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Introduction, main ideas & challenges

Main ideas
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Contributions:

A randomized Greedy algorithm
with offline certification at high
probability.

Applicability to parametrized PDE
problems with high-dimensional
parameter sets – e.g. boundary
data in localized model reduction,
inverse problems, UQ, . . .

Capabilities to localize the
construction of local reduced
ansatz spaces: does not rely on
simulations of global
computational domain.

fill



Introduction, main ideas & challenges

The hope for certification

Goal: Approximate set of PDE solutions

M := {u(µ) : µ ∈ P},

and certify this approximation for (almost) all parameters.

Relevance:
Bayesian Inverse Problems & UQ: Reduced models must be
evaluated for many parameters to estimate statistics via Monte Carlo
integration: certification can ensure accurate approximation of
parameter distributions/quantified uncertainties.
Real-time contexts: Reduced models in action/use (by e.g.
autonomous systems, doctors in an operating room) must provide
efficient results accurately for parameters outside of training set:
certification can help ensure trust in the real-time outputs.
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Introduction, main ideas & challenges

The hope for certification and Digital Twins

Goal: Approximate set of PDE solutions

M := {u(µ) : µ ∈ P},

and certify this approximation for (almost) all parameters.

Relevance for Digital Twins: High-dimensionality of the parameter
set!

“For example, a surrogate model of the structural health of an
engineering structure (e.g., building, bridge, airplane wing) would need
to be representative over many thousands of material and structural
properties that capture variation over space and time . . .
. . . Similarly, a surrogate model of tumor evolution in a cancer patient
digital twin would potentially have thousands of parameters
representing patient anatomy, physiology, and mechanical properties.”
[NASEM Digital Twins report, ’24]
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Introduction, main ideas & challenges

The challenges of certification

Proper Orthogonal Decomposition (POD)1

S = [u(µ1) · · ·u(µnsamp)] = UΣV⊤

=⇒ span{Ur} ≈ M?

Pro:

nsamp∑
i=1

∥u(µi )−UrU
⊤
r u(µ

i )∥2 = min
Cr

nsamp∑
i=1

∥u(µi )−CrC
⊤
r u(µ

i )∥2 =
nsamp∑
k=r+1

σ2k

Difficulty: This ℓ2-optimality provides average-case error analysis, but
we are interested in certifying for worst-case (i.e., L∞) scenarios too!

1[Sirovich Q. Appl. Math. ’87], [Berkooz, Holmes, Lumley Annu. Rev. Fluid Mech.
’93], . . .
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Introduction, main ideas & challenges

The challenges of certification

(Deterministic) Greedy algorithm1

Select a training set Ptrain ⊂ P and error tolerance εtol;
for n = 0, 1, 2, . . ., do

For each µ ∈ Ptrain, assess error† E (n)(µ) between u(µ) and
approximation in current reduced approximation space Xn.

if maxµ∈Ptrain
E (n)(µ) ≤ εtol, break, return Xn.

else select µ∗ ∈ argmaxµ∈Ptrain
E (n)(µ), Xn+1 ← Xn ⊕ span{u(µ∗)}.

Certification: Reduced solutions uN(µ) approximate u(µ)
within εtol for every µ ∈ Ptrain.

†Possible measures of error
1 Best approximation error: E (n)(µ) := infv∈Xn ∥u(µ)− v∥.
2 Galerkin approximation error: E (n)(µ) := ∥u(µ)− un(µ)∥.
3 Error estimator or indicator: ∆(n)(µ).

1[Veroy et al., 16th AIAA CFD Proceedings ’03]
C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 6 / 31
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Introduction, main ideas & challenges

Is deterministic Greedy certification sufficient?

Idea: If E(n) can be evaluated cheaply, µ∗ ∈ argmaxµ∈Ptrain E(n)(µ)
may still be feasible to solve for large Ptrain. We could try creating a
very fine training set, i.e., seek a εtol-net for P, so that Ptrain ≈ P.

