

Jacobian Free Backpropagation for High-Dimensional Optimal Control with Implicit Hamiltonians

Samy Wu Fung

Joint work with Eric Gelphman, Deepanshu Verma, Nicole Yang, and Stanley Osher

High-Dimensional Control Background

High-Dimensional Optimal Control Background

Optimal Control Formulation

Goal: Find the control that incurs minimal cost¹

¹Flemming and Soner. Controller Markov Processes

Optimal Control Formulation

Goal: Find the control that incurs minimal cost¹

$$\min_{u \in U} \int_{0}^{T} L(s, z_{x}, u) ds + G(z_{x}(T))$$
$$\dot{z}_{x} = f(t, z_{x}, u), \quad z_{x}(0) = x,$$

¹Flemming and Soner. Controller Markov Processes

Optimal Control Formulation

Goal: Find the control that incurs minimal cost¹

$$\min_{u \in U} \int_{0}^{T} L(s, z_{x}, u) ds + G(z_{x}(T))$$
$$\dot{z}_{x} = f(t, z_{x}, u), \quad z_{x}(0) = x,$$

- $lue{L}$ is the running cost and G is the terminal cost
- \mathbf{z}_x is the state, u is the controller
- \blacksquare f are the dynamics

¹Flemming and Soner. Controller Markov Processes

Let $\mathcal{H}(t, z_x, p_x, u) = -\langle p_x, f(t, z_x, u) \rangle - L(t, z_x, u)$ be the Generalized Hamiltonian

²Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Let $\mathcal{H}(t, z_x, p_x, u) = -\langle p_x, f(t, z_x, u) \rangle - L(t, z_x, u)$ be the Generalized Hamiltonian

By the Pontryagin Maximum Principle (PMP) 2 we have that at the **optimal controller** u^* :

$$\begin{split} \dot{z}_x &= -\nabla_p \mathcal{H}(t, z_x, p_x, u^*), \quad z_x(0) = x \\ \dot{p}_x &= \nabla_z \mathcal{H}(t, z_x, p_x, u^*), \quad p_x(T) = \nabla G(z_x(T)), \\ u^* &\in \operatorname*{max}_u \mathcal{H}(t, z_x, p_x, u) \end{split}$$

²Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Let $\mathcal{H}(t,z_x,p_x,u)=-\langle p_x,f(t,z_x,u)\rangle-L(t,z_x,u)$ be the *Generalized* Hamiltonian

By the Pontryagin Maximum Principle (PMP) 2 we have that at the **optimal controller** u^* :

$$\begin{split} \dot{z}_x &= -\nabla_p \mathcal{H}(t, z_x, p_x, u^*), \quad z_x(0) = x \\ \dot{p}_x &= \nabla_z \mathcal{H}(t, z_x, p_x, u^*), \quad p_x(T) = \nabla G(z_x(T)), \\ u^* &\in \operatorname*{arg\,max}_u \mathcal{H}(t, z_x, p_x, u) \end{split}$$

 p_x is the dual/adjoint variable

²Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Let $\mathcal{H}(t,z_x,p_x,u)=-\langle p_x,f(t,z_x,u)\rangle-L(t,z_x,u)$ be the *Generalized* Hamiltonian

By the Pontryagin Maximum Principle (PMP) 2 we have that at the **optimal controller** u^* :

$$\begin{split} \dot{z}_x &= -\nabla_p \mathcal{H}(t, z_x, p_x, u^*), \quad z_x(0) = x \\ \dot{p}_x &= \nabla_z \mathcal{H}(t, z_x, p_x, u^*), \quad p_x(T) = \nabla G(z_x(T)), \\ u^* &\in \operatorname*{arg\,max}_u \mathcal{H}(t, z_x, p_x, u) \end{split}$$

- lacksquare p_x is the dual/adjoint variable
- lacksquare u^{\star} assumed to have explicit formula

²Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Let $\mathcal{H}(t,z_x,p_x,u)=-\langle p_x,f(t,z_x,u)\rangle-L(t,z_x,u)$ be the *Generalized* Hamiltonian

By the Pontryagin Maximum Principle (PMP)² we have that at the **optimal controller** u^* :

$$\begin{split} \dot{z}_x &= -\nabla_p \mathcal{H}(t, z_x, p_x, u^*), \quad z_x(0) = x \\ \dot{p}_x &= \nabla_z \mathcal{H}(t, z_x, p_x, u^*), \quad p_x(T) = \nabla G(z_x(T)), \\ u^* &\in \operatorname*{arg\,max}_u \mathcal{H}(t, z_x, p_x, u) \end{split}$$

