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Introduction, main ideas & challenges
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Introduction, main ideas & challenges

The hope for certification

@ Goal: Approximate set of PDE solutions
M ={u(p) : pe P},

and certify this approximation for (almost) all parameters.
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@ Relevance:

e Bayesian Inverse Problems & UQ: Reduced models must be
evaluated for many parameters to estimate statistics via Monte Carlo
integration: certification can ensure accurate approximation of
parameter distributions/quantified uncertainties.
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The hope for certification

@ Goal: Approximate set of PDE solutions
M ={u(p) : pe P},

and certify this approximation for (almost) all parameters.

@ Relevance:

e Bayesian Inverse Problems & UQ: Reduced models must be
evaluated for many parameters to estimate statistics via Monte Carlo
integration: certification can ensure accurate approximation of
parameter distributions/quantified uncertainties.

o Real-time contexts: Reduced models in action/use (by e.g.
autonomous systems, doctors in an operating room) must provide
efficient results accurately for parameters outside of training set:
certification can help ensure trust in the real-time outputs.

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 4/31



The hope for certification and Digital Twins

@ Goal: Approximate set of PDE solutions
M ={u(p) : pe P},

and certify this approximation for (almost) all parameters.

@ Relevance for Digital Twins: High-dimensionality of the parameter
set!

o “For example, a surrogate model of the structural health of an
engineering structure (e.g., building, bridge, airplane wing) would need
to be representative over many thousands of material and structural
properties that capture variation over space and time ...

e ...Similarly, a surrogate model of tumor evolution in a cancer patient
digital twin would potentially have thousands of parameters

representing patient anatomy, physiology, and mechanical properties.”
[NASEM Digital Twins report, '24]
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Introduction, main ideas & challenges

The challenges of certification

e Proper Orthogonal Decomposition (POD)?!

S =[u(x')---u(u"=)] = UEVT

![Sirovich Q. Appl. Math. '87], [Berkooz, Holmes, Lumley Annu. Rev. Fluid Mech.
'93], ...
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Introduction, main ideas & challenges

The challenges of certification

e Proper Orthogonal Decomposition (POD)!

S=[u(x) --u(p™)] =UEXV' = span{U,} ~ M?

@ Pro:

Nsamp Nsamp Nsamp
> u(e)-UU ] u(y Hz—mmZH (-CClu(lz= > of
i=1 k=r+1

e Difficulty: This /?-optimality provides average-case error analysis, but
we are interested in certifying for worst-case (i.e., L>°) scenarios too!

![Sirovich Q. Appl. Math. '87], [Berkooz, Holmes, Lumley Annu. Rev. Fluid Mech.
93], ...
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Introduction, main ideas & challenges

The challenges of certification

o (Deterministic) Greedy algorithm?

@ Select a training set Pirain C P and error tolerance eio1;
forn=20,1,2,..., do
o For each /i € Pyrain, assess error’ £(" (1) between u(;) and
approximation in current reduced approximation space X,.

'[Veroy et al., 16th AIAA CFD Proceedings '03]

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 6/31



Introduction, main ideas & challenges

The challenges of certification

o (Deterministic) Greedy algorithm?

@ Select a training set Pirain C P and error tolerance eio1;
forn=20,1,2,..., do
o For each /i € Pyrain, assess error’ £(" (1) between u(;) and
approximation in current reduced approximation space X,.
o if max,ep,.... £ (1) < 401, break, return ..
o else select /* € argmax,cp,.... EM (1), X1 + A, @ spanfu(p*)}.

'[Veroy et al., 16th AIAA CFD Proceedings '03]

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 6/31



Introduction, main ideas & challenges

The challenges of certification

o (Deterministic) Greedy algorithm?

@ Select a training set Pirain C P and error tolerance eio1;
forn=20,1,2,..., do
o For each /i € Pyrain, assess error’ £(" (1) between u(;) and
approximation in current reduced approximation space X,.
o if max,ep,.... £ (1) < 401, break, return ..
o else select /* € argmax,cp,.... EM (1), X1 + A, @ spanfu(p*)}.