Possible approach: If u(µ) is LM-Lipschitz with respect to the
parametrs, then for µ ∈ P \ Ptrain, µ̃ ∈ Ptrain

∥u(µ)− uN(µ̃)∥ ≤ ∥u(µ)− u(µ̃)∥+ ∥u(µ̃)− uN(µ̃)∥
≤ LM|µ− µ̃|+ εtol.

Key challenge: The cardinality of Ptrain
for εtol-net scales exponentially with dim(P):

|Ptrain| ∼
(
LM
εtol

)c dim(P)

=⇒ This approach suffers from
the curse of dimensionality! [Bellman ’57]
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Figure: ε-net visualization
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Introduction, main ideas & challenges

Existing works to address these challenges

Randomized Greedy for model order reduction [Cohen et al.
ESAIM: M2AN ’20], [Billaud-Friess et al. Adv. Comput. Math. ’24]

Adaptive updates/partitioning of the training set: [Sen Numer.
Heat Transfr. B: Fundam. ’08], [Eftang, Patera, Rønquist, SIAM J.
Sci. Comput. ’09], [Haasdonk, Dihlmann, Ohlberger Math. Comput.
Model. Dyn. Syst. ’11], [Eftang, Stamm Int. J. Numer. Methods
Eng. ’12], [Hesthaven, Stamm, Zhang ESAIM: M2AN ’14], [Jiang,
Chen, Narayan J. Sci. Comput. ’17], [Jiang, Chen Int. J. Numer.
Methods Eng. ’20], [Nielen, Tse, Veroy-Grepl arXiv ’24]

Nonlinear optimization-based approach: [Urban, Volkwein, Zeeb,
ROM for Modeling & Comput. Reduction ’14]

Low-rank tensor approaches: [Khoromskij, Schwab SIAM J. Sci.
Comput. ’11], [Ballani, Kressner SIAM J. Sci. Comput. ’16], work by
R. Scheichl, A. Nouy, M. Olshanskii, . . .
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The algorithm Design

The randomized Greedy algorithm

Inputs:
Parameter set P
reference probability measure ρ supported on P
per-iteration sampling budget nsamp
measure of error E (n) : P → R≥0

error tolerance εtol
Initialization: n = 0, X0 := ∅

The algorithm: for n = 0, 1, 2, . . ., do
Draw nsamp i.i.d. samples µ1, . . . , µnsamp ∈ P according to the (modified)
Christoffel measure ν, whose density is:

dν

dρ
(µ) := K (µ) :=

1

2

(
1 +

|E (n)(µ)|2∫
P |E (n)(µ)|2dρ(µ)

)
.

if max1≤i≤nsamp E (n)(µi ) ≤ εtol, then break, return Xn.

else select µi
∗ that maximizes E (n) over the sample set, update

Xn+1 ← Xn ⊕ span{u(µi
∗)}.
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The algorithm Theory

What kind of distribution is K?

Question: The randomized Greedy algorithm draws samples from a
distribution with density K :

dν

dρ
(µ) := K (µ) :=

1

2

(
1 +

|E(n)(µ)|2∫
P |E(n)(µ)|2dρ(µ)

)
.

What properties does this distribution have?

Idea: Assume that solutions u(µ) are stable for ρ-almost every
µ ∈ P =⇒ E(n) is bounded ρ-almost surely.

Concentration for bounded random variables [version from Vershynin ’18]

Let X = (X 1, . . . ,Xm) be independent random variables such that
X i ∈ [ai , bi ], 1 ≤ i ≤ m. Then, for any t > 0,

P

(
m∑
i=1

Xi − EXi ≥ t

)
≤ exp

{
− 2t2∑m

i=1(bi − ai )2

}
.
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The algorithm Theory

Sub-Gaussian distributions in high dimensions

Advantage: The sub-Gaussian tail decay behavior of E(n) and thus
K ensures concentration around the mean, especially for
high-dimensional P =⇒ this is sometimes referred to as the
“blessing of dimensionality.”

