25+)

- $ightharpoonup \mathcal{G}$ and μ satisfy Assumption (A)
- \blacktriangleright $\mathcal{X}_K \subset \mathcal{X}$, $K \in \mathbb{N}$ subspace isomorphic to \mathbb{R}^K
- projection of μ to \mathcal{X}_K is the uniform measure over $[0,1]^K$
- $ightharpoonup \mathcal{G}_K \in W^{1,\infty}_{\mathrm{mix}}([0,1]^K)^d$, extended canonically to \mathcal{X}

Let $\{X_m\}_{m=1}^M$ be the randomized lattice points with the generating vector z constructed by the component-by-component algorithm (Kuo 2003). Then, for any $\gamma > 0$,

$$\mathbb{E}^{\Delta} \mathbb{E}^{\otimes \pi_{M}^{K}} \left| J - \widehat{J}_{M,N}^{K} \right|^{2} = C \left(\delta_{K}^{2} + \frac{1}{M^{2-\gamma}} + \frac{1}{N} \right), \tag{2}$$

where the constant C > 0 depends on K and γ .

Maximum entropy sampling - key takeaways

- Applicable when the noise model is well-understood
- Evidence approximation through push-forward samples and estimation of the differential entropy decouple
- We applied GMM approximation to evidence motivated by convergence results from Goldfeld et al. 2020 - other density estimation methods apply as well
- Being able to design the training points for density estimation (QMC) improves convergence rate

Conclusions

- ▶ Bayesian OED in large-scale inverse problems requires significant computational effort
- Stability under numerical approximations is key for efficient algorithms
- Wasserstein information criterion provides a novel utility for Bayesian OED
- ► For EIG, maximum entropy sampling is a potential alternative for nested methods when applicable

Helin T, Marzouk Y and Rojo-Garcia R,

Bayesian optimal experimental design with Wasserstein information criteria, arxiv:2504.10092

Duong D-L, Helin T and Rojo-Garcia R,

Stability estimates for the expected utility in Bayesian optimal experimental design, Inverse Problems 39 (12), 2023.

Chen C, Helin T, Hyvönen N and Suzuki Y,

Approximation of differential entropy in Bayesian optimal experimental design, arXiv:2510.00734

If time permits: Numerical tests for WOED

- Approximate prior μ by empirical measure: $\mu_M = \frac{1}{M} \sum_{m=1}^{M} \delta(x x^m), \quad x^m \sim \mu \text{ i.i.d.}$
- Corresponding posterior:

$$\mu_{M}^{y} = \frac{1}{M} \sum_{m=1}^{M} w_{m}^{y} \delta(x - x^{m}), \quad w_{m}^{y} = \frac{\exp(-\Phi(x^{m}, y))}{\sum_{k} \exp(-\Phi(x^{k}, y))}.$$

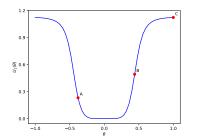
► It is well-known that empirical approximations of one-dimensional Gaussian distributions satisfy

$$\mathbb{E}^{\otimes \mu} W_1(\mu, \mu_M) \lesssim \frac{1}{\sqrt{M}} \quad \text{and} \quad \mathbb{E}^{\otimes \mu} W_2(\mu, \mu_M) \lesssim \sqrt{\frac{\log \log M}{M}},$$

where $\mathbb{E}^{\otimes \mu}$ stands for the ensemble average and the proportionality constants are universal.

Toy example: $\mathcal{G}(x;\theta) = 5\theta^6 x$ on $\mathbb{R} \times [-1,1]$, prior $\mu = \mathcal{N}(0,1)$, noise $\epsilon \sim \mathcal{N}(0,0.05^2)$. Posterior is Gaussian ⇒ exact utility evaluation.

Numerical tests: Stability in 1d



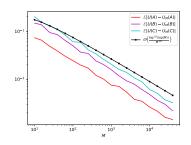


Figure: Expected utility in the one-dimensional linear problem: (a) true expected utility $U_1(\theta)$; (b) convergence behavior under empirical prior approximations.

Theorem (Brenier's theorem)

Let $\mu_1, \mu_2 \in \mathcal{P}_p(\mathcal{X})$ be probability measures. There exist an optimal coupling $\gamma^* \in \Gamma(\mu_1, \mu_2)$, such that

$$W_p^p(\mu_1, \mu_2) = \int_{\mathcal{X} \times \mathcal{X}} \|x_1 - x_2\|^p \gamma^*(dx_1, dx_2).$$

Moreover, if $\mathcal{X}=\mathbb{R}^n$, p=2 and μ_1 is absolutely continuous respect to the Lebesgue measure, then there exists a unique (up to a constant) convex and almost everywhere differentiable potential function φ such that $T(x)=\nabla\varphi(x)$ and

$$W_2^2(\mu_1,\mu_2) = \int_{\mathbb{R}^n} \|x - T(x)\|^2 \mu_1(dx).$$

We solve ϕ through the Monge-Ampere equations on \mathbb{R}^2 .

Consider heat diffusion in the unit square Ω with source S and Neumann boundary conditions:

$$\frac{\partial v}{\partial t} = \Delta v + S(z, t, x), \quad \nabla v \cdot n = 0, \quad v(z, 0) = 0,$$

where the source term satisfies

$$S(z,t,x) = \begin{cases} \frac{1}{\pi h^2} \exp\left(-\frac{\|z-x\|^2}{2h^2}\right), & 0 \le t < \tau \\ 0, & t \ge \tau \end{cases}, \quad h = 0.05, \ \tau = 0.3.$$

- ▶ Design goal: find optimal sensor location $\theta \in \Omega$ to recover the source x from observations $y = [v(\theta, t_1), \dots, v(\theta, t_5)] \in \mathbb{R}^5$.
- ► Forward map: $\mathcal{G}: \Omega \times \Omega \to \mathbb{R}^5$, where $y = \mathcal{G}(x; \theta)$.

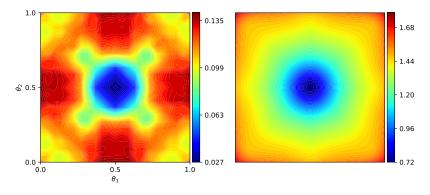


Figure: Expected utility functions $U(\theta)$ for heat diffusion. Left: Wasserstein-2 information criterion. Right: EIG criterion.

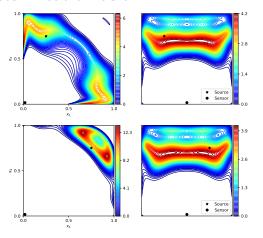


Figure: Posterior densities generated at optimal design nodes. Each row shows posteriors for different ground truth x: (a) x = (0.25, 0.75) and (b) x = (0.75, 0.75). In each subfigure, the left panel corresponds to the EIG optimal design and the right to the Wasserstein-2 distance optimal design.