- p_x is the dual/adjoint variable
- \blacksquare u^* assumed to have explicit formula
- PMP-based approaches are typically *local* solution methods (open loop)
 - lacktriangle can solve high-dimensional problems for a single initial x
 - \blacksquare need to resolve for new x

²Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Hamilton-Jacobi-Bellman Equations

By Pontryagin, we also know that the dual variable is the gradient of a value function:

$$p_x(t) = \nabla_z \phi(t, z_x^\star(t)), \quad \text{where}$$

$$-\partial_t \phi(t, z) + \sup_u \mathcal{H}(t, z, \nabla \phi, u) = 0, \quad \phi(T, z) = G(z)$$
 (HJB)

Hamilton-Jacobi-Bellman Equations

By Pontryagin, we also know that the dual variable is the gradient of a value function:

$$p_x(t) = \nabla_z \phi(t, z_x^\star(t)), \quad \text{where}$$

$$-\partial_t \phi(t, z) + \sup_u \mathcal{H}(t, z, \nabla \phi, u) = 0, \quad \phi(T, z) = G(z)$$
 (HJB)

- Solving OC problems via the HJB is a *global* solution method (feedback form) \implies solved for all initial conditions x
- \blacksquare for new initial condition x, no need for re-computation
- grid-based method ⇒ curse of dimensionality

Recent approaches leverage Pontryagin and parameterize the value function ϕ with a neural network to obtain feedback controller for high-dimensional OC^3 .

³Onken et al., IEEE TAC, 2022, Li et al. SIAM SISC 2024, Yang et al., IEEE TNN 2020

Recent approaches leverage Pontryagin and parameterize the value function ϕ with a neural network to obtain feedback controller for high-dimensional OC³. The training problem is given by

$$\min_{\theta} \mathbb{E}_{x \sim \rho_0} J_x(\theta) = \int_0^T L(t, z_x, u_\theta^*) dt + G(z_x(T)), \tag{1}$$

subject to:
$$\dot{z}_x = f(t, z_x, u_\theta^{\star}), \quad z_x(0) = x,$$
 (2)

$$u_{\theta}^{\star} \in \operatorname*{arg\,max}_{u} \mathcal{H}(t, z, \nabla \phi_{\theta}, u),$$
 (3)

for some initial distribution of states ρ_0 .

³Onken et al., IEEE TAC, 2022, Li et al. SIAM SISC 2024, Yang et al., IEEE TNN 2020

Recent approaches leverage Pontryagin and parameterize the value function ϕ with a neural network to obtain feedback controller for high-dimensional OC³. The training problem is given by

$$\min_{\theta} \mathbb{E}_{x \sim \rho_0} J_x(\theta) = \int_0^T L(t, z_x, u_\theta^*) dt + G(z_x(T)), \tag{1}$$

subject to:
$$\dot{z}_x = f(t, z_x, u_\theta^{\star}), \quad z_x(0) = x,$$
 (2)

$$u_{\theta}^{\star} \in \operatorname*{arg\,max}_{u} \mathcal{H}(t, z, \nabla \phi_{\theta}, u),$$
 (3)

for some initial distribution of states ρ_0 .

Prior works assume u^* in (3) admits an explicit formula.

³Onken et al., IEEE TAC, 2022, Li et al. SIAM SISC 2024, Yang et al., IEEE TNN 2020

Recent approaches leverage Pontryagin and parameterize the value function ϕ with a neural network to obtain feedback controller for high-dimensional OC³. The training problem is given by

$$\min_{\theta} \mathbb{E}_{x \sim \rho_0} J_x(\theta) = \int_0^T L(t, z_x, u_\theta^*) dt + G(z_x(T)), \tag{1}$$

subject to:
$$\dot{z}_x = f(t, z_x, u_\theta^{\star}), \quad z_x(0) = x,$$
 (2)

$$u_{\theta}^{\star} \in \operatorname*{arg\,max}_{u} \mathcal{H}(t, z, \nabla \phi_{\theta}, u),$$
 (3)

for some initial distribution of states ρ_0 .

Prior works assume u^* in (3) admits an explicit formula.