Figure: (Left) a Gaussian point cloud in two dimensions, and (right) its
visualization in high dimensions [Vershynin ’18].

Implication: This favorable concentration of measure will ensure
high-probability certification bounds are available!
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The algorithm Theory

Why the Christoffel sampling strategy?

Goal: Obtain samples such that the following error bound holds with
high probability

sup
µ∈P
E(µ) ≤ C max

1≤i≤nsamp
E(µi ).
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The algorithm Theory

Why the Christoffel sampling strategy?

Goal: Obtain samples such that the following error bound holds with
high probability

sup
µ∈P
E(µ) ≤ C max

1≤i≤nsamp
E(µi ).

Sampling complexity: The Christoffel measure yields a
(quasi-)optimal sampling strategy, in the sense that the lower
bound on nsamp is minimized [Cohen, Migliorati SMAI J.
Comput. Math. ’17].

Practical sampling algorithms (in a least-squares/L2 context):
[Bartel et al. Appl. Comput. Harmon. Anal. ’23], [Dolbeault, Chkifa
arXiv ’24], [Trunschke, Nouy arXiv ’24].
“Lifting” approximations from L2 to other spaces: [Xu, Narayan
J. Approx. Theory ’21], [Krieg et al. arXiv ’23], many works by V.
Temlyakov.
C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 13 / 31



The algorithm Theory

Why the Christoffel sampling strategy?

Goal: Obtain samples such that the following error bound holds with
high probability

sup
µ∈P
E(µ) ≤ C max

1≤i≤nsamp
E(µi ).

Sampling complexity: The Christoffel measure yields a
(quasi-)optimal sampling strategy, in the sense that the lower
bound on nsamp is minimized [Cohen, Migliorati SMAI J.
Comput. Math. ’17].

Practical sampling algorithms (in a least-squares/L2 context):
[Bartel et al. Appl. Comput. Harmon. Anal. ’23], [Dolbeault, Chkifa
arXiv ’24], [Trunschke, Nouy arXiv ’24].
“Lifting” approximations from L2 to other spaces: [Xu, Narayan
J. Approx. Theory ’21], [Krieg et al. arXiv ’23], many works by V.
Temlyakov.
C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 13 / 31



The algorithm Theory

A new certification result

Offline certification with high probability

LetM := {u(µ) : µ ∈ P} consist of stable solutions for ρ-almost every
parameter. Prescribe a first failure probability δMZ and sampling budget
nsamp satisfying

nsamp ≥
2

θ2
ln

(
2

δMZ

)
, θ ∈ (0, 1).

Moreover, because K is sub-Gaussian, prescribe a tail constant Cub, which
yields a second failure probability δub:

δub = Pρ(K−EρK ≥ Cub) ≤ exp

(
− 2(Cub)

2

L2 − (EρK )2

)
, L =

1√
ln 2

+
∥E2∥ψ2

∥E∥2
L2ρ(P)

,

where ψ2 denotes the sub-Gaussian norma. Then, with probability at least
1− δub − δMZ,

sup
µ∈P
E(µ) ≤

√
8Cub

1− θ
max

1≤i≤nsamp
E(µi ), µi

i.i.d.∼ ν.

a∥E2∥ψ2 := inf{β > 0 : Eρ[exp((E2/β)2)] ≤ 2}
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The algorithm Theory

Estimation of the norms

Key remark: Approximating the constant Cub, and normalizing E , will
involve estimating the sub-Gaussian and L2ρ-norms!
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Estimation of the norms

Key remark: Approximating the constant Cub, and normalizing E , will
involve estimating the sub-Gaussian and L2ρ-norms!

Bounded random variables: ∥X∥ψ2 ≤ ∥X∥L∞ρ (P)/
√
ln 2

L-Lipschitz functions of Gaussians: ∥f ∥ψ2 ∼ L
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The algorithm Theory

Estimation of the norms

Key remark: Approximating the constant Cub, and normalizing E , will
involve estimating the sub-Gaussian and L2ρ-norms!

