

Dirk Hartmann, Siemens Digital Industries & Technical University of Darmstadt

TYPE or Reality? Scalable Reduced Order Modelling For Digital Twins

Siemens

Gwendal Jouan, Digital Industries, Belgium Daniel Berger, Digital Industries, Germany Stefan Gavranovic², Digital Industries, Germany Birgit Obst, Siemens Technology, Germany Matthias Schulz, Digital Industries, Germany Qinyu Zhuang², Siemens Technology, Germany

Technical University of Munich

Florian Schnös², Mechanical Engineering Prof. Felix Dietrich, Computer Science

New York University

Prof. Benjamin Peherstorfer, Courant Institute Wayne Uy, Courant Institute

University of Magdeburg

Prof. Thomas Richter, Mathematics

KU Leuven

Herman van der Auweraer, Mechanical Engineering

Agenda

- 1 Digital Twins
- 2 Digital Twins @ Work
- 3 Challenges & Opportunities
- 4 Reduced Order and Surrogate Modeling
- 5 The Future

Digital Twins

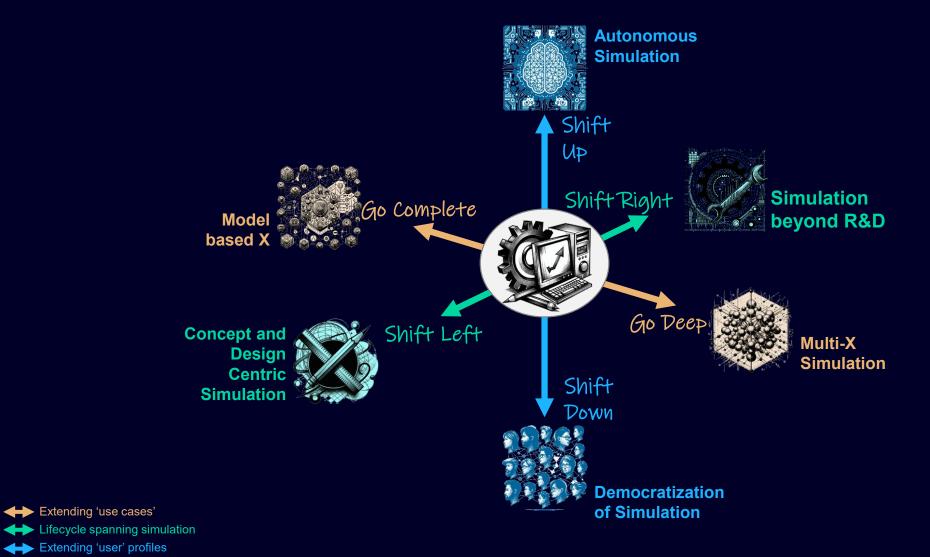
The Digital Twin Paradigm

A comprehensive set of digital models accepted as full substitutes for reality to understand, predict, and optimize the physical counterpart's performance characteristics for specific purposes. The bidirectional interaction between the digital and the real is central to the digital twin.

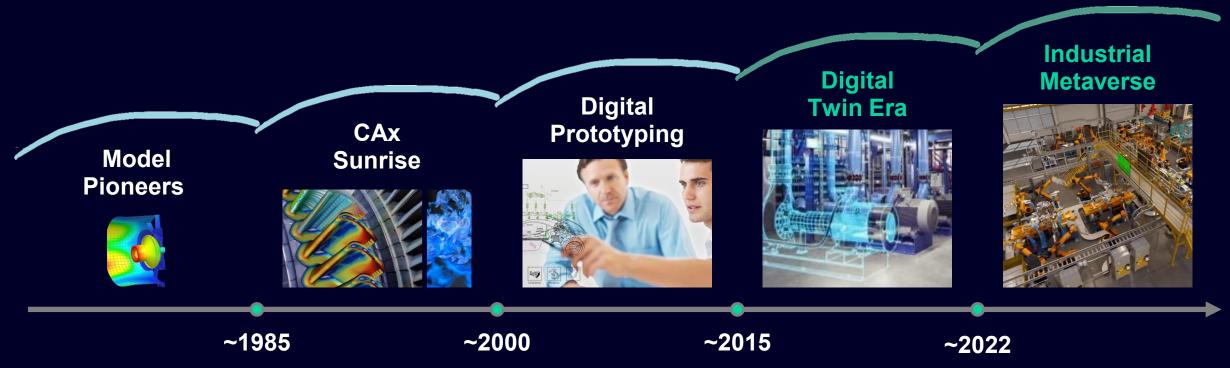
Our Vision

Anyone will be able to easily and robustly predict all relevant behavior of complex systems up to the required realism with compute time and accuracy guarantees.

Digital Twins require a massive expansion of the use of simulation technologies



Digital Twins - a golden age for industrial mathematics



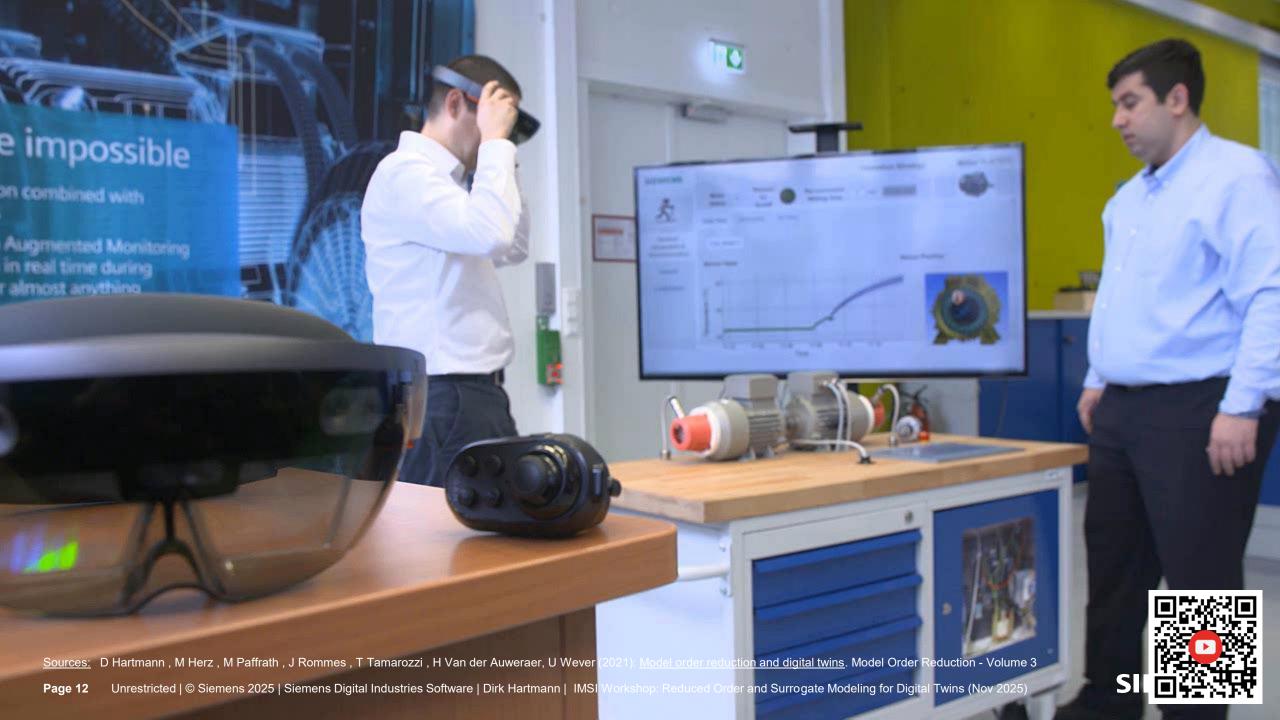
CAx: Computer Aided Design, Engineering, & Manufacturing

