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OPTIMUS

Key idea of Shape-DINOs
•Provide formulations on reference domain via Piola transformation φz, a diffeo-

morphism, to avoid mesh movement.

•Design derivative-informed neural operators for shape parametric PDE prob-

lems, which provide accurate Jacobian training in reduced basis architectures.

•Use Shape-DINOs for shape optimization under uncertainty (OUU) problems.

We formulate parametric PDE problems in the reference domain Ω0 via Piola transformation:
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With risk measure ρ, PDE-constrained OUU problem:

min
z∈Zad

J(z) := ρ(Q)(z) + αP (z)

s.t. R0(u0,m0, z) = 0
(1)
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Poisson Problem with Varying Top Boundary
The shape of the top boundary is optimized to match target flux across the bottom boundary.
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Shape-DINO Flux Profile
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2D Pellet Shape Optimization with Mixed Inflow Conditions

(a) (b) (c) (d)

Comparison of flow fields in initial shape and optimal pellet shape generated by Shape-DINO.

3D Tower Shape Optimization with Navier-Stokes Equations

(a) (b)

(c) (d)

Comparison of tower shapes and flow streamlines for the no-control (a), deterministic PDE-

optimized (b), Shape-DINO-optimized (c), and Shape-NO-optimized (d) designs.



Nonlinear mechanical models in structural and mechanical 
engineering often possess an underlying Lagrangian structure

However, standard data-driven ROMs of high-dimensional 
mechanical models are not guaranteed to be Lagrangian
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Structure-preserving Operator Inference for learning Lagrangian ROMs 

Learned ROMs provide accurate predictions both outside the training time interval, as well as for unseen initial conditions



Learning nonlinear Lagrangian ROMs from
experimental data for backbone curve prediction

Dynamic shape control of soft robots 
via linear Lagrangian ROMs



Goal: Model Reduction

Full Order Model (FOM)

• We have a massive, complex model.

• Simulating it is extremely slow and
computationally expensive.

Reduced Order Model (ROM)

• Goal: Create a small, fast model that
behaves identically.

Motivation: Why do we need ROMs?

• Digital Twins: We need models that run
in real-time.

• Optimization: We need to run
thousands of simulations quickly.

• Control Design: We need simple models
to design controllers.

Black-Box Challenge

This is easy if you have the system matrices (E ,A,B,C ). What if the system is a physical
experiment where you can only get simulation data?
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Intrusive to Data-Driven Methods

Classic Balanced Truncation (BT)
[Moore ’81]

• Computes Gramian matrices (P,ETQE )
that describe the system’s dynamics.

Problem
It’s intrusive. It requires explicit access to the
full system matrices (E ,A,B,C ).

QuadBT [Gosea, Gugercin, Beattie ’22]

• Data-driven. It implicitly approximates
the Gramians using only samples of the
system’s response.

New Problem
QuadBT must first construct amassive data
matrix L from all the samples.

Computational Bottleneck

Computing the SVD (Singular Value Decomposition) of this massive, dense matrix L is the
primarymemory and processing bottleneck.
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Our Solution: Tangential QuadBT

Main Idea: Tangential QuadBT

• We avoid building the giant block matrix L entirely.
How It Works
1. Apply tangential directions to the data samples first.
2. Construct a single, compressed matrix L̂.
3. Compute the SVD of L̂

Result
We achieve the accuracy of QuadBT at a fraction of the computation time and
memory.
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ST-MLRN (SpatioTemporal Modulated Low-Rank Networks) combines a recurrent network for 
dynamics with a novel Implicit Neural Representation (INR) decoder for full-state reconstruction.
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