MC Estimator of the L2ρ-norm [Smetana, Taddei, Whitby, Yin]

Let µ1, . . . , µM ∈ P be mutually independent samples drawn from ρ. The
a posteriori error estimator

∆ :=
1

M

M∑
i=1

E2(µi )

satisfies the MZ inequalities (1− ε)∥E∥2L2ρ(P) ≤ ∆ ≤ (1 + ε)∥E∥2L2ρ(P), with

probability at least 1− δ for M satisfying

M ≥ 1

2ε2
ln

(
1

δ

)(∥E∥L∞ρ (P)

Eρ[E(µ)]

)2

.
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Numerical results
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Numerical results Known nonlinear parameter-to-solution map

Initial numerical test case: steady-state diffusion problem

Given µ = (µ1, µ2) ∈ [0.1, 10]2, h(x , y) = sin(πy), find u(µ) ∈ H1
0 (Ω)

such that∫
Ω1

µ1∇u(µ) · ∇vdx+
∫
Ω2

µ2∇u(µ) · ∇vdx =

∫
Ω
hvdx, ∀v ∈ H1

0 (Ω)

Figure: Domain of the diffusion problem. Ω1 = (−1, 0)× (0, 1), Ω2 = (0, 1)2,
Γ = {x = 0} × (0, 1).
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0 (Ω)
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∫
Ω2

µ2∇u(µ) · ∇vdx =

∫
Ω
hvdx, ∀v ∈ H1

0 (Ω)

Exact computation of normalization constant

In [Autio, Hannukainen arXiv ’24], a closed-form parameter-to-solution
map is derived for this problem:

u(µ) =
1

µ1
wΩ1 +

1

µ2
wΩ2 +

2

µ1 + µ2
wΓ,

where the w functions can be approximated via FE solutions. Knowledge
of this map allows us to calculate the best approximation error, the
normalization constant of the density of ν, etc., “exactly.”
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Numerical results Known nonlinear parameter-to-solution map

Convergence analysis across realizations

Figure: Error quantiles across 1,000 realizations of the randomized Greedy,
nsamp = 40, εtol = 1e-04.
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Numerical results Known nonlinear parameter-to-solution map

Evolution of the Christoffel pdfs and error measure
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Numerical results Known nonlinear parameter-to-solution map

Varying the per-iteration budget
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Numerical results Multiparametric Helmholtz equation

Second test case: Helmholtz problem

Given µ = (µ1, µ2) ∈ P = [0.2, 1.2]× [10, 50], find u such that

−∂2u

∂x2
− µ1

∂2u

∂y 2
− µ2u = h(x , y) in Ω = (0, 1)2,

u = 0 on (0, 1)× {0},
∂u

∂y
= cos(πx) on (0, 1)× {1},

∂u

∂x
= 0 on {0, 1} × (0, 1).
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Numerical results Multiparametric Helmholtz equation

Parameters selected by the randomized Greedy

Figure: The parameters selected tend to be on or near resonance surfaces.
Sampling here was done with a standard Metropolis-Hastings algorithm.
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Numerical results Multiparametric Helmholtz equation

Convergence results (one realization)

Figure: Tolerance here was set to εtol = 1e-08.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

Figure: The error peaks initially are on the order of 107.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

Figure: The error peaks at iteration 6 are on the order of 104.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

Figure: The error peaks at iteration 14 are on the order of 0.01.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

Figure: The error peaks at iteration 20 are on the order of 10−6.
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Potential applications to Digital Twins
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Potential applications to Digital Twins

Digital Twins and localized model order reduction

Recall: POD and deterministic Greedy have had many great
successes, BUT will suffer from:

curse of dimensionality when the parameter set is high-dimensional;

inflexibility when updating the (global) reduced model in response to
local changes in PDE or domain geometry; and
questions about how to pose problem when global PDE is
inaccessible/unknown!