Certification: Reduced solutions up(;:) approximate u(y)
within €01 for every 11 € Pirain.

'[Veroy et al., 16th AIAA CFD Proceedings '03]

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 6/31



Introduction, main ideas & challenges

The challenges of certification

o (Deterministic) Greedy algorithm?

@ Select a training set Pirain C P and error tolerance eio1;
forn=20,1,2,..., do
o For each /i € Pyrain, assess error’ £(" (1) between u(;) and
approximation in current reduced approximation space X,.
o if max,ep,.... £ (1) < 401, break, return ..
o else select /* € argmax,cp,.... EM (1), X1 + A, @ spanfu(p*)}.

Certification: Reduced solutions up(;:) approximate u(y)
within €01 for every 11 € Pirain.

@ fPossible measures of error
@ Best approximation error: £ (1) := inf,c v, [u(y1) — v|.
@ Galerkin approximation error: £ (1) := |lu(z) — u, ()]
@ Error estimator or indicator: A ().

'[Veroy et al., 16th AIAA CFD Proceedings '03]
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Introduction, main ideas & challenges

Is deterministic Greedy certification sufficient?

o Idea: If £(" can be evaluated cheaply, /1" € arg max,cp,,... £ (/1)
may still be feasible to solve for large Pirain. We could try creating a
very fine training set, i.e., seek a €yo1-net for P, so that Pirain =~ 7.

Figure: e-net visualization

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 7/31



Introduction, main ideas & challenges

Is deterministic Greedy certification sufficient?

o Idea: If £(" can be evaluated cheaply, /1" € arg max,cp,,... £ (/1)
may still be feasible to solve for large Pirain. We could try creating a
very fine training set, i.e., seek a €yo1-net for P, so that Pirain =~ 7.

e Possible approach: If u() is La-Lipschitz with respect to the
parametrs, then for 1 € P\ Pirain, /I € Ptrain

Figure: e-net visualization

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 7/31



Introduction, main ideas & challenges

Is deterministic Greedy certification sufficient?

o Idea: If £(" can be evaluated cheaply, /1" € arg max,cp,,... £ (/1)
may still be feasible to solve for large Pirain. We could try creating a
very fine training set, i.e., seek a €yo1-net for P, so that Pirain =~ 7.

e Possible approach: If u() is La-Lipschitz with respect to the
parametrs, then for 1 € P\ Pirain, /I € Ptrain

Ju(rs) = un() < llu(i) = u(i)]| + (i) = un ()|
< Ly — il + etor-

Figure: e-net visualization

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 7/31



Introduction, main ideas & challenges

Is deterministic Greedy certification sufficient?

o Idea: If £(" can be evaluated cheaply, /1" € arg max,cp,,... £ (/1)
may still be feasible to solve for large Pirain. We could try creating a
very fine training set, i.e., seek a €yo1-net for P, so that Pirain =~ 7.

e Possible approach: If u() is La-Lipschitz with respect to the
parametrs, then for 1 € P\ Pirain, /I € Ptrain

Ju(z) —un (D) < flu(p) —u(@)|| + [Ju(iz) — un (i)l
< Ll = fi] + €gor-

o Key challenge: The cardinality of Pirain
for eto1-net scales exponentially with dim(7):

L > cdim(P)

€tol

|Ptrain‘ ~ <

Figure: e-net visualization

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 7/31



Introduction, main ideas & challenges

Is deterministic Greedy certification sufficient?

o Idea: If £(" can be evaluated cheaply, /1" € arg max,cp,,... £ (/1)
may still be feasible to solve for large Pirain. We could try creating a
very fine training set, i.e., seek a €yo1-net for P, so that Pirain =~ 7.

e Possible approach: If u() is La-Lipschitz with respect to the
parametrs, then for 1 € P\ Pirain, /I € Ptrain

Ju(z) —un (D) < flu(p) —u(@)|| + [Ju(iz) — un (i)l
< Ll = fi] + €gor-

o Key challenge: The cardinality of Pirain
for eto1-net scales exponentially with dim(7):

L > cdim(P)