Digital Twins @ Work

Major categories of Executable Digital Twin applications

xDT Category		Use this application when you want to	Examples	
1	Virtual Testing & Commissioning	prepare for how your asset or system would interact with other assets, systems, or people.	Testing of automation by virtual commissioningTesting new control strategies on gas turbinesOperator training	
	Virtual Sensing	measure something in your asset or system, but it isn't feasible to put a sensor there.	 Temperature inside electric rotor Pressure distribution inside a gas turbine Free-flow inside a sewage network 	
U g	Diagnosis & Identification	know why your asset or system is behaving the way it is.	 Unbalance detection of large rotors Leakage detection in a water distribution network Predictive maintenance for machine tools 	
	Performance Prediction	know how your asset or system might behave in future operation.	 Remaining useful lifetime of electric motors Monitoring of coking in steam cracking furnaces Movement of people in emergencies 	
	Performance Optimization	inform actions on how to control the asset or system (with or without a Human-in-the-Loop).	 Model predictive control of a chemical reactor Pump schedule optimization of oil pipelines Operating point setting of catalyst modules 	

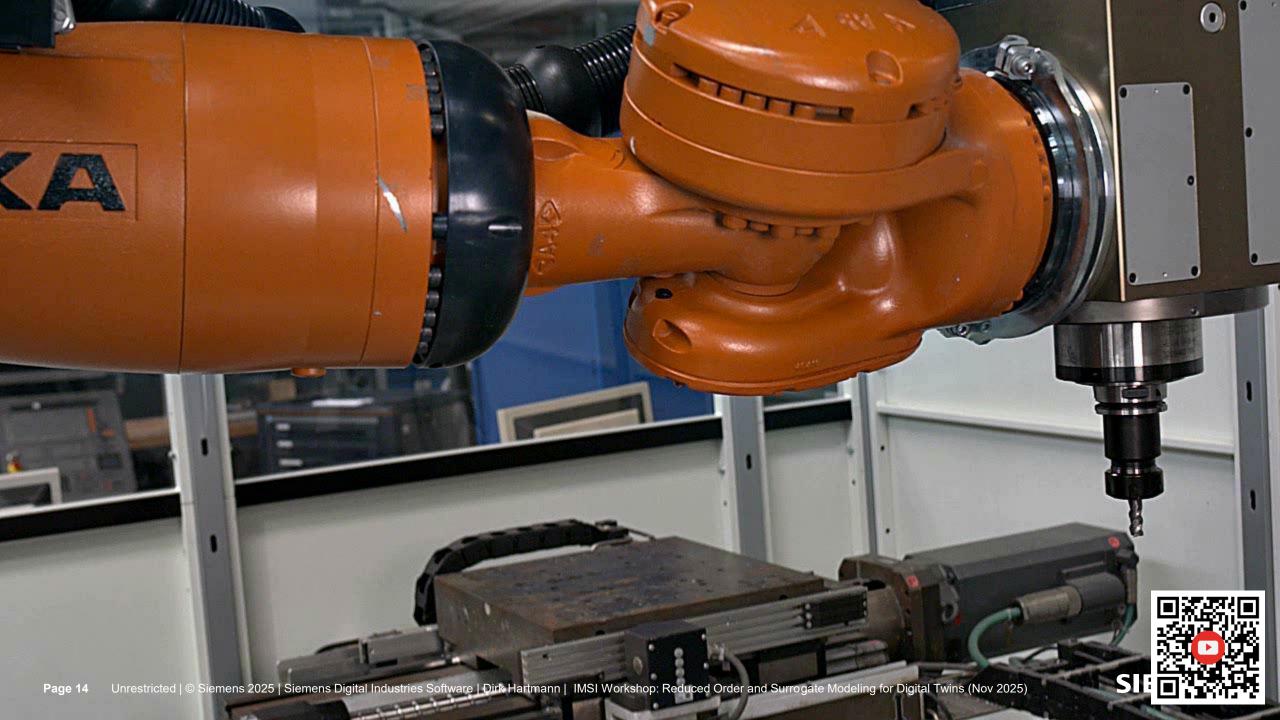
Source: D. Hartmann (2021): Real-time Digital Twins.