Localized MOR may effectively address these issues via, e.g.:
1 Decompose the global domain into target subdomains ωin, each with

an associated oversampling domain ωout ⊃ ωin.
2 Build reduced spaces on ωin by solving local problems.
3 Patch local spaces together to construct global reduced models.
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Potential applications to Digital Twins

How optimal local approximation spaces are constructed

Idea: Introduce a transfer operator T which maps arbitrary boundary
data on ∂ωout to a local solution on ωin.

Key Observation: The global solution u satisfies u|ωin = T (u|∂ωout )
=⇒ Construct local reduced spaces that approximate range(T ).
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Potential applications to Digital Twins

How optimal local approximation spaces are constructed

Optimal local approximation spaces [Babuska, Lipton SIAM MMS ’11]

ϕj : left singular vectors of T ; σj : singular values of T .

The reduced space S(n)opt := span{ϕ1, . . . , ϕn} is the optimal space in
the sense of Kolmogorov [Kolmogoroff Annal Math. 1936].

The error satisfies

sup
g

{∥(T − ProjS(n)
opt
T )g∥

∥g∥

}
= σn+1
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Potential applications to Digital Twins

Existing approaches for nonlinear problems

Approaches utilizing randomization: [Chen, Li, Lu, Wright SIAM
Multiscale Model. Simul. ’22] (multiscale), [Smetana, Taddei SIAM
J. Sci. Comput. ’23] (local MOR)

Localized Orthogonal Decomposition (LOD): [Verfürth IMA J.
Numer. Anal. ’21], [Khrais, Verfürth arXiv ’25]

Rough polyharmonic splines: [Kambampati ’16 (Master’s Thesis)],
[Liu, Chung, Zhang SIAM Multiscale Model. Simul. ’21]

Generalization of Gamblets: [Chen, Hosseini, Owhadi, Stuart J.
Comput. Phys. ’21], . . .
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Potential applications to Digital Twins

Challenges & opportunities for nonlinear local MOR

Goal: Approximate the set

M := {T (g) : ∥g∥ ≤ 1}

where the transfer operator T is now nonlinear.

Connection to Digital Twins: In a DT setting, global high-fidelity
solutions or data from the global computational domain may be
unknown/inaccessible =⇒ we would need to rely on and trust our
local reduced models!

Opportunity for our approach: We can use the randomized Greedy
to construct and certify local reduced spaces in a local fashion,
while handling the high-dimensional parameter set of admissible local
boundary data.
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Potential applications to Digital Twins

Randomized Greedy & localized model order reduction

Inputs:
P := {boundary data g}
local solutions T (g) via transfer operator T
reference probability measure ρ supported on P
per-iteration sampling budget nsamp
E (n) : P → R≥0, E (n)(g) := ∥T (g)− ProjXn

T (g)∥/∥g∥
Initialize X0 := ∅, n = 0.

The algorithm: for n = 0, 1, 2, . . ., do
Draw nsamp i.i.d. samples µ1, . . . , µnsamp ∈ P according to the (modified)
Christoffel measure ν, whose density is:

dν

dρ
(µ) :=

1

2

(
1 +

|E (n)(µ)|2∫
P |E (n)(µ)|2dρ(µ)

)
.

if max1≤i≤nsamp E(µi ) ≤ εtol, then break, return Xn.

else select µi
∗ that maximizes E over the sample set, update

Xn+1 ← Xn ⊕ span{u(µi
∗)}.
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Potential applications to Digital Twins

Summary & conclusion

Main question: How to construct and certify reduced ansatz spaces,
given high-dimensional parameter sets?

Idea: Utilize randomization to explore the parameter set, relying on
favorable concentration properties of sub-Gaussian distributions.

Approach: Implement a randomized Greedy algorithm to sample
parameters quasi-optimally via the Christoffel measure, and obtain
offline certification with high probability.

Further advantages: Flexibility in the algorithm design can allow for
the use of different measures/indicators of error, localized
approximation, and nonlinear PDEs.

Thank you for your attention!

Questions?
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