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COMPUTATIONAL METHODS IN . . .

SYSTEMS AND CONTROL THEORY D|g|ta| Twins
Digital Twins provide a virtual model of a
real-world object, device or process; they allow

= the simulation for analyzing behavior,
m optimizing design and control synthesis,
m surveillance and prediction,

m continuous improvement of the plant model and
its controller.
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Digital Twins provide a virtual model of a
real-world object, device or process; they allow

= the simulation for analyzing behavior,
m optimizing design and control synthesis,
m surveillance and prediction,

m continuous improvement of the plant model and
its controller.

These require real-time response times!
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY Dig“;al Twins

Digital Twins provide a virtual model of a
real-world object, device or process; they allow

= the simulation for analyzing behavior,
m optimizing design and control synthesis,
m surveillance and prediction,

m continuous improvement of the plant model and
its controller.

These require real-time response times!

(©Noria Corporation

Smart process engineering (SmartProSys) requires digital
twins of, e.g., chemical reactors.
m This involves mathematical models (mass and energy
balances, reaction kinetics,. . . ).
m For high precision, this involves accurate discretizations of
systems of nonlinear coupled partial differential equations.

m Real-time demands (but also, optimization and controller
design) require fast-to-evaluate surrogate models.

(©Emerson Electric Co.
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Digital Twins provide a virtual model of a
real-world object, device or process; they allow

= the simulation for analyzing behavior,
m optimizing design and control synthesis,
m surveillance and prediction,

m continuous improvement of the plant model and
its controller.

These require real-time response times!

(©Noria Corporation
Smart process engineering (SmartProSys) requires digital
twins of, e.g., chemical reactors.
m This involves mathematical models (mass and energy
balances, reaction kinetics,. . . ).

m For high precision, this involves accurate discretizations of
systems of nonlinear coupled partial differential equations.

m Real-time demands (but also, optimization and controller
design) require fast-to-evaluate surrogate models.

©Emerson Electric Co. ~» MODEL REDUCTION is enabling technology!
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The application

under study
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Rentschler etal, Chem. Ing. Tech. (2024) _ Leitprojekt
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What is Green Hydrogen?

m It is made from water: it is produced by
splitting water into hydrogen and oxygen, and
this process is called electrolysis.

m Uses clean energy: the process of electrolysis
is powered by renewable energy sources like
solar and wind energy.

How does Green Hydrogen work?

m Electrolysis: electricity from renewable sources
is used to power a device (an electrolyzer).

m Collecting: the gas is then collected and can
be stored or transported to where it's needed.

m Using Hydrogen: it can then be used as a fuel
(the only byproduct is water) or in reaction
with carbon dioxide.

ProcSys Surrogates fi
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COMPUTATIONAL METHODS IN
systems anp controL THEORY T he long-term goal and some of our works

m The goal of our project is the development of a Digital Twin for a methanation reactor.

m Such a reactor is used to convert renewable hydrogen (coming from electrolysis) to more
easily-distributable methane.
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COMPUTATIONAL METHODS IN
systems anp controL THEORY T he long-term goal and some of our works

m The goal of our project is the development of a Digital Twin for a methanation reactor.

m Such a reactor is used to convert renewable hydrogen (coming from electrolysis) to more
easily-distributable methane.

m For this purpose, we study a tubular catalytic wall reactor and a semi-discretized dynamic model
constructed by mass and energy balances; preliminary works are listed below |

Sundmacher, and P. B.: Learning reduced-order
Quadratic-Linear models in Process Engineering using

" m |. V. G, L. Peterson, P. Goyal, J. Bremer, K.
Operator Inference, ENUMATH 2023 Proceedings.

m L. Peterson, A. Forootani, E. Sanchez Medina, |. V. G,,
K. Sundamcher, and P. Benner: Towards Digital Twins
for Power-to-X: Comparing Surrogate Models for a
Catalytic CO2 Methanation Reactor, 2024.

m L. Peterson, L., M. Biittner, A. Forootani, |. V. G., P.
Benner, and K. Sundmacher: Greedy Sampling Neural
Network SINDy with Control for a Catalytic CO2
Methanation Reactor, LSSC 2025 Proceedings.

Reactor for the catalytic CO, methanation
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? COMPUTATIONAL METHODS IN
: SYSTEMS AND CONTROL THEORY The complex model under study

m The synthetic data are generated from a first-principles reactor model adapted to a pilot plant setting.

m Specifically, we use a one-dimensional polytropic reactor model to generate synthetic data.