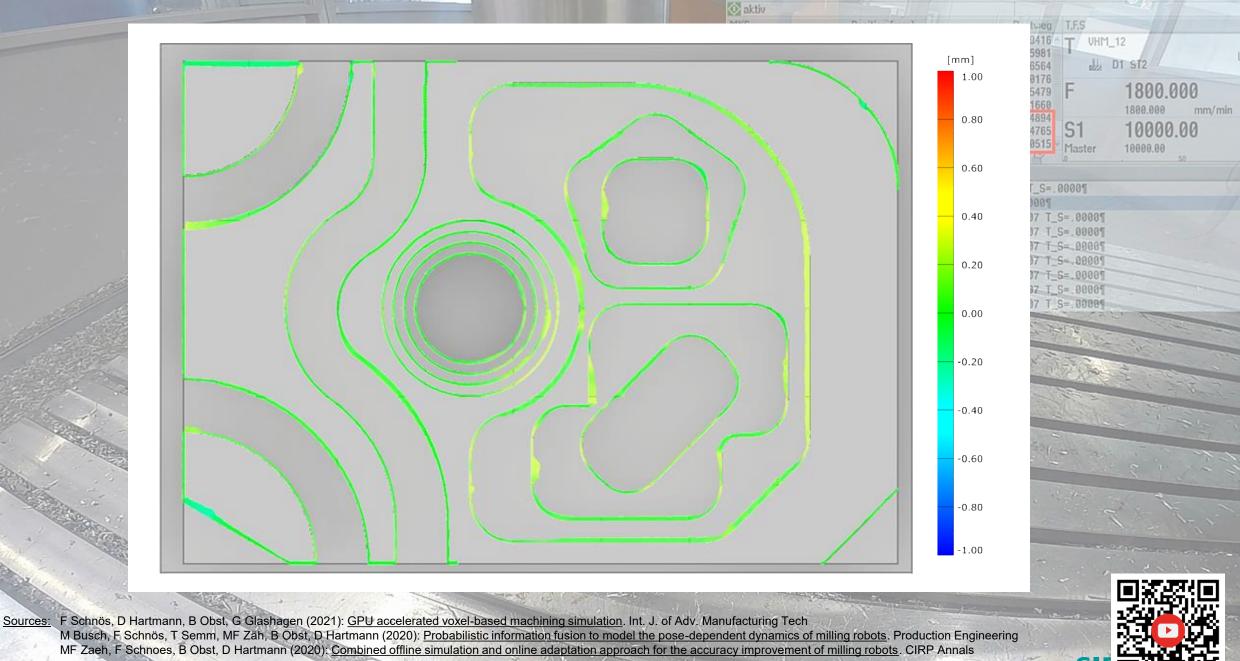


Major categories of Executable Digital Twin applications

xDT Category		Use this application when you want to	Examples	
	Virtual Testing & Commissioning	prepare for how your asset or system would interact with other assets, systems, or people.	 Testing of automation by virtual commissioning Testing new control strategies on gas turbines Operator training 	
	Virtual Sensing	measure something in your asset or system, but it isn't feasible to put a sensor there.	 Temperature inside electric rotor Pressure distribution inside a gas turbine Free-flow inside a sewage network 	
U g	Diagnosis & Identification	know why your asset or system is behaving the way it is.	 Unbalance detection of large rotors Leakage detection in a water distribution network Predictive maintenance for machine tools 	
	Performance Prediction	know how your asset or system might behave in future operation.	 Remaining useful lifetime of electric motors Monitoring of coking in steam cracking furnaces Movement of people in emergencies 	
	Performance Optimization	inform actions on how to control the asset or system (with or without a Human-in-the-Loop).	 Model predictive control of a chemical reactor Pump schedule optimization of oil pipelines Operating point setting of catalyst modules 	

Source: D. Hartmann (2021): Real-time Digital Twins.



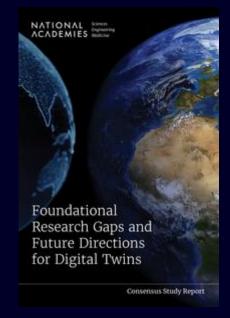


NC/MPF/CAMPART_FORCES_SETUP12

Pagest 5cted | © Siemens 2025 | Siemens Digital Industries Software | Dirk Hartmann | IMSI Workshop: Reduced Order and Surrogate Modeling for Digital Twins (Nov 2025)

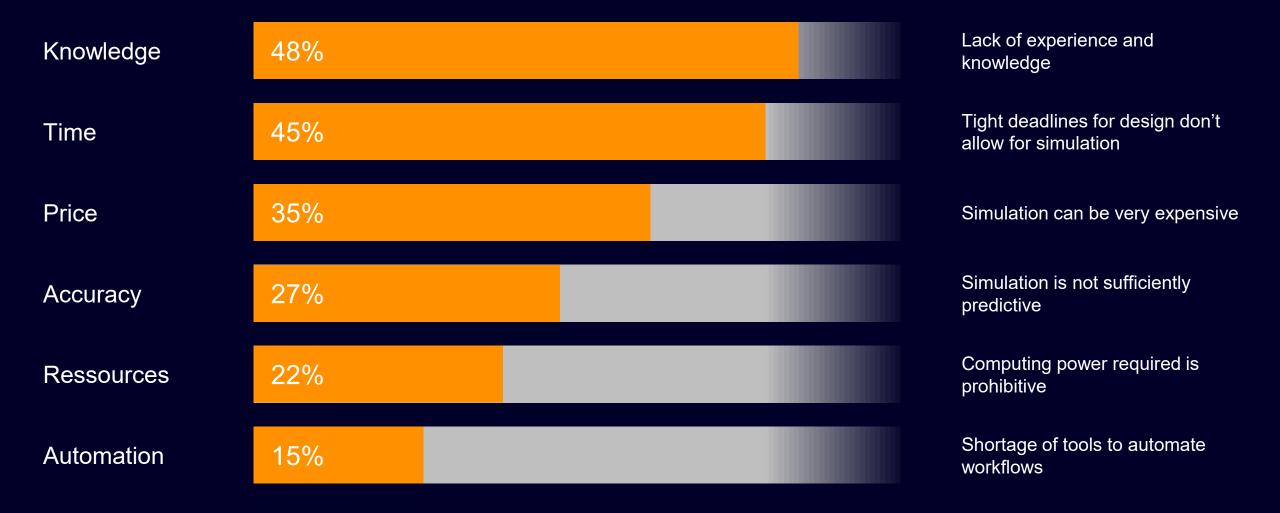
Why do not we see Digital Twins everywhere?

"Despite [...] examples of digital twins providing practical impact and value [...] publicity around digital twins [...] currently outweighs the evidence base of success."



Challenges & Opportunities

Scalability of simulation is limited by the same obstacles since decades.