€tol

|Ptrain‘ ~ <

— This approach suffers from
the curse of dimensionality! [Bellman '57] Figure: e-net visualization
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Introduction, main ideas & challenges

Existing works to address these challenges

e Randomized Greedy for model order reduction [Cohen et al.
ESAIM: M2AN '20], [Billaud-Friess et al. Adv. Comput. Math. '24]

e Adaptive updates/partitioning of the training set: [Sen Numer.
Heat Transfr. B: Fundam. '08], [Eftang, Patera, Rgnquist, SIAM J.
Sci. Comput. '09], [Haasdonk, Dihlmann, Ohlberger Math. Comput.
Model. Dyn. Syst. '11], [Eftang, Stamm Int. J. Numer. Methods
Eng. '12], [Hesthaven, Stamm, Zhang ESAIM: M2AN '14], [Jiang,
Chen, Narayan J. Sci. Comput. '17], [Jiang, Chen Int. J. Numer.
Methods Eng. '20], [Nielen, Tse, Veroy-Grepl arXiv '24]

e Nonlinear optimization-based approach: [Urban, Volkwein, Zeeb,
ROM for Modeling & Comput. Reduction '14]

e Low-rank tensor approaches: [Khoromskij, Schwab SIAM J. Sci.
Comput. '11], [Ballani, Kressner SIAM J. Sci. Comput. '16], work by
R. Scheichl, A. Nouy, M. Olshanskii, ...
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Outline

© The algorithm
@ Design
@ Theory
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ps
The randomized Greedy algorithm

o Inputs:

Parameter set P

e reference probability measure p supported on P
e per-iteration sampling budget nganp

o measure of error £M . P — R>o
. >
o

error tolerance €01
Initialization: n =10, Xy =0
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ps
The randomized Greedy algorithm

o Inputs:
e Parameter set P
e reference probability measure p supported on P
e per-iteration sampling budget nganp
o measure of error £ : P — R>o
e error tolerance €01
o Initialization: n =10, Xy :=10
@ The algorithm: for n=20,1,2,..., do
o Draw .,y i.i.d. samples /', ... "= € P according to the (modified)
Christoffel measure v, whose density is:

j—:(u) =K(p) = % <1 +

ED()? )
To ED(Pd() )

o if maxi<j<n,.,, 5(")(/1,’) < e¢01, then break, return Y.
o else select ;// that maximizes £(") over the sample set, update
X1+ X, @ span{u(l)}.
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Theory
What kind of distribution is K?

@ Question: The randomized Greedy algorithm draws samples from a
distribution with density K:

v QIMIE
00 = K(s) r=§(1+ At )

Jp 1EM (1) 2dp(11)

What properties does this distribution have?
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Theory
What kind of distribution is K?

@ Question: The randomized Greedy algorithm draws samples from a
distribution with density K:

v QIMIE
00 = K(s) r=§(1+ At )

Jp 1EM (1) 2dp(11)

What properties does this distribution have?
o ldea: Assume that solutions u(:) are stable for p-almost every
peP = &M is bounded p-almost surely.

Concentration for bounded random variables [version from Vershynin '18]

Let X = (X!,...,X™) be independent random variables such that
X' € [aj, bj], 1 <i< m. Then, for any t > 0,

m
2t2
P Xi—BXi2t)] < ——=m L o (-
(2 > eXp{ Zi—1(bi—3i)2}

T mid — = e
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The algorithm Theory

Sub-Gaussian distributions in high dimensions

o Advantage: The sub-Gaussian tail decay behavior of £(" and thus
K ensures concentration around the mean, especially for

high-dimensional P = this is sometimes referred to as the
“blessing of dimensionality.”
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The algorithm Theory

Sub-Gaussian distributions in high dimensions

o Advantage: The sub-Gaussian tail decay behavior of £(" and thus
K ensures concentration around the mean, especially for

high-dimensional P = this is sometimes referred to as the
“blessing of dimensionality.”

Figure: (Left) a Gaussian point cloud in two dimensions, and (right) its
visualization in high dimensions [Vershynin '18].