Today: Develop efficient algorithms for training (1)-(3) when u_{θ}^{\star} does not admit explicit formula, i.e., the Hamiltonian $H = \sup_{u} \mathcal{H}$ is implicitly defined.

³Onken et al., IEEE TAC, 2022, Li et al. SIAM SISC 2024, Yang et al., IEEE TNN 2020

Implicit Networks for Optimal Control

Implicit Networks for Optimal Control

■ The output of an INN is given by the fixed point of a parameterized operator ⁴:

$$u_{\theta}^{\star}(t,z) = T_{\theta}(u_{\theta}^{\star};t,z) \tag{4}$$

⁴El Ghaoui et al., SIMODS, 2021, Bai et al., NeurlPS, 2019

■ The output of an INN is given by the fixed point of a parameterized operator ⁴:

$$u_{\theta}^{\star}(t,z) = T_{\theta}(u_{\theta}^{\star};t,z) \tag{4}$$

Standard forward propagation of an INN can use a fixed point iteration:

$$u_{\theta}^{k+1} = T_{\theta}(u_{\theta}^{k}; t, z), \quad k = 0, 1, \dots$$
 (5)

⁴El Ghaoui et al., SIMODS, 2021, Bai et al., NeurIPS, 2019

■ The output of an INN is given by the fixed point of a parameterized operator ⁴:

$$u_{\theta}^{\star}(t,z) = T_{\theta}(u_{\theta}^{\star};t,z) \tag{4}$$

Standard forward propagation of an INN can use a fixed point iteration:

$$u_{\theta}^{k+1} = T_{\theta}(u_{\theta}^{k}; t, z), \quad k = 0, 1, \dots$$
 (5)

 $\blacksquare \text{ We want } u_{\theta}^{\star} \in \arg\max_{u} \mathcal{H}(s,z,\nabla\phi_{\theta},u) \implies \nabla_{u}\mathcal{H}(t,z,u_{\theta}^{\star}) = 0.$

⁴El Ghaoui et al., SIMODS, 2021, Bai et al., NeurlPS, 2019

■ The output of an INN is given by the fixed point of a parameterized operator ⁴:

$$u_{\theta}^{\star}(t,z) = T_{\theta}(u_{\theta}^{\star};t,z) \tag{4}$$

Standard forward propagation of an INN can use a fixed point iteration:

$$u_{\theta}^{k+1} = T_{\theta}(u_{\theta}^{k}; t, z), \quad k = 0, 1, \dots$$
 (5)

 $\blacksquare \text{ We want } u_\theta^\star \in \arg\max_u \mathcal{H}(s,z,\nabla\phi_\theta,u) \implies \nabla_u \mathcal{H}(t,z,u_\theta^\star) = 0.$

A natural choice: $T_{\theta}(u;t,z) = u + \alpha \nabla_{u} \mathcal{H}(t,z,\nabla \phi_{\theta},u)$.

⁴El Ghaoui et al., SIMODS, 2021, Bai et al., NeurlPS, 2019

To compute the gradient of the objective $J_x(\theta)$, we need to compute $\frac{du_{\theta}^{\star}}{d\theta}$.

⁵Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

To compute the gradient of the objective $J_x(\theta)$, we need to compute $\frac{du_{\theta}^*}{d\theta}$. General approaches:

⁵Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

To compute the gradient of the objective $J_x(\theta)$, we need to compute $\frac{du_{\theta}^*}{d\theta}$. General approaches:

- Automatic Differentiation (AD) backpropagate through each fixed point iteration
 - memory grows linearly per fixed point iteration X

⁵Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

To compute the gradient of the objective $J_x(\theta)$, we need to compute $\frac{du_{\theta}^{\star}}{d\theta}$. General approaches:

- Automatic Differentiation (AD) backpropagate through each fixed point iteration
 - memory grows linearly per fixed point iteration X
- Implicit Differentiation differentiate both sides of fixed pt. equation (and isolate $\frac{du^*_{ heta}}{d heta}$):

$$\frac{du_{\theta}^{\star}}{d\theta} = \left(I - \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial u}\right)^{-1} \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial \theta} \tag{6}$$

To compute the gradient of the objective $J_x(\theta)$, we need to compute $\frac{du_{\theta}^{\star}}{d\theta}$. General approaches:

- Automatic Differentiation (AD) backpropagate through each fixed point iteration
 - memory grows linearly per fixed point iteration X
- Implicit Differentiation differentiate both sides of fixed pt. equation (and isolate $\frac{du^*_{ heta}}{d heta}$):

$$\frac{du_{\theta}^{\star}}{d\theta} = \left(I - \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial u}\right)^{-1} \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial \theta} \tag{6}$$

- constant in memory ✓
- lacksquare solve a linear system for each (t,z) lacksquare

To compute the gradient of the objective $J_x(\theta)$, we need to compute $\frac{du_{\theta}^{\star}}{d\theta}$. General approaches:

- Automatic Differentiation (AD) backpropagate through each fixed point iteration
 - memory grows linearly per fixed point iteration X
- Implicit Differentiation differentiate both sides of fixed pt. equation (and isolate $\frac{du^*_{ heta}}{d heta}$):

$$\frac{du_{\theta}^{\star}}{d\theta} = \left(I - \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial u}\right)^{-1} \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial \theta} \tag{6}$$

- constant in memory ✓
- lacksquare solve a linear system for each (t,z) lacksquare
- $\label{eq:Jacobian-Free Backpropagation (JFB)5} \ \frac{du_{\theta}^{\star}}{d\theta} \approx \frac{\partial T_{\theta}(u_{\theta}^{\star};t,z)}{\partial \theta}$

⁵Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

To compute the gradient of the objective $J_x(\theta)$, we need to compute $\frac{du_{\theta}^{\star}}{d\theta}$. General approaches:

- Automatic Differentiation (AD) backpropagate through each fixed point iteration
 - memory grows linearly per fixed point iteration X
- Implicit Differentiation differentiate both sides of fixed pt. equation (and isolate $\frac{du^*_{ heta}}{d heta}$):

$$\frac{du_{\theta}^{\star}}{d\theta} = \left(I - \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial u}\right)^{-1} \frac{\partial T_{\theta}(u_{\theta}^{\star}; t, z)}{\partial \theta} \tag{6}$$

- constant in memory ✓
- lacksquare solve a linear system for each (t,z) lacksquare
- $\label{eq:Jacobian-Free Backpropagation (JFB)5} \ \frac{du_{\theta}^{\star}}{d\theta} \approx \frac{\partial T_{\theta}(u_{\theta}^{\star};t,z)}{\partial \theta}$
 - No system solve and constant memory

⁵Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

Assumptions from original JFB $work^6$

Assumption 1: T_{θ} is γ -contractive in u for all $t \in [0,T], z \in \mathbb{R}^n$ and $\theta \in \mathbb{R}^p$.

⁶Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

Assumptions from original JFB $work^6$

Assumption 1: T_{θ} is γ -contractive in u for all $t \in [0,T], z \in \mathbb{R}^n$ and $\theta \in \mathbb{R}^p$.

Assumption 2: For any θ, t, u, z :

- $\blacksquare \mbox{ The matrix } M_\theta = \frac{\partial T_\theta}{\partial \theta}(u;t,z) \mbox{ has full row rank}.$
- $\exists \beta > 0$ such that the smallest eigenvalue of $(M_{\theta}M_{\theta}^{\top})^{-1}$ satisfies $\lambda_{\min}\left((M_{\theta}M_{\theta}^{\top})^{-1}\right) \geq \beta$.
- Condition number satisfies $\kappa\left((M_{\theta}M_{\theta}^{\top})^{-1}\right) < \frac{1}{\gamma}$.

Assumptions from original JFB $work^6$

Assumption 1: T_{θ} is γ -contractive in u for all $t \in [0,T], z \in \mathbb{R}^n$ and $\theta \in \mathbb{R}^p$.

Assumption 2: For any θ, t, u, z :

- The matrix $M_{\theta} = \frac{\partial T_{\theta}}{\partial \theta}(u;t,z)$ has full row rank.
- $\exists \beta > 0$ such that the smallest eigenvalue of $(M_{\theta}M_{\theta}^{\top})^{-1}$ satisfies $\lambda_{\min}\left((M_{\theta}M_{\theta}^{\top})^{-1}\right) \geq \beta$.
- Condition number satisfies $\kappa\left((M_{\theta}M_{\theta}^{\top})^{-1}\right) < \frac{1}{\gamma}$.

Remark: These assumptions not enough to show descent (and convergence) in the OC setting because we have a *continuum/integral* of fixed point subproblems.

