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Digital Twins

Digital Twins provide a virtual model of a
real-world object, device or process; they allow

the simulation for analyzing behavior,

optimizing design and control synthesis,

surveillance and prediction,

continuous improvement of the plant model and
its controller.

These require real-time response times!

©Emerson Electric Co.

©Noria Corporation

Smart process engineering (SmartProSys) requires digital
twins of, e.g., chemical reactors.

This involves mathematical models (mass and energy
balances, reaction kinetics,. . . ).

For high precision, this involves accurate discretizations of
systems of nonlinear coupled partial differential equations.

Real-time demands (but also, optimization and controller
design) require fast-to-evaluate surrogate models.

⇝ MODEL REDUCTION is enabling technology!
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The application
under study



https://www.linkedin.com/pulse/

green-hydrogen-its-work-principle-engr-ali-alnasser-m-sc-pmp--ow65c/

What is Green Hydrogen?

It is made from water: it is produced by
splitting water into hydrogen and oxygen, and
this process is called electrolysis.

Uses clean energy: the process of electrolysis
is powered by renewable energy sources like
solar and wind energy.

How does Green Hydrogen work?

Electrolysis: electricity from renewable sources
is used to power a device (an electrolyzer).

Collecting: the gas is then collected and can
be stored or transported to where it’s needed.

Using Hydrogen: it can then be used as a fuel
(the only byproduct is water) or in reaction
with carbon dioxide.
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The long-term goal and some of our works

The goal of our project is the development of a Digital Twin for a methanation reactor.

Such a reactor is used to convert renewable hydrogen (coming from electrolysis) to more
easily-distributable methane.

For this purpose, we study a tubular catalytic wall reactor and a semi-discretized dynamic model
constructed by mass and energy balances; preliminary works are listed below ↓

I. V. G., L. Peterson, P. Goyal, J. Bremer, K.
Sundmacher, and P. B.: Learning reduced-order
Quadratic-Linear models in Process Engineering using
Operator Inference, ENUMATH 2023 Proceedings.

L. Peterson, A. Forootani, E. Sanchez Medina, I. V. G.,
K. Sundamcher, and P. Benner: Towards Digital Twins
for Power-to-X: Comparing Surrogate Models for a
Catalytic CO2 Methanation Reactor, 2024.

L. Peterson, L., M. Büttner, A. Forootani, I. V. G., P.
Benner, and K. Sundmacher: Greedy Sampling Neural
Network SINDy with Control for a Catalytic CO2
Methanation Reactor, LSSC 2025 Proceedings.
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The complex model under study

The synthetic data are generated from a first-principles reactor model adapted to a pilot plant setting.

Specifically, we use a one-dimensional polytropic reactor model to generate synthetic data.
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The proposed
methods



SciML and surrogate modeling through stable Operator Inference (OpInf) ⋆ and
GN-SINDy ⋆

The results presented in what follows were published this year in the IEEE Transactions on Automation
Science and Engineering (free copy available on TechRxiv):

L. Peterson et al., Towards Digital Twins for Power-to-X: Comparing Surrogate Models for a Catalytic CO2

Methanation Reactor, 2025

⋆ P. Goyal, I. Pontes Duff, P. Benner, Guaranteed
Stable Quadratic Models and their applications
in SINDy and Operator Inference, Physica D:
Nonlinear Phenomena, Vol. 483, pp. 134893, 2025.

⋆ A. Forootani, P. Benner, GN-SINDy: Greedy
Sampling Neural Network in Sparse Identifica-
tion of Nonlinear Partial Differential Equations,
arXiv:2405.08613, 2024.
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Stable OpInf I
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Stable OpInf II: more details in [Goyal et al. ’25], [Gkimisis et al. ’25]
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GN-SINDy
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Steps (a) and (b)

The GN-SINDy approach introduces several improvements to standard SINDy:

In step (a) of GN-SINDy, the Q-DEIM algorithm is used to sample the data set.

Q-DEIM first applies the SVD to extract dominant features by retaining singular values above a
precision threshold ϵtresh (linked to DEIM tolerance), then uses QR decomposition with pivoting
to select key spatio-temporal indices.

This sensor placement strategy efficiently balances the trade-off between preserving essential
dynamics and computational cost.

In step (b), sample pairs (ti, xi) from Q-DEIM are entered into a DNN.

The DNN learns the nonlinear mapping (t, x) 7→ u and the underlying physics via ∂u
∂t = θξ.

The output û of the DNN serves as a function approximation used to construct the dictionary Θ
and compute ∂û

∂t by automatic differentiation.
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Steps (c) and (d)

Step (c) estimates ξ via stochastic gradient descent to minimize the loss function.

The loss function for training the DNN comprises of a MSE component to capture the mapping
(t, x) → û, and an additional term to enforce constraints on the DNN solutions:

L =
1

N

N∑
i=1

(
u(ti, xi)− û(ti, xi)

)2

+
1

N

N∑
i=1

(∂û(ti, xi)

∂ti
−Θ

(
û(ti, xi)

)
(ξ ⊙ g)

)2

.

(ti, xi) are the selected sample pairs in the domain, u(ti, xi) is calculated using the Q-DEIM
algorithm applied to the snapshot matrix U and g is the sparsity mask.