Implication: This favorable concentration of measure will ensure
high-probability certification bounds are available!
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=y
Why the Christoffel sampling strategy?

@ Goal: Obtain samples such that the following error bound holds with
high probability ‘
supE(p) < C max  E(u').

HeP <’<nsamp
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=y
Why the Christoffel sampling strategy?

@ Goal: Obtain samples such that the following error bound holds with
high probability ‘
supE(p) < C max  E(u').

HEP 1<i<nsamp

@ Observation: This is a problem of trying to bound a continuous
norm (here L) with a discrete norm (here £°°).

@ Connection: Sampling discretization seeks to develop strategies to
effectively construct equivalent discrete norms, satisfying so-called
Marcinkiewicz-Zygmund inequalities of the form

Nsamp

allfC)lfs < — Zlf |7 < el FC s,

sampk 1

for specific g and functions f in a dictionary [e.g., Kashin et al. J.
Complex. '22].
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=y
Why the Christoffel sampling strategy?

@ Goal: Obtain samples such that the following error bound holds with
high probability ‘
supE(p) < C max  E(p').

neEP <’<nsamp

Sampling complexity: The Christoffel measure yields a
(quasi-)optimal sampling strategy, in the sense that the lower
bound on 1.y, is minimized [Cohen, Migliorati SMAI J.
Comput. Math. '17].

e Practical sampling algorithms (in a least-squares/L> context):
[Bartel et al. Appl. Comput. Harmon. Anal. '23], [Dolbeault, Chkifa
arXiv '24], [Trunschke, Nouy arXiv '24].

e “Lifting” approximations from L2 to other spaces: [Xu, Narayan
J. Approx. Theory '21], [Krieg et al. arXiv '23], many works by V.
Temlyakov.
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The algorithm Theory

A new certification result

Offline certification with high probability

Let M :={u(u) : € P} consist of stable solutions for p-almost every
parameter. Prescribe a first failure probability dyz and sampling budget
Nsamp Satisfying 5 5

Nsamp = 7 In <5MZ) , 0€(0,1).
Moreover, because K is sub-Gaussian, prescribe a tail constant C.,, which
yields a second failure probability dyup:

2(Cu)? ) L o
0w =P, (K-E,K> Cy) <exp| ————=--=],L= 4 2
b o p b) P < 2 — (E,K)2 /In2 ”5”%2(7))
P
where 15 denotes the sub-Gaussian norm?. Then, with probability at least
1 — dup — Omz,
jiid.

8Cuw -
sup E(p) < max E(u'), .
sup (n) =71 e (1), w '~

*1€2[ly, = inf{B > 0: E,[exp((£7/5)*)] < 2}
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The algorithm Theory

Estimation of the norms

Key remark: Approximating the constant C.,, and normalizing &, will
involve estimating the sub-Gaussian and L/Z)—norms!
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The algorithm Theory

Estimation of the norms

Key remark: Approximating the constant C.,, and normalizing &, will
involve estimating the sub-Gaussian and L/Z)—norms!
o Bounded random variables: || X||y, < ||X||(p)/vIn2

o [-Lipschitz functions of Gaussians: ||f||,, ~ L
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The algorithm Theory

Estimation of the norms

Key remark: Approximating the constant C.,, and normalizing &, will
involve estimating the sub-Gaussian and L/Z)—norms!

MC Estimator of the L2-norm [Smetana, Taddei, Whitby, Yin]

Let b, ..., 1M & P be mutually independent samples drawn from p. The

a posteriori error estimator y
1 20 i
A= 2 )
1=

satisfies the MZ inequalities (1 — €)H8||i2(7>) <A<(1+ €)||€Hf2(73), with
_pe . - p p
probability at least 1 — § for M satisfying

1 1\ [ I€]liop) ?
=52 () (Eplf(u)] )
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Outline

© Numerical results
@ Known nonlinear parameter-to-solution map
@ Multiparametric Helmholtz equation
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Numerical results Known nonlinear parameter-to-solution map

Initial numerical test case: steady-state diffusion problem

Given /1 = (111, /12) € [0.1,10], h(x,y) = sin(my), find u(i1) € H(Q)

such that

/ (1 Vu(p) - Vvdx + / poVu(p) - Vvdx = /
95} Q Q

Q

1

I

Q

2

Figure: Domain of the diffusion problem. Q; = (—1,0) x (0,1), Q> = (0,1)?,

M= {x =0} x (0,1).

