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Optimal Control Formulation
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Optimal Control Formulation

Goal: Find the control that incurs minimal cost!
T
min/ L(s, zg,u)ds + G(z(T))
uel Jq
Zp = f(tvzmau)v ZI(O) =,
L is the running cost and G is the terminal cost

z5 is the state, u is the controller

f are the dynamics

'Flemming and Soner. Controller Markov Processes
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Pontryagin Maximum Principle

Let H(t, 2z, Doy t) = — (s, f(t, 22, u)) — L(t, 25, u) be the Generalized Hamiltonian

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.
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Pontryagin Maximum Principle

Let H(t, 2z, Doy t) = — (s, f(t, 22, u)) — L(t, 25, u) be the Generalized Hamiltonian
By the Pontryagin Maximum Principle (PMP)? we have that at the optimal controller u*:

2y = =V H(t, 20, po,u), 2,(0) =z
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Pontryagin Maximum Principle

Let H(t, 2z, Doy t) = — (s, f(t, 22, u)) — L(t, 25, u) be the Generalized Hamiltonian
By the Pontryagin Maximum Principle (PMP)? we have that at the optimal controller u*:

2y = =V H(t, 20, po,u), 2,(0) =z
Po = VH(t 20, posu”),  pe(T) = VG(2:(T)),
u* € argmax H(t, 2z, Px, U)
u
pe is the dual/adjoint variable
u* assumed to have explicit formula
PMP-based approaches are typically focal solution methods (open loop)

can solve high-dimensional problems for a single initial x

need to resolve for new x

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.



Hamilton-Jacobi-Bellman Equations

By Pontryagin, we also know that the dual variable is the gradient of a value function:

p$(t) = v2¢(t7 Z;(t»a where

_at(b(ta Z) + Sup H(tv Z, V¢7 u) = Oa ¢(T7 Z) = G(Z) (HJB)
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Hamilton-Jacobi-Bellman Equations

By Pontryagin, we also know that the dual variable is the gradient of a value function:

px(t) = V. o(t, 25(t)), where
_at(b(ta Z) + sup H(tv 2, V¢7 u) = Oa ¢(T7 Z) = G(Z) (HJB)
Solving OC problems via the HIB is a global solution method (feedback form) = solved
for all initial conditions x
for new initial condition x, no need for re-computation

grid-based method = curse of dimensionality
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Neural Networks for High-Dimensional OC

Recent approaches leverage Pontryagin and parameterize the value function ¢ with a neural

network to obtain feedback controller for high-dimensional OC3.

30nken et al., IEEE TAC, 2022, Li et al. SIAM SISC 2024, Yang et al., IEEE TNN 2020
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Neural Networks for High-Dimensional OC

Recent approaches leverage Pontryagin and parameterize the value function ¢ with a neural

network to obtain feedback controller for high-dimensional OC3. The training problem is given by

T
min Eovy Jo(0) = [ L(t 20 0)dt + Glan(D), (1)
0
subject to: 2, = f(t, 25, up), 25(0) =z, (2)
up € argmax H(t, z, Vg, u), (3)

for some initial distribution of states pg.

Prior works assume u* in (3) admits an explicit formula.

Today: Develop efficient algorithms for training (1)-(3) when w} does not admit explicit formula,
i.e., the Hamiltonian H = sup,, H is implicitly defined.

30nken et al., IEEE TAC, 2022, Li et al. SIAM SISC 2024, Yang et al., IEEE TNN 2020




Implicit Networks for Optimal Control

Implicit Networks for Optimal Control
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Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator *:

uy(t, 2) = To(ups t, 2) (4)

*El Ghaoui et al., SIMODS, 2021, Bai et al., NeurlPS, 2019



Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator *:

ug(t, z) = Ty(ups t, 2) (4)

Standard forward propagation of an INN can use a fixed point iteration:

ubt™t = Ty(ubit,2), k=0,1,... (5)

*El Ghaoui et al., SIMODS, 2021, Bai et al., NeurlPS, 2019



Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator *:

ug(t, z) = Ty(ups t, 2) (4)

Standard forward propagation of an INN can use a fixed point iteration:

ubt™t = Ty(ubit,2), k=0,1,... (5)

We want u} € argmax, H(s,z, Vog,u) = V, H(t, z,u}) = 0.

*El Ghaoui et al., SIMODS, 2021, Bai et al., NeurlPS, 2019



Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator *:

ug(t, z) = Ty(ups t, 2) (4)

Standard forward propagation of an INN can use a fixed point iteration:

ubt™t = Ty(ubit,2), k=0,1,... (5)

We want u} € argmax, H(s,z, Vog,u) = V, H(t, z,u}) = 0.

A natural choice: Ty(u;t, z) = u+ aV H(t, z, Vg, u).