Mechanistic Reactor Model

reaction rate

Oeff = 1 Oint
Zimmermann et al,, Chem. Eng. J. (2022) e Lot lico
2 2 T ———
Oint = k Pco, Pu,” (1 KeqPco, i,

k= ko,ref €xp (E_l: (Trlef a %))

mass balance: sa”" = —ﬁ Vci +V(DEVe) + (1—&)v; Oesr

energy balance: (pcp)

eitor = (pcp)ﬂui G VT + V- (AeVT) + (1 = &) (=AHg) Ot

assumptions and details challenges

* one- & two-dimensional model * nested parameter dependencies

* parameters fitted to experimental data * non-linearities — high disturbance sensitivity

* discretized via finite volume method * dynamics on different scales — stiff

* integrated by use of Kvaerno5 solver * model solutions involve many states (after
(within the diffrax library) semi-discretization)
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY

m Reaction kinetics and heat transfer parameters are calibrated against steady-state experimental
data from a pilot plant.

disturbance

Fin(t) temperature profile
coolant T(t,2)
P EAIE ¢ COg conversion profile

e - —
—_— —_——
Su(?) =y(t)

temperature in K

COg4 conversion profile temperature profile
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SciML and surrogate modeling through stable Operator Inference (Opinf) * and
GN-SINDy *

m The results presented in what follows were published this year in the IEEE Transactions on Automation
Science and Engineering (free copy available on TechRxiv):

L. Peterson et al., Towards Digital Twins for Power-to-X: Comparing Surrogate Models for a Catalytic CO2
Methanation Reactor, 2025

[ —

e e o et * P. Goyal, |. Pontes Duff, P. Benner, Guaranteed
Stable Quadratic Models and their applications
in SINDy and Operator Inference, Physica D:

Nonlinear Phenomena, Vol. 483, pp. 134893, 2025.

* A. Forootani, P. Benner, GN-SINDy: Greedy
Sampling Neural Network in Sparse Identifica-
tion of Nonlinear Partial Differential Equations,
arXiv:2405.08613, 2024.
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COMPUTATIONAL METHODS IN
SYSTEMS AND CONTROL THEORY

Stable Oplnf |

Reduced-Order Model: Operator Inference

Peherstorfer & Willcox, Comp. Meth. Appl. Mech. Eng. (2016); Goyal et al,, Phys. D (2025)

principal component analysis + projection

a]PCAVlaSVD
U, )8 VI
nxd nxr rXr rxd
U z VT
nxn nxd dxd

a) define reduced-order model structure

Q low-dimensional regression

7=Ag+H(@®7q) +Bu
b) get reduced operators

min [ 074" + (Q0Q) A + U8 - 7|

osea, gosea@mpi-magdeburg.mpg.de

b) projection on low dimensional basis

Q_'E,Q U @
I

compress decompress

solve with gradient-based optimization

stable OplInf: choose a parameterization of
A and B, such that the inferred models are
stable by design
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COMPUTATIONAL METHODS IN . . . . .
sysTems anp conTroL THEORY  Stable Oplnf I1: more details in [Goyal et al. ’25], [Gkimisis et al. '25]

Asymptotic (exponential, Lyapunov) stability of linear systems
o(t) = Az(t),  =(0) = o,

can be explicitly parameterized:

Theorem (Gillis/Sharma 2017)

A matrix A € R"*" is asymptotically stable (Hurwitz, Lyapunov stable) if and only if it
can be represented as

A=(J-R)Q,
where J = —J% and R = RT, Q = QT are both positive definite.

— Stability-preserving Oplnf for linear systems:

(Se, L, Ky) t= argmin £, & wper erianguar (| X — (S — ST = L" )K" KX |7 + R(L, K, S))

with positive diagonals

The matrix obtained from this nonlinear (regularized) least-squares problem,

A= (8. - 8T LIL) KTK.,

is guaranteed to be stable due to [GiLLIs/SHARMA 2017]. Related work by Schwerdtner, Voigt, ...
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COMPUTATIONAL METHODS IN
@ SYSTEMS AND CONTROL THEORY GN-S'NDy

Reduced-Order Model: Greedy Sparse Identification

Brunton et al., Proc. Natl. Acad. Sci. (2016), Forootani & Benner, arXiv (2024)

greedy sampling via Q-DEIM

Greedy samples: Q-DEIM conversion in [-]

100 mm e = x =] 100
el b 08 a) POD to construct a reduced

» T5] MYy R 0.6 approximation of the snapshot matrix

2 sl g R R . b) QR DEcoMPOSITION with column

oy -] H . . .