C. Beall (Stevens)

IMSI Digital Twins Long Program
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hvdx, Vv € H3(Q)
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Numerical results Known nonlinear parameter-to-solution map

Initial numerical test case: steady-state diffusion problem

Given /1 = (111, /12) € [0.1,10], h(x,y) = sin(my), find u(i1) € H(Q)
such that

/ piVu(p) - Vvdx 4+ / (oVu(p) - Vvdx = / hvdx, Vv € H}(Q)
M Q Q

Exact computation of normalization constant

In [Autio, Hannukainen arXiv '24], a closed-form parameter-to-solution
map is derived for this problem:

(1) 1 n 1 n 2
u(p) = —wgq, + —wgqg, + —————wr

pr ot g prApe
where the w functions can be approximated via FE solutions. Knowledge
of this map allows us to calculate the best approximation error, the
normalization constant of the density of v, etc., “exactly.”

v
T mid = = et
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Numerical results Known nonlinear parameter-to-solution map

Convergence analysis across realizations

_5 Error quantiles, diffusion model
K
EJ 4 @ max
> 0! ® 8 ®o098| |
§ 109 v ® 095
L @075
0] ®o05
5 025
g 10°% ®min |+
s
o
[}
g
10710 &
3 ®
§ ®
£
@
5107 t
o
D
[
o
§ o=
E
é s L
= 1 2 3 4

Greedy iteration number

Figure: Error quantiles across 1,000 realizations of the randomized Greedy,
nsamp - 40. Etol = le-04.
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Numerical results Known nonlinear parameter-to-solution map

Evolution of the Christoffel pdfs and error measure

Initial Christoffel function

Christoffel PDF

2

Initial error function

&%y, 1)
L G-

So

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 19/31



Numerical results Known nonlinear parameter-to-solution map

Evolution of the Christoffel pdfs and error measure

Christoffel function after iteration 1

Christoffel PDF
o o
o = N

o
o

=)

2 2 4

Iz
Error function after iteration 1
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Numerical results Known nonlinear parameter-to-solution map

Evolution of the Christoffel pdfs and error measure

Christoffel function after iteration 2

s 1.5
a
&
°

g 1
':é
o

0.5

10

# 2
Error function after iteration 2

2

L15
=~
Bo
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Known nonlinear parameter-to-solution map
Varying the per-iteration budget

K2

Nsamp = 5, Mrear = 100

C. Beall (Stevens)

M1

IMSI Digital Twins Long Program 14 November 2025

20/31



Known nonlinear parameter-to-solution map
Varying the per-iteration budget

Nsamp = 209 Ryeal = 100
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Known nonlinear parameter-to-solution map
Varying the per-iteration budget

Nsamp = 809 Ryeal = 100
10¢

H2

M1
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Numerical results Multiparametric Helmholtz equation

Second test case: Helmholtz problem
Given o = (1, p12) € P =10.2,1.2] x [10,50], find u such that

0? 0? .
—B—Xg - /zla—yl; — pou = h(x,y) in Q=(0,1)%,
u=0 on (0,1) x {0},
g?ﬂ = cos(7x) on (0,1) x {1},
Y
% =0 on {0,1} x (0,1).
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Numerical results Multiparametric Helmholtz equation

Second test case: Helmholtz problem

Given o = (1, p12) € P =10.2,1.2] x [10,50], find u such that

0? 0? .

—a—xl; - /zla—yl; — pou = h(x,y) in Q=(0,1)%
u=0 on (0,1) x {0},
3y = cos(mx) on (0,1) x {1},

Y

ou
X 0 on {0,1} x (0,1).