⁶Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

The true derivative of control objective, J_x , and its JFB approximation are given by

$$\frac{dJ_x(\theta)}{d\theta} = \int_0^T v_\theta(t)dt, \quad \text{and} \quad d_x^{JFB} = \int_0^T w_\theta(t)dt \tag{7}$$

respectively, where

$$v_{\theta}(t) = \frac{du_{\theta}^{\star}}{d\theta}^{\top} (\nabla_{u} L(t, z_{x}, u_{\theta}^{\star}) + \nabla_{u} f^{\top} p_{x}),$$

$$w_{\theta}(t) = \frac{\partial T_{\theta}}{\partial \theta}^{\top} (\nabla_{u} L(t, z_{x}, u_{\theta}^{\star}) + \nabla_{u} f^{\top} p_{x}),$$
(8)

The true derivative of control objective, J_x , and its JFB approximation are given by

$$\frac{dJ_x(\theta)}{d\theta} = \int_0^T v_\theta(t)dt, \quad \text{and} \quad d_x^{JFB} = \int_0^T w_\theta(t)dt \tag{7}$$

respectively, where

$$v_{\theta}(t) = \frac{du_{\theta}^{\star}}{d\theta}^{\top} (\nabla_{u}L(t, z_{x}, u_{\theta}^{\star}) + \nabla_{u}f^{\top}p_{x}),$$

$$w_{\theta}(t) = \frac{\partial T_{\theta}}{\partial \theta}^{\top} (\nabla_{u}L(t, z_{x}, u_{\theta}^{\star}) + \nabla_{u}f^{\top}p_{x}),$$
(8)

Assumption: Let $C_v = \frac{1}{T} \int_0^T v_{\theta}(t) dt$ and $C_w = \frac{1}{T} \int_0^T w_{\theta}(t) dt$. Assume that $\|v_{\theta}(t) - C_v\| \leq \|M_{\theta} w_{\theta}\| \sqrt{\lambda_- - \gamma \lambda_+}$ and $\|w_{\theta}(t) - C_w\| \leq \|M_{\theta} v_{\theta}\| \sqrt{\lambda_- - \gamma \lambda_+}$.

The true derivative of control objective, J_x , and its JFB approximation are given by

$$\frac{dJ_x(\theta)}{d\theta} = \int_0^T v_\theta(t)dt, \quad \text{and} \quad d_x^{JFB} = \int_0^T w_\theta(t)dt \tag{7}$$

respectively, where

$$v_{\theta}(t) = \frac{du_{\theta}^{\star}}{d\theta}^{\top} (\nabla_{u} L(t, z_{x}, u_{\theta}^{\star}) + \nabla_{u} f^{\top} p_{x}),$$

$$w_{\theta}(t) = \frac{\partial T_{\theta}}{\partial \theta}^{\top} (\nabla_{u} L(t, z_{x}, u_{\theta}^{\star}) + \nabla_{u} f^{\top} p_{x}),$$
(8)

Assumption: Let $C_v = \frac{1}{T} \int_0^T v_{\theta}(t) dt$ and $C_w = \frac{1}{T} \int_0^T w_{\theta}(t) dt$. Assume that $\|v_{\theta}(t) - C_v\| \leq \|M_{\theta} w_{\theta}\| \sqrt{\lambda_- - \gamma \lambda_+}$ and $\|w_{\theta}(t) - C_w\| \leq \|M_{\theta} v_{\theta}\| \sqrt{\lambda_- - \gamma \lambda_+}$.

Theorem (Descent)

Under previous assumptions, $-d_x^{JFB}$ is a descent direction for J_x .

Assumption: Let $E_1 = \mathbb{E}_x[\nabla_\theta J_x]$ and $E_2 = \mathbb{E}_x[d_x^{JFB}]$. Assume $\forall \theta, u^*, z$,

$$\mathbb{E}_{x}[\|\nabla_{\theta}J_{x} - E_{1}\|^{2}] \le \mu_{2}\|\mathbb{E}_{x}[\nabla_{\theta}J_{x}]\|^{2},\tag{9}$$

$$\mathbb{E}_x[\|d_x^{JFB} - E_2\|^2] \le \mu_2 \|\mathbb{E}_x[\nabla_\theta J_x]\|^2, \tag{10}$$

where μ_2 is a constant that depends on spectrum of $\frac{\partial T_{\theta}}{\partial \theta}$. That is, assume the variance of the true gradient and JFB are sufficiently bounded.