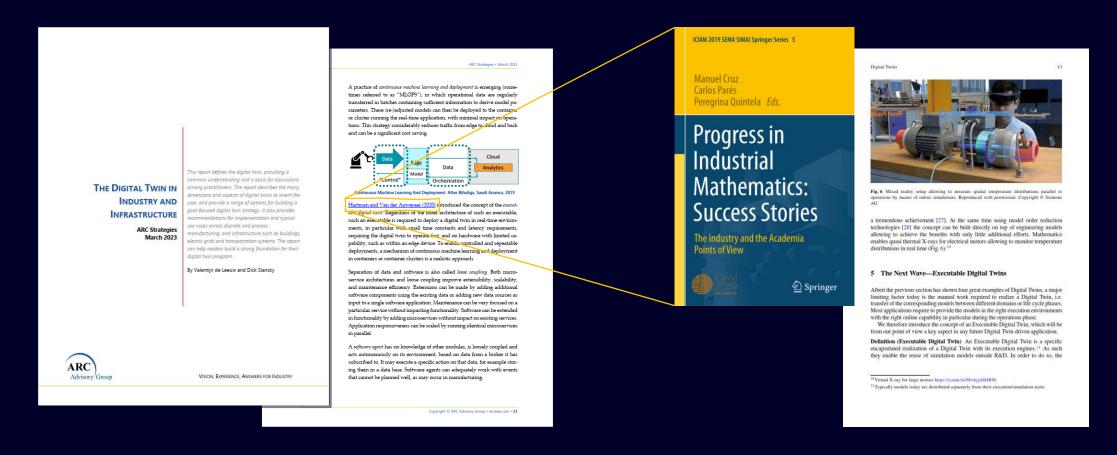
SIEMENS

Digital Twins are limited by the availability of experts who can realize real-time models in complex software landscapes.

What are the major pain (a) points for more and broader adoption of #DigitalTwins for #IndustrialOperation and **#Service?** Missing calculation power **_** 4% Missing (real-time) models [1] 32% Too complex software landscape 28% Lack of experts 😔 37% 249 votes

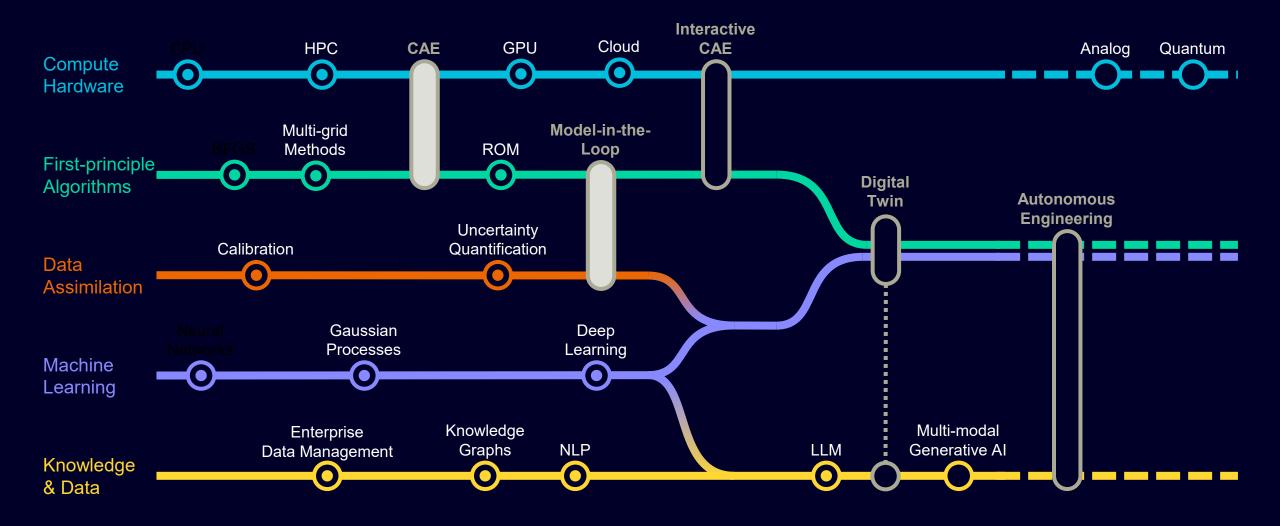
Key Requirements for a Digital Twin Reduced Order Model

Method innovation in predictive technology is key to scale Digital Twins!



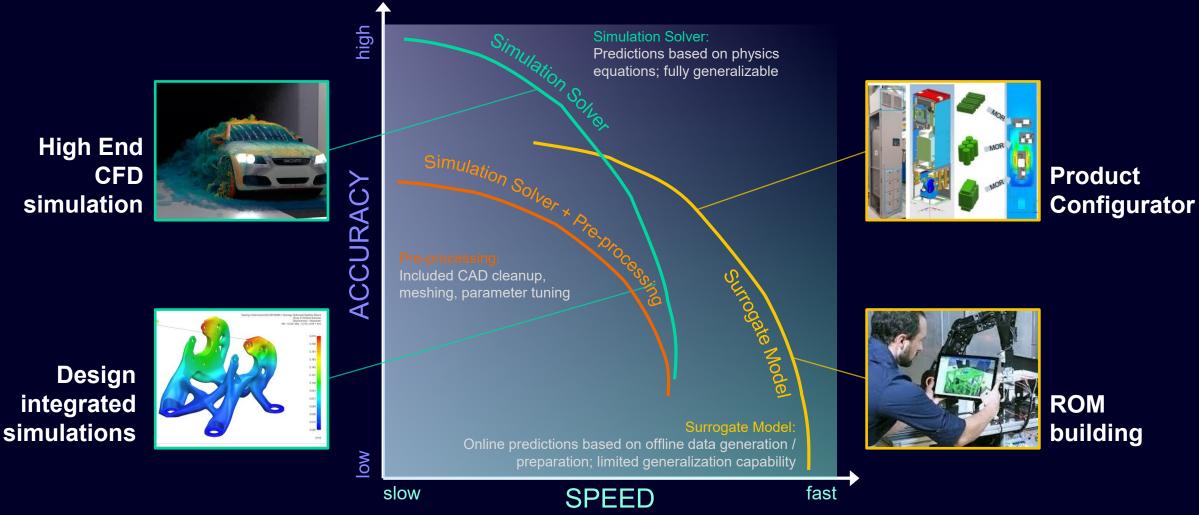
Sources: V De Leeuw, D Slansky (2023): <u>The Digital Twin in Industry and Infrastructure</u>, ARC Advisory Group Industry Report D Hartmann, H van der Auweraer (2020): <u>Digital Twins</u>, Progress in Industrial Mathematics: Success Stories

The convergence of technology has driven and will continue to drive innovation – Mathematics is a core element of this!