2l Ei ; pivoting to select key time and space
B RN 02 indices from reduced matrices
NEHITEEEE o

0.0 0.8 16 0.0 08 16 :
length 2 in m length 2 in m
sparse regression on a library
. llell
L = MSE(u, @) = I3 :{H
+MSE (2,,0 &) + L, (§) Ue
* X
Normalize § v

wPuy,

Auto Diff.
Fl=|s & & - | —————— -
Include inc |© : _>( =0
X

(zH)—— 1€ {Y T} Library v
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY Steps (a) and (b)

The GN-SINDy approach introduces several improvements to standard SINDy:

m In step (a) of GN-SINDy, the Q-DEIM algorithm is used to sample the data set.

m Q-DEIM first applies the SVD to extract dominant features by retaining singular values above a
precision threshold €t,esn (linked to DEIM tolerance), then uses QR decomposition with pivoting
to select key spatio-temporal indices.

m This sensor placement strategy efficiently balances the trade-off between preserving essential
dynamics and computational cost.

m In step (b), sample pairs (¢;, ;) from Q-DEIM are entered into a DNN.
m The DNN learns the nonlinear mapping (¢, z) — u and the underlying physics via $%* = 6&.

m The output @ of the DNN serves as a function approximation used to construct the d|ct|onary (C]
and compute at by automatic differentiation.
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY Steps (C) and (d)

m Step (c) estimates & via stochastic gradient descent to minimize the loss function.

m The loss function for training the DNN comprises of a MSE component to capture the mapping
(t,z) — 1, and an additional term to enforce constraints on the DNN solutions:

2

NZ( (ti, z:) —ﬁ(ti,xz) NZ(au bi, 24) - Ot 7)) 9)) -

(t;, ;) are the selected sample pairs in the domain, w(t;, ;) is calculated using the Q-DEIM
algorithm applied to the snapshot matrix &/ and g is the sparsity mask.

m The DNN is constrained by the element-wise multiplication of £ and g, not by & alone.

In step (d), the learned coefficient vector yields a model explaining the original data set.

~- see also the work in [Forootani et al. '24] (arXiv:2405.08613).
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COMPUTATIONAL METHODS IN .
: SYSTEMS AND CONTROL THEORY Companson method: GNN (GAT)

m GATs use attention mechanisms to assign adaptive weights to neighbors based on their relevance, making
them effective for tasks where the importance of neighboring nodes varies significantly [Veli¢kovi¢ et al. '18];

[] [ ] [<]

Dataset Find graph structure Graph neural network
Full model: window ra[_)_h________. Learned model:
4= [z tu) : ti(t) = GNN(0, z,t,u)
Data Learned
= 00000
U = |u(0) u(l) -+ u(k) | e R" d
| | | Forecast based
@ spatial position time on previous window
fowof time snapshot
— Optimizing
Loss function parameters

1. Define the structure of the GNN

2. Optimize GNN parameters (6):

ming |4 — GNN(0, z,t, u)||
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COMPUTATIONAL METHODS IN
: SYSTEMS AND CONTROL THEORY  Load changes due to variations in Ho availability from renewable energy

Comparative Analysis - Study Design

Peterson et al., [EEE Trans. Autom. Sci. Eng. (2025)

trajectories for scenario (i)

disturbance
F in (t) =d (t)
i = 100 =
inputs outputs S 2 j
—_— —_— s < o
Tcool(t) Eu(t) reaCtor T(t! Z) Ey(t) ‘@ E 50 ‘%
X(t,2) £ - g
8 8
0
R , 05 1.0 1.5
scenario (1) Fn(®) |} o v
scenario (ii):  F,(t) ¢t " .
scenario (iii):  Teoo1(t) ¥ = =
scenario (iv):  Teoo1(t) 4 GOOE z 500 E
+ getdata based on the mechanistic model g F 550 &
* train on the first ~80 % of the time 3 3

0.5 1.0 1.5

- . oM
trajectory, predict the remaining ~20 % longth 2 in m

* run each model 10 for each scenario
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY Oplnf results