The DNN is constrained by the element-wise multiplication of ξ and g, not by ξ alone.

In step (d), the learned coefficient vector yields a model explaining the original data set.

⇝ see also the work in [Forootani et al. ’24] (arXiv:2405.08613).
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Comparison method: GNN (GAT)

GATs use attention mechanisms to assign adaptive weights to neighbors based on their relevance, making
them effective for tasks where the importance of neighboring nodes varies significantly [Veličković et al. ’18];

Find graph structure Graph neural network

Loss function

Dataset

a b d

c

Optimizing
parameters

LearnedData

minθ ∥U −GNN(θ, z, t, u)∥

∂u
∂t

= f(z, t, u)

Full model: Learned model:

time

1. Define the structure of the GNN
2. Optimize GNN parameters (θ):

˙̆u(t) = GNN(θ, z, t, u)

Forecast based
on previous windowspatial position

window graph

time snapshot
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Numerics



Load changes due to variations in H2 availability from renewable energy
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OpInf results
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GN-SINDy results
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Comparison: part I
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Comparison: part II
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Special thanks also to Pawan Goyal (appliedAI Initiative GmbH), Jens Bremer (TU Clausthal),
Ronny Zimmermann & Alexander Geschke (MPI, PSE), Miriam Büttner (TU Berlin) . . .
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Extensive survey published

Our recent survey paper (one of the first Digital Twin survey in Process Engineering), addresses the
following relevant topics⋆:

Guidance for practitioners: Providing guidance to researchers and practitioners in Process
Engineering and chemical engineering fields.

Real-time representation: Addressing real-time representation challenges in Digital Twin
development and offering practical solutions.

Numerical methods review: Comprehensive review of state-of-the-art numerical methods and
tools for constructing Digital Twins, with a focus on applications in Process Engineering.

Unlocking potential: Highlighting the transformative potential of Digital Twins in Process
Engineering and offering insights into essential mathematical tools to be harnessed.

⋆ L. Peterson, I. V. G., P. Benner and K. Sundmacher: Digital twins in process engineering: An overview on computational

and numerical methods, Computers & Chemical Engineering, Vol. 193, pp. 108917, February, 2025.
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The team behind it
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Thank you!
Any questions?



The twinning scenario

Real-time sensor data and physical models of an existing chemical plant (the physical entity), are
used to represent its current state as a virtual entity.

This virtual entity can provide several benefits, e.g., scenario exploration, prediction, and
optimization.

The virtual and physical entities are thus connected in real time through bi-directional data
exchange.

what if?

new scenarios

what's next?

forecast

what's best?

optimization

data
preprocessing

process models

physical
knowlege

requirements
& conditions

preliminary
experiments

sensor
data

physical-digital twinning

observe

observe

intervene

set goals

physical entity
physical environment

digital entity
digital environment

actuator

real-time
sensor data

human in
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The energy balance equation describes the energy distribution in the reactor, taking into
account heat conduction, convective heat transport, heat exchange with the environment.

(ρcp)eff
∂T

∂t
= −uin ρincp

∂T

∂z
+

∂

∂z

[
Λz

∂T

∂z

]
− 4U

D
(T − Tcool)−∆Hr (1− εR) ζ σeff

Each term represents a specific aspect of heat transport and heat reaction in the reactor:

1. (ρcp)eff
∂T
∂t

: indicates how quickly the temperature in the reactor changes over time. It depends
on the reactor’s effective heat capacity, which is determined by the reactor’s material.

2. −uin ρincp
∂T
∂z

: reflects the influence of convective heat transport along the reactor axis.

3. 4U
D

(T − Tcool): represents the heat loss due to heat transfer at the wall of the reactor.

4. −Hr (1− εR) ζ σeff : takes into account the heat released/absorbed due to the chemical
reaction.
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The resulting mass balance equation for the conversion of CO2 is:

εR
∂X

∂t
= −u

∂X

∂z
+

MCO2

ρ yCO2,in
(1− εR) ζ σeff (1)

with the following terms:

1. εR
∂X
∂t : reflects how quickly the conversion of CO2 in the reactor changes over time.

2. −u ∂X
∂z : describes the influence of the flow velocity on the spatial distribution of the

CO2 conversion in the reactor (convective transport in the z-direction).

3.
MCO2

ρ yCO2,in
(1− εR) ζ σeff : encompasses the chemical reaction itself, where σeff

represents the effective reaction rate.
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Taking into account the conversion law for mass and energy, for any control volume of
different shape and size within the reactor, the following basic set of equilibrium equations
(Euler specification) applies:

Totale Masse
∂ρ

∂t
= −∇ · (ρu⃗) (2)

Komponenten Masse ρ
∂ωα

∂t
= −ρu⃗∇ · ωα −∇ · j⃗α +Mα

∑
β

να,β r̃β (3)

Energie ρcp
∂T

∂t
= −ρcpu⃗∇T −∇ · ⃗̇q −

∑
β

να,β

(
∆RH̃β

)
r̃β (4)

When considering a single reaction, the mass balance equation of the components CO2,
H2, CH4, H2O and N2 can be summarized in a single equation by using the carbon dioxide
conversion XCO2

:
ṅi = ṅi,in + νi XCO2 ṅCO2,in (5)
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