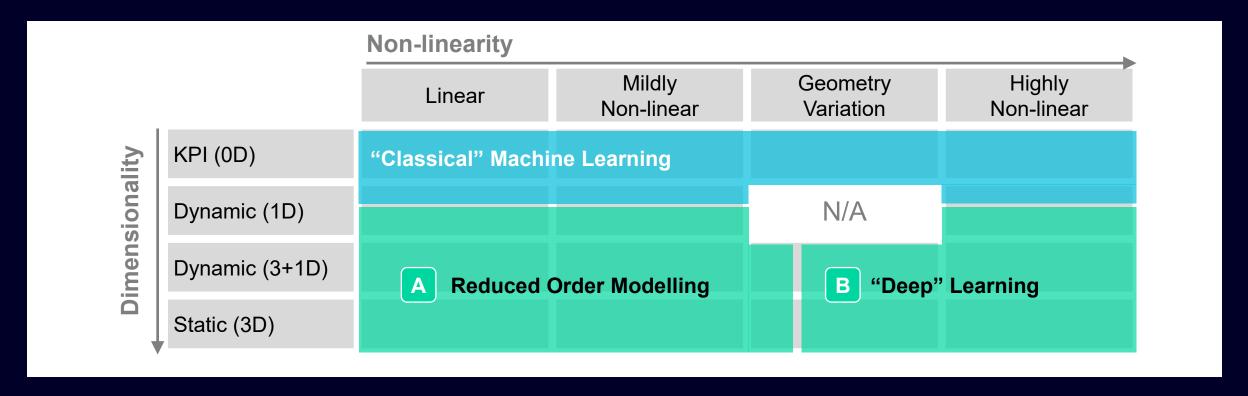
Reduced Order and Surrogate Modeling

Goal: Acceleration of Predictions



Reduced Order and Surrogate Modeling Technology Opportunities

There is no one to one mapping between technology and use cases, but the problem categorization in terms of dimensionality & non-linearity can give good guidance.

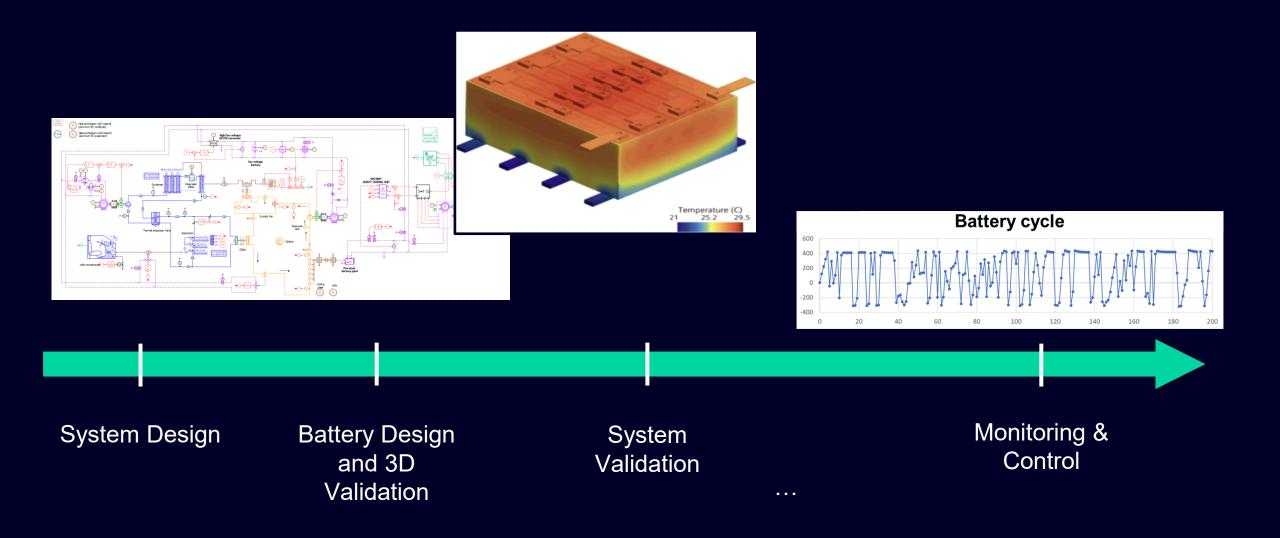


Guideline: Maximize Physical Bias

A

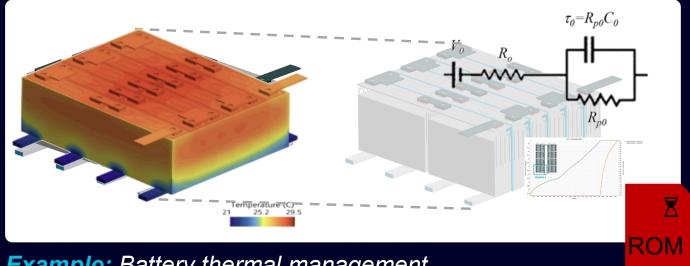
Reduced Order Modelling

Battery Thermal Management along the Life Cycle



Battery Thermal Management

Reduced Order Modelling



Example: Battery thermal management

Challenge:

Controller embedded real-time thermal simulations

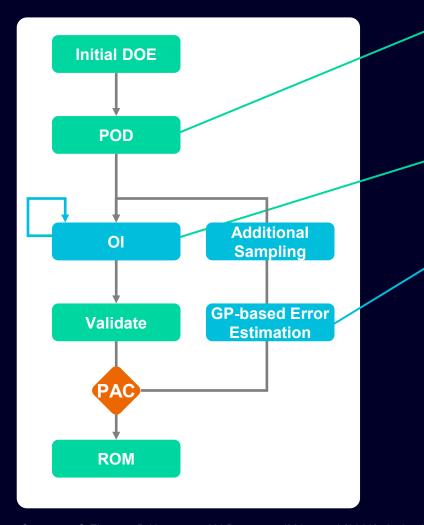
Opportunity:

ML-based reduced order modelling technologies

Complex multi-physics model:

- Turbulent fluid flow
- Battery electrochemistry
- Electrical modeling
- ~ 1 million cells

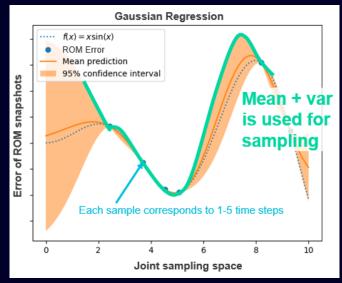
Battery Thermal Management Technical concept



Latent Dimension Identification, e.g., Autoencoder, Diffusion Maps, Dynamic Mode Decomposition, Proper Orthogonal Decomposition (POD), ...