Operator Inference - Results
Peterson et al,, IEEE Trans. Autom. Sci. Eng. (2025)

Conversion - Truth Conversion f Absolute Residual l f
Train/Test boundary y Train/Test boundary 08 --- Train/Test boundary 030 results for
: o7 scenario (i)
azs
o6 s
i s oz
@ £ 60 .
E o ¥ oxs forecasting
0w
a10 g
on speedup factor:
20 0,05
o1 10.66
000
1o o5 1015 O
z[m] z[m]
Temperature - Truth Temperature - Oplnf Absolute Residual
o - Taiestboundary | I
620
a0
su0
se0
s

0.067 + 0.046% 0.075 + 0.059% 0.25 + 0.010% 0.30 + 0.018% 2816 + 366s 0.64 + 0.15s 6 42
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY GN—SINDy reSultS

Greedy Sparse Identification - Results
Peterson et al,, IEEE Trans. Autom. Sci. Eng. (2025)

Conversion - Truth

Train/Test boundary

Conversion - GN-SIND:

Train/Test boundary |a 8

Absolute Residual

results for
scenario (i)

04

03

tis)

02 forecasting
speedup factor:
48.71

01

05 10 15 00 o5 10 s

z[m]
Absolute Residual

00 -~ Train/Test boundary | fie0
590 001 -ME-Se______________| o
s o 60
570 _ 50
si0 = w0
s0 40 0
20
s
530 10

1s

2(m)
Temperature - Truth

Train/Test boundary

tis)

10
z(m]

3.78 + 0.018% 1.09 + 0.0080 % 6.47 + 0.070% 6.31 + 0.069 % 96 + 49s 0.14 + 0.012s 792 — 1438 13186
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY

Comparative Analysis - Prediction Error

Peterson etal., TechRxiv (2024)
GAT

conversion in [-]- GAT  conversion in [-] - residual

0.8 0.0075
06 0.0050
0.0025
0.4
0.0000
02 -0.0025
0.0 ~0.0050

temperature in K- GAT  temperature in K - residual

8
15 i 6
110
105 55
¥ . 08 16

017 +

115

time tin's
>
time tin's

=
S

time tin's

time tin's

0.075 %
SlEb) el 0.067 + 0.046 %

GN-SINDy 3.78 £ 0.018%
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Oplnf

conversion in [-] - OpInf

temperature in K - OpInf

0.8

0.075 +
1.09 +

6 08 16
length zinm

0.097 £+

Comparison: part |

prediction results

for scenario (i)

GN-SINDy

conversion in [-] - GN-SINDy

0.8
0.6
04
02
0.0

in K - GN-SINDy

length zinm

test (iv)

conversion in [-] - residual

04
03
0.2
01

in X - residual

. |Em

lenglh zinm

conversion in [-] - residual

0.0100
0.0075
0.0050
0.0025
0.0000

temperature in K - residual

15
1.0
0.5
0.0
-0,

time tin's

5

time tins

S
&

length zinm

0.059 % 0.29 £ 0.033% 0.21 + 0.030%
0.059% 0.25 + 0.010% 0.30 + 0.018%
0.0080 % 647 + 0.070 % 6.31 + 0.069 %
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY Comparison: part 1]

Comparative Analysis - Complexity

Peterson et al.,, TechRxiv (2024)

4000 .8 l 8000 l 2000000
“ + z + . +
£ 3000 v 6 £ 6000 $ 1500000
@ =] ] =]
E = s £
2 2000 o0 q 5 4000 & 1000000
£ Z & 5
£ i3] 3 °
g 1000 g2 E.zooo * g 500000
=}
0 — g, -_ ) __ ) I
S S $ 3 < s & &
& N & Q & 3] & 2
& \eo‘l 5 \zo‘l AN & oQ 9,\@ & Q/QQ\ 9,\\‘Q
» & N & N o
B By N £ °
GAT 3475 + 213s 6.11 + 0.039s 6000 1528130

Stable OpInf 2816 + 366s 0.64 + 0.15s 6 42
GN-SINDy 96 + 49s 0.14 + 0.012s 792 — 1438 13186
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY

