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High-Dimensional Control Background

High-Dimensional Optimal Control Background
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Optimal Control Formulation

Goal: Find the control that incurs minimal cost1

min
u∈U

∫ T

0
L(s, zx, u)ds + G(zx(T ))

żx = f(t, zx, u), zx(0) = x,

L is the running cost and G is the terminal cost

zx is the state, u is the controller

f are the dynamics

1Flemming and Soner. Controller Markov Processes
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żx = f(t, zx, u), zx(0) = x,

L is the running cost and G is the terminal cost

zx is the state, u is the controller

f are the dynamics

1Flemming and Soner. Controller Markov Processes
Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 3



Optimal Control Formulation

Goal: Find the control that incurs minimal cost1

min
u∈U

∫ T

0
L(s, zx, u)ds + G(zx(T ))
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Pontryagin Maximum Principle

Let H(t, zx, px, u) = −⟨px, f(t, zx, u)⟩ − L(t, zx, u) be the Generalized Hamiltonian

By the Pontryagin Maximum Principle (PMP)2 we have that at the optimal controller u⋆:

żx = −∇pH(t, zx, px, u⋆), zx(0) = x

ṗx = ∇zH(t, zx, px, u⋆), px(T ) = ∇G(zx(T )),

u⋆ ∈ arg max
u

H(t, zx, px, u)

px is the dual/adjoint variable

u⋆ assumed to have explicit formula

PMP-based approaches are typically local solution methods (open loop)
can solve high-dimensional problems for a single initial x

need to resolve for new x

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.
Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 4



Pontryagin Maximum Principle

Let H(t, zx, px, u) = −⟨px, f(t, zx, u)⟩ − L(t, zx, u) be the Generalized Hamiltonian

By the Pontryagin Maximum Principle (PMP)2 we have that at the optimal controller u⋆:
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żx = −∇pH(t, zx, px, u⋆), zx(0) = x
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Hamilton-Jacobi-Bellman Equations

By Pontryagin, we also know that the dual variable is the gradient of a value function:

px(t) = ∇zϕ(t, z⋆
x(t)), where

−∂tϕ(t, z) + sup
u

H(t, z, ∇ϕ, u) = 0, ϕ(T, z) = G(z) (HJB)

Solving OC problems via the HJB is a global solution method (feedback form) =⇒ solved

for all initial conditions x

for new initial condition x, no need for re-computation

grid-based method =⇒ curse of dimensionality

Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 5
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Neural Networks for High-Dimensional OC

Recent approaches leverage Pontryagin and parameterize the value function ϕ with a neural

network to obtain feedback controller for high-dimensional OC3.

The training problem is given by

min
θ

Ex∼ρ0 Jx(θ) =
∫ T

0
L(t, zx, u⋆

θ)dt + G(zx(T )), (1)

subject to: żx = f(t, zx, u⋆
θ), zx(0) = x, (2)

u⋆
θ ∈ arg max

u
H(t, z, ∇ϕθ, u), (3)

for some initial distribution of states ρ0.

Prior works assume u⋆ in (3) admits an explicit formula.

Today: Develop efficient algorithms for training (1)-(3) when u⋆
θ does not admit explicit formula,

i.e., the Hamiltonian H = supu H is implicitly defined.

3Onken et al., IEEE TAC, 2022, Li et al. SIAM SISC 2024, Yang et al., IEEE TNN 2020
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Implicit Networks for Optimal Control

Implicit Networks for Optimal Control
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Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator 4:

u⋆
θ(t, z) = Tθ(u⋆

θ; t, z) (4)

Standard forward propagation of an INN can use a fixed point iteration:

uk+1
θ = Tθ(uk

θ ; t, z), k = 0, 1, . . . (5)

We want u⋆
θ ∈ arg maxu H(s, z, ∇ϕθ, u) =⇒ ∇uH(t, z, u⋆

θ) = 0.

A natural choice: Tθ(u; t, z) = u + α∇uH(t, z, ∇ϕθ, u).

4El Ghaoui et al., SIMODS, 2021, Bai et al., NeurIPS, 2019
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Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator 4:

u⋆
θ(t, z) = Tθ(u⋆

θ; t, z) (4)

Standard forward propagation of an INN can use a fixed point iteration:

uk+1
θ = Tθ(uk

θ ; t, z), k = 0, 1, . . . (5)

We want u⋆
θ ∈ arg maxu H(s, z, ∇ϕθ, u) =⇒ ∇uH(t, z, u⋆

θ) = 0.

A natural choice: Tθ(u; t, z) = u + α∇uH(t, z, ∇ϕθ, u).

4El Ghaoui et al., SIMODS, 2021, Bai et al., NeurIPS, 2019
Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 8



Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator 4:

u⋆
θ(t, z) = Tθ(u⋆

θ; t, z) (4)

Standard forward propagation of an INN can use a fixed point iteration:

uk+1
θ = Tθ(uk

θ ; t, z), k = 0, 1, . . . (5)

We want u⋆
θ ∈ arg maxu H(s, z, ∇ϕθ, u) =⇒ ∇uH(t, z, u⋆

θ) = 0.