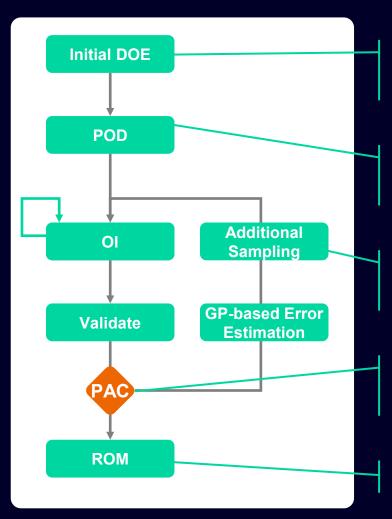
Reduced Model Discovery, e.g., Discrete Empirical Interpolation, Neural Networks, Operator Inference (OI), ... with Trajectory Learning

Active Learning, e.g., classical Design of Experiments



Source: Q Zhuang, D Hartmann, HJ Bungartz, JM Lorenzi (2023): Active-learning-based nonintrusive model order reduction; Data-centric Eng Q Zhuang, JM Lorenzi, HJ Bungartz, D Hartmann (2021): Model order reduction based on Runge-Kutta neural networks; Data-centric Eng

Battery Thermal Management Results



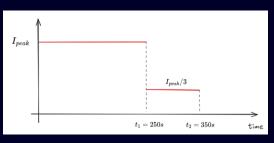
15 long simulations¹ for different parameters [Time: 4h | Size on disk: 4.1 GB]

POD on initial DoE data [Time: 20' | Size on disk: 0.7 GB]

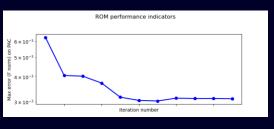
AL loop, 11 iterations with 5 short² sim. each [Time: 2h 20' | Size on disk: 3.4 GB]

PAC based on 58 short simulations² [Time: **2h 30'** | Size on disk: **3.6 GB**]

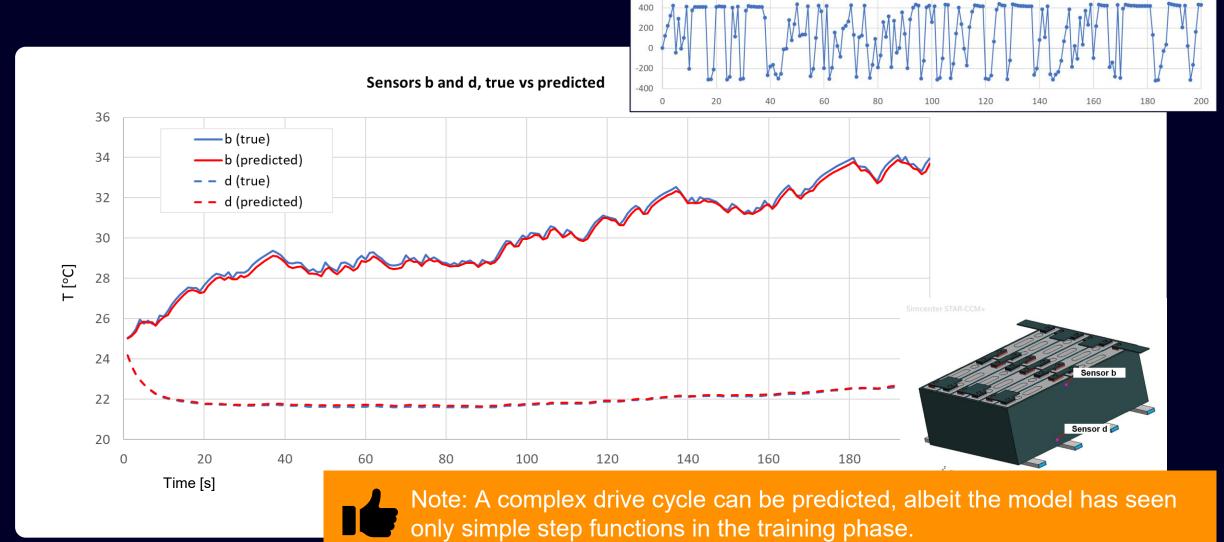
Real-time capable ROM (20 ODEs)



Heating Profile



Battery Thermal ManagementResults



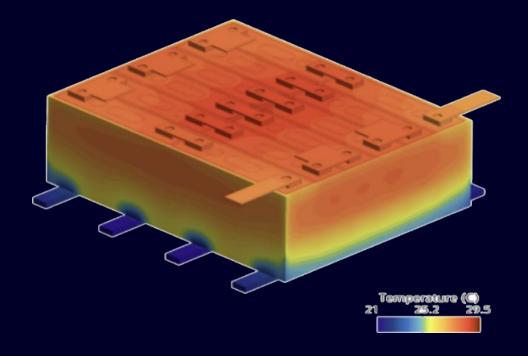
Battery cycle for 200 s

Battery Thermal Management

A fast simulation model isn't everything

There is many more elements to get the Digital Twin working:

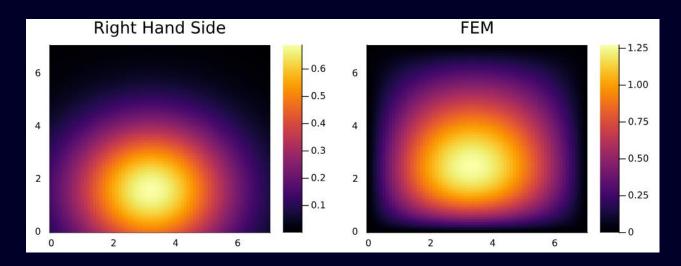
- Data assimilation
- Practical uncertainty quantification
- Integration in control loops
- Digital rights management
- "Obscure" compute hardware
- Required effort & expertise to setup