Resonances

0.2 0.4 0.6 0.8 1 1.2

M
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Numerical results Multiparametric Helmholtz equation

Parameters selected by the randomized Greedy

Resonances
20 -
Lo
10 L T | . I
0.2 0.4 0.6 0.8 1 1.2
M1

Figure: The parameters selected tend to be on or near resonance surfaces.
Sampling here was done with a standard Metropolis-Hastings algorithm.
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Numerical results Multiparametric Helmholtz equation

Convergence results (one realization)

Convergence for Helmholtz problem

1010
P~ N
/ 3 \\ LN
\\ l/ \'N.
o \/ \
LE 10° * \.‘
\\‘ A\**
10710 ‘ ‘
0 5 10 15 20 25

Greedy iteration

Figure: Tolerance here was set to £, = 1€-08.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

10000

5000

Initial Christoffel pdf

Initial error function
)

Figure: The error peaks initially are on the order of 107.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

5000

2 4000

itel

5 3000

2000

000

Christoffel pd,

x10*
8

PN

Error function, iteration 6
~

Figure: The error peaks at iteration 6 are on the order of 10*.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

Christoffel pdf, iter. 14
8 8 & 8

3

a
g

Error function, iter. 14

Figure: The error peaks at iteration 14 are on the order of 0.01.
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Numerical results Multiparametric Helmholtz equation

Evolution of the Christoffel function and error

8 8 & 8

Christoffel pdf, iter. 20

3

X
® 3

Error function, iter. 20
8o = v @ & o«

@

Figure: The error peaks at iteration 20 are on the order of 107°.
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Potential applications to Digital Twins
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@ Potential applications to Digital Twins
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Potential applications to Digital Twins

Digital Twins and localized model order reduction

@ Recall: POD and deterministic Greedy have had many great
successes, BUT will suffer from:

o curse of dimensionality when the parameter set is high-dimensional;
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Digital Twins and localized model order reduction

@ Recall: POD and deterministic Greedy have had many great
successes, BUT will suffer from:
o curse of dimensionality when the parameter set is high-dimensional;
o inflexibility when updating the (global) reduced model in response to
local changes in PDE or domain geometry; and
@ questions about how to pose problem when global PDE is
inaccessible/unknown!
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Potential applications to Digital Twins

Digital Twins and localized model order reduction

@ Recall: POD and deterministic Greedy have had many great
successes, BUT will suffer from:
e curse of dimensionality when the parameter set is high-dimensional;
o inflexibility when updating the (global) reduced model in response to
local changes in PDE or domain geometry; and
@ questions about how to pose problem when global PDE is
inaccessible/unknown!
@ Localized MOR may effectively address these issues via, e.g.:

@ Decompose the global domain into , each with
an associated D
@ Build reduced spaces on by solving local problems.

© Patch local spaces together to construct global reduced models.

o Y he
Image credit: A. Buhr
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Potential applications to Digital Twins

How optimal local approximation spaces are constructed

o ldea: Introduce a transfer operator 7 which maps arbitrary boundary

data on to a loc

al solution on

/ Oversampling domain

Boundary
data

— 1 s < —
\ Transfer /0perator
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q subdomain
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Potential applications to Digital Twins

How optimal local approximation spaces are constructed

o ldea: Introduce a transfer operator 7 which maps arbitrary boundary
data on to a local solution on

e Key Observation: The global solution u satisfies u| .. =7 (ul| )
— Construct local reduced spaces that approximate range(7).

/ Oversampling domain

Boundary
data

— 1 s < —
K Transfer /0perator

C. Beall (Stevens)

Target
q subdomain

\

IMSI Digital Twins Long Program
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Potential applications to Digital Twins

How optimal local approximation spaces are constructed

Optimal local approximation spaces [Babuska, Lipton SIAM MMS '11]

@ ¢j: left singular vectors of 7; o;: singular values of 7.

@ The reduced space S(()Z)t :=span{¢1,...,¢n} is the optimal space in

the sense of Kolmogorov [Kolmogoroff Annal Math. 1936].