*El Ghaoui et al., SIMODS, 2021, Bai et al., NeurlPS, 2019
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To compute the gradient of the objective J,.(6), we need to compute dueg

. General approaches:

Automatic Differentiation (AD) — backpropagate through each fixed point iteration

memory grows linearly per fixed point iteration %
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Implicit Differentiation — differentiate both sides of fixed pt. equation (and isolate —#):
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Training INNs

*

d
To compute the gradient of the objective J,.(6), we need to compute dueg

. General approaches:

Automatic Differentiation (AD) — backpropagate through each fixed point iteration

memory grows linearly per fixed point iteration %

.. . .. . . . i . . duj
Implicit Differentiation — differentiate both sides of fixed pt. equation (and isolate —#):
duy _ (, 0Ty(ujit,2)\ " OTp(ujit, 2) (6)
g ou 00

constant in memory

solve a linear system for each (¢,z) %
duy 0Ty (up;t, 2)

Jacobian-Free Backpropagation (JFB)®: -7 = 50
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Training INNs

*

d
To compute the gradient of the objective J,.(6), we need to compute dueg

. General approaches:

Automatic Differentiation (AD) — backpropagate through each fixed point iteration

memory grows linearly per fixed point iteration %

.. . .. . . . i . . duj
Implicit Differentiation — differentiate both sides of fixed pt. equation (and isolate —#):
duy _ (, 0Ty(ujit,2)\ " OTp(ujit, 2) (6)
g ou 00

constant in memory

solve a linear system for each (¢,z) %
dug ~ 0Ty (up;t, 2)
dé 00
No system solve and constant memory
®Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

Jacobian-Free Backpropagation (JFB)®:




Jacobian-Free Backpropagation Analysis

Assumptions from original JFB work®

Assumption 1: T} is y-contractive in u for all t € [0,T],z € R™ and 0 € R?.

®Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022

JFB for OC with Implicit Hamiltonians 10



Jacobian-Free Backpropagation Analysis
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Assumption 1: T} is y-contractive in u for all t € [0,T],z € R™ and 0 € R?.
Assumption 2: For any 0,t,u, z:

T,
The matrix My = %(u;t,z) has full row rank.

3B > 0 such that the smallest eigenvalue of (MyM, )~! satisfies Apin ((MgMJ)’l) > B.

Condition number satisfies  ((MpMy )™") < 2.
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Jacobian-Free Backpropagation Analysis

Assumptions from original JFB work®
Assumption 1: T} is y-contractive in u for all t € [0,T],z € R™ and 0 € R?.
Assumption 2: For any 0,t,u, z:

T,
The matrix My = %(u;t,z) has full row rank.

3B > 0 such that the smallest eigenvalue of (MyM, )~! satisfies Apin ((MgMJ)’l) > B.

Condition number satisfies  ((MpMy )™") < 2.
Remark: These assumptions not enough to show descent (and convergence) in the OC setting

because we have a continuum/integral of fixed point subproblems.

®Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022
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Jacobian-Free Backpropagation Analysis

The true derivative of control objective, J,, and its JFB approximation are given by

(0 T T
dJ.(0) :/ vg(t)dt, and dFPB :/ we(t)dt (7)
do 0 0
respectively, where .
dug * T
vg(t) = a0 (VuL(t, 2z, up) + Vo f  pe),
Ty " (®)
wo(t) = g (VuL(t 20, 45) + Val Tp),
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The true derivative of control objective, J,, and its JFB approximation are given by

(0 T T
dJ.(0) :/ vg(t)dt, and dFPB :/ we(t)dt (7)
de 0 0
respectively, where T
dug * T
vg(t) = a0 (VuL(t, 2z, up) + Vuf ' pe),
o7, T (8)
wo(t) = g (VuL(t 20, 45) + Val Tp),
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Jacobian-Free Backpropagation Analysis

The true derivative of control objective, J,,, and its JFB approximation are given by

T T
dJ:(0) _ / vo(t)dt, and PP = / wo(t)dt )
de 0 0
respectively, where T
dug * T
’l)g(t) = de (VHL(tﬂ ZTE? u@) + vuf p£)7
o7, T (8)
wy(t) = 87" (VuL(t, 2z, uy) + Vi f D),

Assumption: Let C), = = fo vg(t)dt and Cyy = 7 fo we(t)dt. Assume that
[vo(t) — Coll < [[Mpwal|\/A— — yA+ and [Jwg(t) — Cull < [[Mpvgll\/A- — yA+.

Theorem (Descent)

Under previous assumptions, —d;*'Z is a descent direction for .J,,.

Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians



Jacobian-Free Backpropagation Analysis

Assumption: Let E; = E,[VyJ,] and By = E,[d/FB]. Assume V0, u*, z,

E:[[VoTz — Erll’] < p2|[Ea[ Vo Jo]|I%, (9)

Eo[lld;™F — Ba?] < pal B[V Jo] 1%, (10)

] 0T, . .
where ps is a constant that depends on spectrum of a—;. That is, assume the variance of the

true gradient and JFB are sufficiently bounded.
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Jacobian-Free Backpropagation Analysis

Assumption: Let By = E,[VyJ,] and E; = E,[d/FP]. Assume V0, u*, z,

E:[[VoTz — Erll’] < p2|[Ea[ Vo Jo]|I%, )

Eo[lld;™" = Ea?] < pa|[Ea[ Vo Jo]

2, (10)

oT; .
where ps is a constant that depends on spectrum of 8_09' That is, assume the variance of the

true gradient and JFB are sufficiently bounded.

Theorem (Convergence)

Under previous assumptions, SGD using the JFB gradient surrogate converges (in probability) to

a stationary point.

Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians



Experiments
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5 Interacting Bicycles (Nonlinear Control Dynamics)
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Bicycle Trajectories

20 bicycles

100 bicycles

—— Trajectory
e Start

X Target

Y Position

00

—— Trajectory
1 e Start

Y Position

Gelphman, Verma, Yang, Wu Fung
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Introduce end-to-end approach for high-dimensional implicit control
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Jacobian-Free Backpropagation (JFB) allows for fast and efficient training with guarantees

Visit poster #3 (presented by Eric Gelphman) for more details about this work!
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Conclusion

Introduce end-to-end approach for high-dimensional implicit control
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