Summary & Outlook

=
—-v
why Digital Twin? key findings
concept that bi-directionally links a ST-NN GN-SIN OpInf
physical entity to a model Dy
* goal: enable optimal control for PtX accuracy | v
¢ real-time model execution needed speed v v
) A ‘
what we did al  next steps
* compared three surrogate models: * closed-loop control integration
o Spatio-Temporal Neural Networks (ST-NN), * Analysis of other ROM methods

o Greedy Sparse Identification (GN-SINDy),
o Operator Inference (OpInf)

 focus: speed, accuracy, and generalizability

= Full Digital Twin implementation

Special thanks also to Pawan Goyal (appliedAl Initiative GmbH), Jens Bremer (TU Clausthal),
Ronny Zimmermann & Alexander Geschke (MPI, PSE), Miriam Biittner (TU Berlin) ...
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A COMPUTATIONAL METHODS IN . a
Q&! @ SYSTEMS AND CONTROL THEORY Extensn[e Sur\ley publlshed

Our recent survey paper (one of the first Digital Twin survey in Process Engineering), addresses the
following relevant topics*:

m Guidance for practitioners: Providing guidance to researchers and practitioners in Process
Engineering and chemical engineering fields.

= Real-time representation: Addressing real-time representation challenges in Digital Twin
development and offering practical solutions.

= Numerical methods review: Comprehensive review of state-of-the-art numerical methods and
tools for constructing Digital Twins, with a focus on applications in Process Engineering.

m Unlocking potential: Highlighting the transformative potential of Digital Twins in Process
Engineering and offering insights into essential mathematical tools to be harnessed.

* L. Peterson, |. V. G., P. Benner and K. Sundmacher: Digital twins in process engineering: An overview on computational

and numerical methods, Computers & Chemical Engineering, Vol. 193, pp. 108917, February, 2025.
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n COMPUTATIONAL METHODS IN . -
Q‘Q : @ SVSTEVS ANDICONTHORTHEOR The team behind it

. Leitprojekt %
R I o Biang H,Mare o SmartProSys

und Forschung

Peterson et al,, IEEE Trans.
Autom. Sci. Eng. (2025)

Peterson et al.,, Comput.
Chem. Eng. (2025)
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The twinning scenario

odels of an existing chemical plant (the physical entity), are

s a virtual entity.

al benefits, e.g., scenario exploration, prediction, and

thus connected in real time through bi-directional data

digital environment

sensor requirements  preli ry
data & conditions  experiments

new scenarios

data
preprocessing

what's next?
=0m | ~
4—»04—» forecast
process models ¢ what's best?
a5
—
——
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COMPUTATIONAL METHODS IN

SYSTEMS AND CONTROL THEORY

Digital Twin Data Flow

wind speed profile SEN 1
15.-22. February 2022

disturbance d: wind profile

disturbance d: wind profile
(inlet flow rate Fj;)

(inlet flow rate Fjy)

wind speed (m/s)

A 4

5] R\
o
£ feedback y: sensor data
g (conversion Xco,,out, temperature T(z))
e
=
b model
S
©
Q
[i4
control action u:
(cooling temperature Teqq1) 4

<
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A
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describes the energy distribution in the reactor, taking into
ective heat transport, heat exchange with the environment.

(T i Tcool) = AHI (]- i ER) Cgeff

o] _1v
? 9z D

c aspect of heat transport and heat reaction in the reactor:

ickly the temperature in the reactor changes over time. It depends
at capacity, which is determined by the reactor’s material.

fluence of convective heat transport along the reactor axis.
e heat loss due to heat transfer at the wall of the reactor.

o account the heat released/absorbed due to the chemical
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n for the conversion of CO; is:

B /oo,
= —u—+—5°%2 (1—¢g) (o 1

B oo, (1 —¢er) Coesr (1)
the conversion of CO; in the reactor changes over time.

ance of the flow velocity on the spatial distribution of the
tor (convective transport in the z-direction).

ompasses the chemical reaction itself, where o.g

ction rate.
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sion law for mass and energy, for any control volume of
the reactor, the following basic set of equilibrium equations

se p% = PAV wo — V- fo + Mo Y va s
B

e pcpaa—f = —pCpWT— V- (;— ZVQ’B <ARH/3) ?Z/g
B

tion, the mass balance equation of the components CO,,
summarized in a single equation by using the carbon dioxide

Ny = N in + ¥; XCO, NCO,,in

ProcSys Surrogates for DTs


mailto:gosea@mpi-magdeburg.mpg.de

	The application under study
	The proposed methods
	Numerics
	Bibliography