@ The error satisfies

|(T" = Proj 4 T8l
sup ot = Ont1

g g/l
v
/ Oversampling domain
Boundary Target
data subdomain
q|s " D>
\ Transfer /0perator
\VvJ
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Potential applications to Digital Twins

Existing approaches for nonlinear problems

@ Approaches utilizing randomization: [Chen, Li, Lu, Wright SIAM
Multiscale Model. Simul. '22] (multiscale), [Smetana, Taddei SIAM
J. Sci. Comput. '23] (local MOR)

@ Localized Orthogonal Decomposition (LOD): [Verfiirth IMA J.
Numer. Anal. '21], [Khrais, Verfiirth arXiv '25]

@ Rough polyharmonic splines: [Kambampati '16 (Master’s Thesis)],
[Liu, Chung, Zhang SIAM Multiscale Model. Simul. '21]

o Generalization of Gamblets: [Chen, Hosseini, Owhadi, Stuart J.
Comput. Phys. '21], ...
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Potential applications to Digital Twins

Challenges & opportunities for nonlinear local MOR

@ Goal: Approximate the set
M:={T(g): llgll < 1}

where the transfer operator 7 is now nonlinear.
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Potential applications to Digital Twins

Challenges & opportunities for nonlinear local MOR

@ Goal: Approximate the set

M :={T(e): lell <1}

where the transfer operator 7 is now nonlinear.
@ Connection to Digital Twins: In a DT setting, global high-fidelity
solutions or data from the global computational domain may be

unknown/inaccessible = we would need to rely on and trust our
local reduced models!
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Potential applications to Digital Twins

Challenges & opportunities for nonlinear local MOR

@ Goal: Approximate the set
M:={T(g): llgll < 1}

where the transfer operator 7 is now nonlinear.

@ Connection to Digital Twins: In a DT setting, global high-fidelity
solutions or data from the global computational domain may be
unknown/inaccessible = we would need to rely on and trust our
local reduced models!

Opportunity for our approach: We can use the randomized Greedy
to construct and certify local reduced spaces in a local fashion,
while handling the high-dimensional parameter set of admissible local
boundary data.
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Potential applications to Digital Twins

Randomized Greedy & localized model order reduction

/ Oversampling domain

o I n pUts. Boundary Target
o P = {bOU ndary data g} data q subdomain >

local solutions 7(g) via transfer operator T K\.., s T

]

o reference probability measure p supported on P TmnSferlopmwr
e per-iteration sampling budget Nganp v

]
]

EM P = Ryo, £M(g) := || T(g) — Proj, T(g)ll/lell
Initialize Xy := 0, n=0.

@ The algorithm: for n=0,1,2,..., do

o Draw Ny i.i.d. samples ;... /1” =r ¢ P according to the (modified)
Christoffel measure v, whose den5|ty is:

- £ ()2
(/1) < [RED /:)|2d/>(/1)> '

o if maxi<i<n,,., E(11") < eto1, then break, return ..
o else select i/ that maximizes £ over the sample set, update
X1 < X, @ span{u(nl)}.

C. Beall (Stevens) IMSI Digital Twins Long Program 14 November 2025 30/31




Potential applications to Digital Twins

Summary & conclusion

@ Main question: How to construct and certify reduced ansatz spaces,
given high-dimensional parameter sets?

o Idea: Utilize randomization to explore the parameter set, relying on
favorable concentration properties of sub-Gaussian distributions.

@ Approach: Implement a randomized Greedy algorithm to sample
parameters quasi-optimally via the Christoffel measure, and obtain
offline certification with high probability.

o Further advantages: Flexibility in the algorithm design can allow for
the use of different measures/indicators of error, localized
approximation, and nonlinear PDEs.
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Potential applications to Digital Twins

Summary & conclusion

@ Main question: How to construct and certify reduced ansatz spaces,
given high-dimensional parameter sets?

o Idea: Utilize randomization to explore the parameter set, relying on
favorable concentration properties of sub-Gaussian distributions.

@ Approach: Implement a randomized Greedy algorithm to sample
parameters quasi-optimally via the Christoffel measure, and obtain
offline certification with high probability.

o Further advantages: Flexibility in the algorithm design can allow for
the use of different measures/indicators of error, localized
approximation, and nonlinear PDEs.

Thank you for your attention!
Questions?
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