"Brute Force" Surrogate Modelling

Poisson Equation

Brute Force Surrogate Modelling



Example: Simple Poisson Model

$$\Delta u = f \text{ on } \Omega, \qquad u = 0 \text{ on } \partial \Omega$$

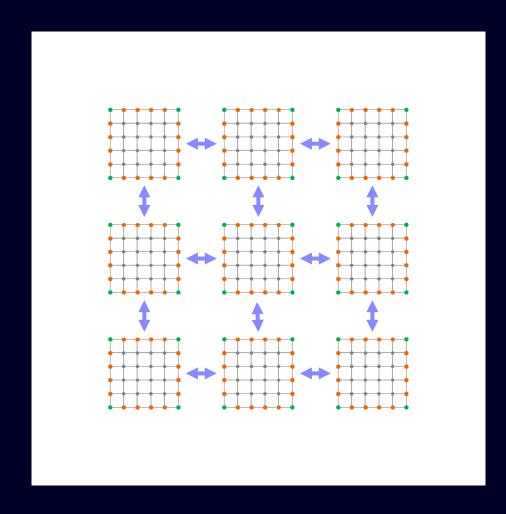
Challenge:

ML-based surrogate model with limited data requirements, generalizability, trustworthiness

Opportunity:

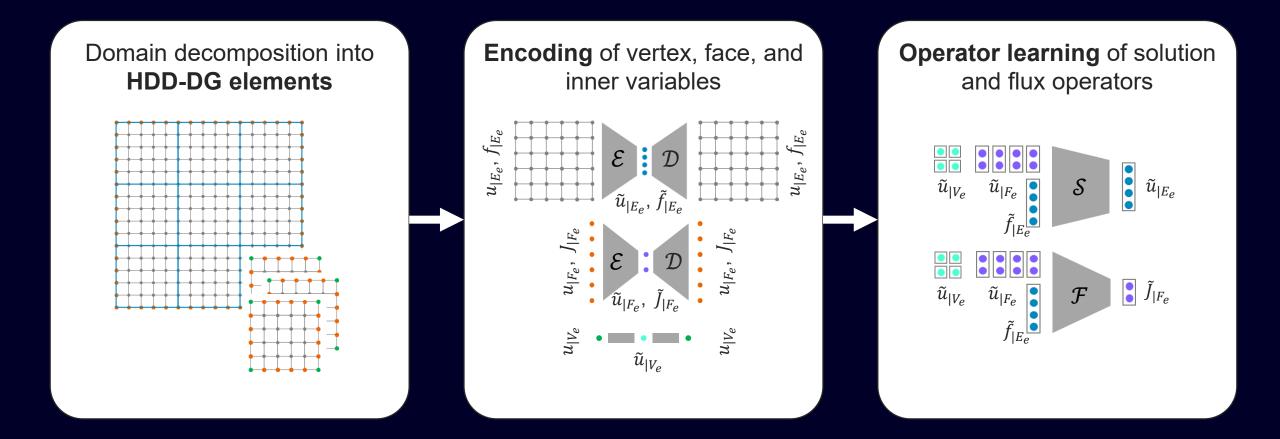
Domain Decomposition based hybridized **Neural Solver**

Hybridized Flux Conservative Neural Solver Ideas

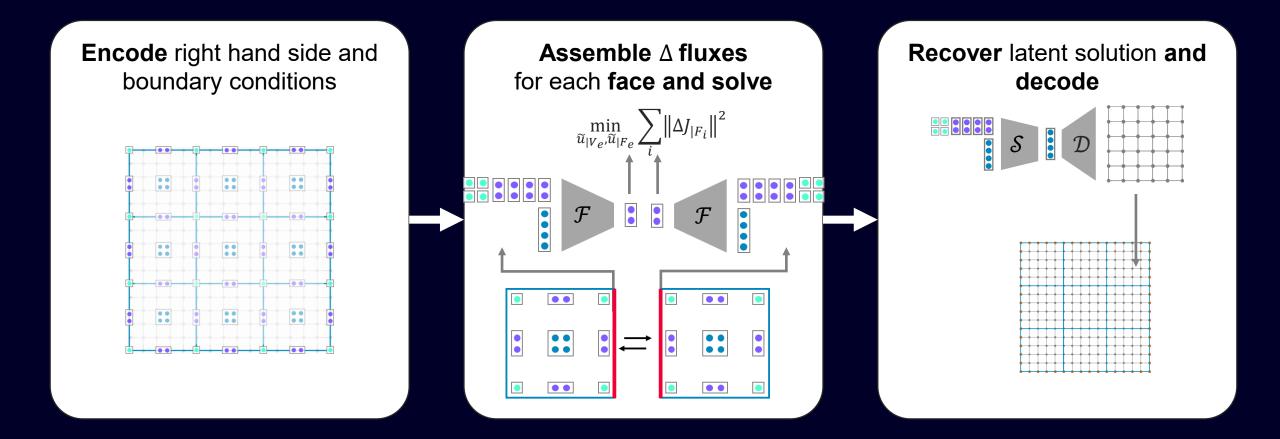


Flux-conservation as coupling condition

Hybridized Flux Conservative Neural Solver Training Process



Hybridized Flux Conservative Neural Solver Inference Process



Hybridized Flux Conservative Neural SolverResults

Setup:

- ▶ **Data:** 100 Simulations with 70x70 Finite Elements and random $f = a \exp(-(x - \mu)^2/2\sigma^2)$
- Autoencoders: PCA with 2 / 4 modes for faces / elements respectively
- Operators: 4-layer NN
- ► Training: Adams
- **Solution:** BFGS

Results:



Figure 1: Loss evolution of the operator training (PCA encoding)): (a) solution operator, (b) flux operators.

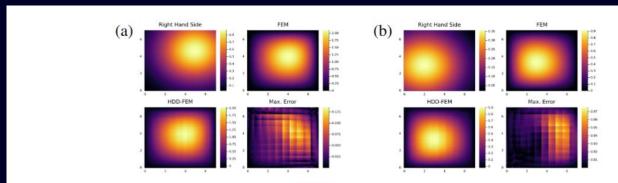
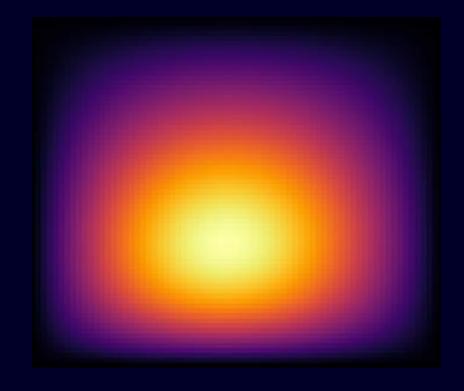


Figure 2: Validation of the method using \underline{PCA} -encoding for two randomly chosen source functions f which have not been seen during the training.