Assumption: Let $E_1 = \mathbb{E}_x[\nabla_\theta J_x]$ and $E_2 = \mathbb{E}_x[d_x^{JFB}]$. Assume $\forall \theta, u^*, z$,

$$\mathbb{E}_x[\|\nabla_\theta J_x - E_1\|^2] \le \mu_2 \|\mathbb{E}_x[\nabla_\theta J_x]\|^2,\tag{9}$$

$$\mathbb{E}_{x}[\|d_{x}^{JFB} - E_{2}\|^{2}] \le \mu_{2} \|\mathbb{E}_{x}[\nabla_{\theta} J_{x}]\|^{2}, \tag{10}$$

where μ_2 is a constant that depends on spectrum of $\frac{\partial T_{\theta}}{\partial \theta}$. That is, assume the variance of the true gradient and JFB are sufficiently bounded.

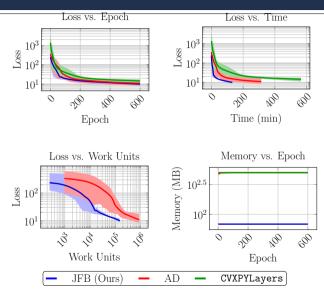
Theorem (Convergence)

Under previous assumptions, SGD using the JFB gradient surrogate converges (in probability) to a stationary point.

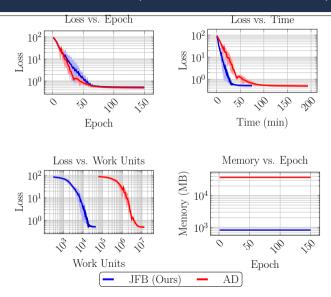
Experiments

Experiments

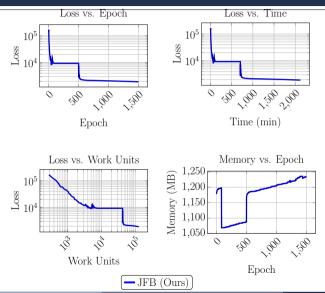
Quadrotor Dynamics with $L = \exp(\|u\|^2)$



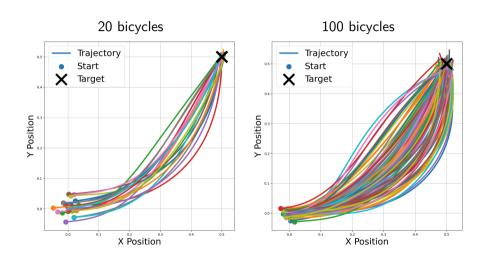
5 Interacting Bicycles (Nonlinear Control Dynamics)



100 Interacting Bicycles (Nonlinear Control Dynamics)



Bicycle Trajectories



■ Introduce end-to-end approach for high-dimensional implicit control

- Introduce end-to-end approach for high-dimensional implicit control
- Implicit differentiation and AD computationally taxing even for moderately-sized problems.

- Introduce end-to-end approach for high-dimensional implicit control
- Implicit differentiation and AD computationally taxing even for moderately-sized problems.
- Jacobian-Free Backpropagation (JFB) allows for fast and efficient training with guarantees

- Introduce end-to-end approach for high-dimensional implicit control
- Implicit differentiation and AD computationally taxing even for moderately-sized problems.
- Jacobian-Free Backpropagation (JFB) allows for fast and efficient training with guarantees
- Visit poster #3 (presented by Eric Gelphman) for more details about this work!

- Introduce end-to-end approach for high-dimensional implicit control
- Implicit differentiation and AD computationally taxing even for moderately-sized problems.
- Jacobian-Free Backpropagation (JFB) allows for fast and efficient training with guarantees
- Visit poster #3 (presented by Eric Gelphman) for more details about this work!
- References:
 - Wu Fung, Heaton, McKenzie, Li, Yin, Osher. JFB: Jacobian-Free Backpropagation for Implicit Networks. AAAI 2022
 - Gelphman, Verma, Yang, Osher, Wu Fung. End-to-End Training of High-Dimensional
 Optimal Control with Implicit Hamiltonians via Jacobian-Free Backpropagation. arXiv
- Thanks to National Science Foundation Award DMS-2309810.