A natural choice: Tθ(u; t, z) = u + α∇uH(t, z, ∇ϕθ, u).

4El Ghaoui et al., SIMODS, 2021, Bai et al., NeurIPS, 2019
Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 8



Implicit Neural Networks (INNs)

The output of an INN is given by the fixed point of a parameterized operator 4:

u⋆
θ(t, z) = Tθ(u⋆

θ; t, z) (4)

Standard forward propagation of an INN can use a fixed point iteration:

uk+1
θ = Tθ(uk

θ ; t, z), k = 0, 1, . . . (5)

We want u⋆
θ ∈ arg maxu H(s, z, ∇ϕθ, u) =⇒ ∇uH(t, z, u⋆

θ) = 0.

A natural choice: Tθ(u; t, z) = u + α∇uH(t, z, ∇ϕθ, u).

4El Ghaoui et al., SIMODS, 2021, Bai et al., NeurIPS, 2019
Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 8



Training INNs

To compute the gradient of the objective Jx(θ), we need to compute du⋆
θ

dθ
.

General approaches:

Automatic Differentiation (AD) – backpropagate through each fixed point iteration

memory grows linearly per fixed point iteration é

Implicit Differentiation – differentiate both sides of fixed pt. equation (and isolate du⋆
θ

dθ ):

du⋆
θ

dθ
=

(
I − ∂Tθ(u⋆

θ; t, z)
∂u

)−1
∂Tθ(u⋆

θ; t, z)
∂θ

(6)

constant in memory ✓

solve a linear system for each (t, z) é

Jacobian-Free Backpropagation (JFB)5: du⋆
θ

dθ
≈ ∂Tθ(u⋆

θ; t, z)
∂θ

No system solve and constant memory

5Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022
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Jacobian-Free Backpropagation Analysis

Assumptions from original JFB work6

Assumption 1: Tθ is γ-contractive in u for all t ∈ [0, T ], z ∈ Rn and θ ∈ Rp.

Assumption 2: For any θ, t, u, z:

The matrix Mθ = ∂Tθ

∂θ
(u; t, z) has full row rank.

∃β > 0 such that the smallest eigenvalue of (MθM⊤
θ )−1 satisfies λmin

(
(MθM⊤

θ )−1)
≥ β.

Condition number satisfies κ
(
(MθM⊤

θ )−1)
< 1

γ .

Remark: These assumptions not enough to show descent (and convergence) in the OC setting

because we have a continuum/integral of fixed point subproblems.

6Wu Fung, Heaton, McKenzie, Li, Yin, Osher. AAAI 2022
Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 10
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Jacobian-Free Backpropagation Analysis

The true derivative of control objective, Jx, and its JFB approximation are given by

dJx(θ)
dθ

=
∫ T

0
vθ(t)dt, and dJF B

x =
∫ T

0
wθ(t)dt (7)

respectively, where
vθ(t) = du⋆

θ

dθ

⊤
(∇uL(t, zx, u⋆

θ) + ∇uf⊤px),

wθ(t) = ∂Tθ

∂θ

⊤
(∇uL(t, zx, u⋆

θ) + ∇uf⊤px),
(8)

Assumption: Let Cv = 1
T

∫ T

0 vθ(t)dt and Cw = 1
T

∫ T

0 wθ(t)dt. Assume that

∥vθ(t) − Cv∥ ≤ ∥Mθwθ∥
√

λ− − γλ+ and ∥wθ(t) − Cw∥ ≤ ∥Mθvθ∥
√

λ− − γλ+.

Theorem (Descent)
Under previous assumptions, −dJF B

x is a descent direction for Jx.

Gelphman, Verma, Yang, Wu Fung JFB for OC with Implicit Hamiltonians 11
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Jacobian-Free Backpropagation Analysis
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0
vθ(t)dt, and dJF B
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∫ T
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wθ(t)dt (7)
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vθ(t) = du⋆

θ

dθ

⊤
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Jacobian-Free Backpropagation Analysis

Assumption: Let E1 = Ex[∇θJx] and E2 = Ex[dJF B
x ]. Assume ∀θ, u∗, z,

Ex[∥∇θJx − E1∥2] ≤ µ2∥Ex[∇θJx]∥2, (9)

Ex[∥dJF B
x − E2∥2] ≤ µ2∥Ex[∇θJx]∥2, (10)

where µ2 is a constant that depends on spectrum of ∂Tθ

∂θ
. That is, assume the variance of the

true gradient and JFB are sufficiently bounded.

Theorem (Convergence)
Under previous assumptions, SGD using the JFB gradient surrogate converges (in probability) to

a stationary point.
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Experiments

Experiments
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Quadrotor Dynamics with L = exp(∥u∥2)
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5 Interacting Bicycles (Nonlinear Control Dynamics)
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100 Interacting Bicycles (Nonlinear Control Dynamics)
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Bicycle Trajectories

20 bicycles 100 bicycles
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Conclusion

Introduce end-to-end approach for high-dimensional implicit control

Implicit differentiation and AD computationally taxing even for moderately-sized problems.

Jacobian-Free Backpropagation (JFB) allows for fast and efficient training with guarantees

Visit poster #3 (presented by Eric Gelphman) for more details about this work!
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