Hybridized Flux Conservative Neural Solver Open topics

This is just a first idea, thus there are many open questions

- ► More complex non-linear cases
- Geometry encoding
- Optimal non-linear solver
- Optimal architectures
- Coupling with other methods



The Future?

Demo: An Al Companion for Design and Engineering

Aircraft Engine Bracket - Technical Specification

Maximum Size (width x depth x height): 10in x 5in x 3in

Iterface 1: 0.75 inch diameter pin.

Fixation / Inteface 2-5: 4 0.375-24 AS3239-26 machine bolt: Nut face 0.405 in. max ID and 0.558 in. min OD

Mnimum material feature size (wall thickness): 0.050 in.

Material: Ti-6Al-4V

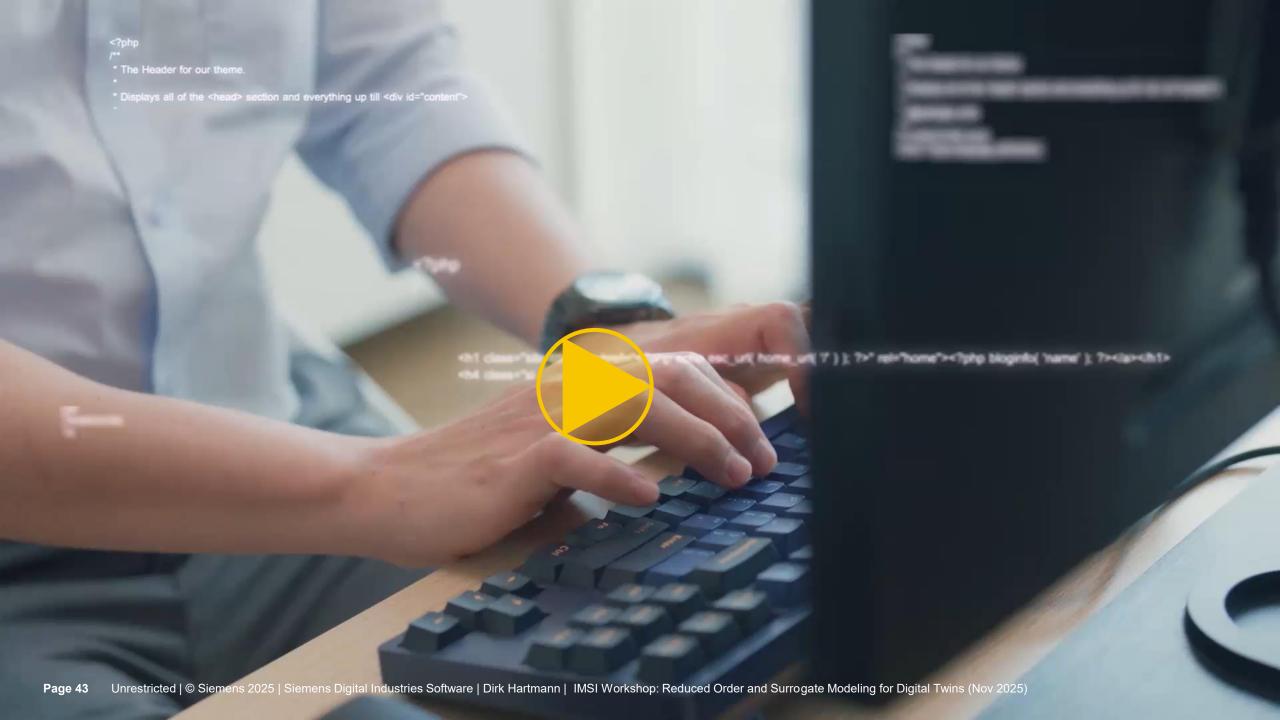
Service Temperature: 75 F

Load Conditions:

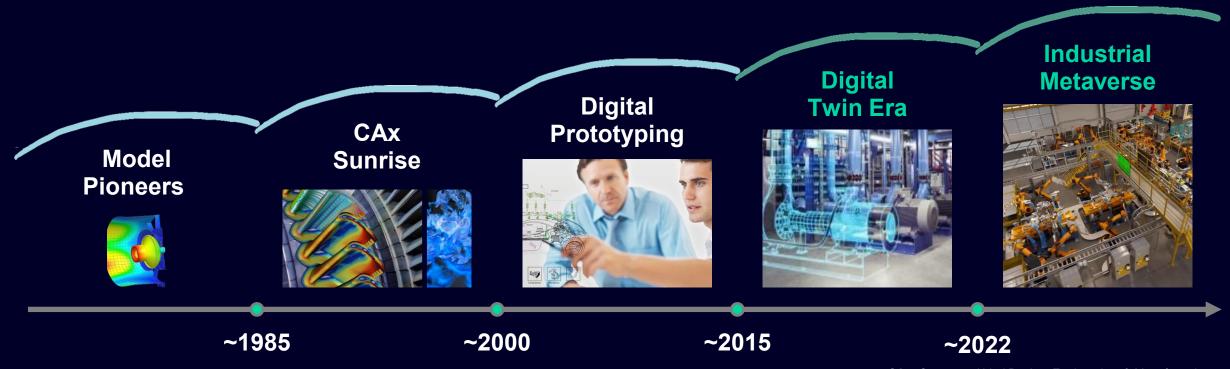
1. Max static linear load of 8,000 lbs vertical up.

Design Goal

- Maximum yield stress below 131 ksi
- · Minimum weight



Digital Twins - a golden age for industrial mathematics



CAx: Computer Aided Design, Engineering, & Manufacturing

Contact

Dr. Dirk Hartmann
Head of Simcenter Technology Innovation
Siemens Digital Industries Software
Simulation and Test Solutions
Otto-Hahn-Ring 6
81739 Munich
Germany

Mobile +49 173 2537709 E-mail hartmann.dirk@siemens.com

The Art of the Possible – Blog https://blogs.sw.siemens.com/art-of-the-possible

