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SPADA lab
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Structure in Big Data

CT Scanner: https://medicine.umich.edu/sites/default/files/RAD_NewsletterFall2011.pdf
LLMs demonstrate In-Context learning: https://arxiv.org/abs/2410.05603

Power Grid: https://news.engin.umich.edu/2019/02/how-air-conditioners-could-advance-a-renewable-power-grid/ 
Traffic images and markings from the “Hopkins 155” Dataset, R. Vidal lab, Johns Hopkins University.

Aviation Sensing: http://interactive.aviationtoday.com/smart-sensors-expand-in-variety-scope/
Air quality sensing: http://www.livescience.com/27992-portable-pollution-sensors-improve-data-nsf-ria.html
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Low-dimensional Structure in Matrix Data

CT scans

Air quality around the world

Simulated air flow around wind turbines

In all these applications, we
believe there is some
structure in the data.

That structure helps us:

predict and learn,
interpret and understand,
impute,
detect anomalies,
compress for memory and
computational efficiency
etc.
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Subspace Model for Matrix Data

For 124 years, Principal Component Analysis (PCA) has been used
to investigate linear structure in a dataset
[Pearson, 1901, Spearman, 1904, Hotelling, 1933]:

566 Prof. K. Pearson on Lines and Planes 07 
The geometry of these results is indicated in the accompanying 
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Physically the axes of the correlation type-ellipse are the 
directions of independent or uncorrelated variation. Hence 
the line of best fit is a direction of uncorrelated variation. 
[Pearson, 1901]
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[Spearman, 1904]

228 APPLIED STATISTICS
variables except oven-dry specific gravity, the distance to the first whorl, the average
number of knots, and the average diameter of the knots were significantly correlated
with the size of the props. Moisture content was significantly correlated with specific
gravity, with the number of rings at the top of the prop, with the clear distance from
the top, and with the number of knots per whorl. Indeed Ehrenberg (1962) claims
that it is possible to isolate clusters from the correlation matrix in a sense which is at
least as unambiguous as that of the principal component analysis.

TABLE 1

Summary of data for Corsican pine, East Anglia

(Number of props = 180)

Variable Minimum Mean Maximum deviation

TOPDIAM 2-38 4-21 6 00 0 98
LENGTH 28*75 46-88 60 90 11V29MOIST 14-7 114-6 213.1 57-1TESTSG 0 365 0877 1P217 0.231
OVENSG 0 289 0-415 0 993 0 070RINGTOP 7 13*3 23 3-24RINGBUT 8 16-3 26 3 95BOWMAX 0-13 0*65 2 50 0 43BOWDIST 7 23-4 52 9 06WHORLS 1 2-49 7 1P17CLEAR 1 10*7 31 6.27KNOTS 0 5-45 9 1P65DIAKNOT 0 0-82 1-65 0-325

TABLE 2

Coefficients of correlation between physical properties of props

TOPDIAM
0.954** LENGTH
0.364** 0.297** MOIST
0X342** 0.284** 0.882** TESTSG

-0 129 -0 118 -0.148* 0.220** OVENSG
0.313** 0.291** 0.153* 0.381** 0.364** RINGTOP
0.496** 0.503** -0 029 0.174* 0.296** 0-813** RINGBUT
0.424** 0-419** -0 054 -0-059 0-004 0 090 0.372** BowMAx
0.592** 0.648** 0 125 0*137 -0 039 0.211** 0.465** 0.482**
0-545** 0.569** -0-081 -0-014 0 037 0.274** 0.679** 0.557**
0-084 0 076 0.162* 0.097 -0-091 -0 036 -0-113 0-061

-0-019 -0-036 0.220** 0-169* - 0-145* 0 024 - 0-232** - 0.357**
0-134 0-144 0-126 0-015 -0.208** -0.329** -0.424** -0 .202**

BOWDIST
0-526** WHORLS
0.085 -0-319** CLEAR

-0-127 -0.368** 0-029 KNOTS
-0 076 -0.291 * * 0 007 0.184* DIAKNOT

This content downloaded from 141.211.4.224 on Wed, 13 Nov 2024 03:41:45 UTC
All use subject to https://about.jstor.org/terms

The analysis therefore suggests that
there are probably six major
components of the physical variables,
accounting for about 87% of the
variability, and ... focuses the
attention of the research worker on
the basic dimensions of which his
variables are only first
approximations. [Jeffers, 1967]
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Subspace Model for Matrix Data
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v ⇧ Rn is a snapshot of the system state
(e.g., temperature at each node)

v ⇧ Rn is a snapshot of the system state
(e.g., tra�c rates at each monitor)

Given matrix X = USV T , form the SVD of [X, v].

Estimate the weights: w = arg min
a

⌃Ua � v⌃2
2

Compute the residual: v� = v � Uw.

Update the SVD:

[X, v] =
⇤

U v�
⇥v�⇥

⌅ �
S w
0 ⌃v�⌃

⇥

⌥ ⌃⇧ �

�
V 0
0 1

⇥T

Diagonalize.

Theorem: Let X be an n ⇥ n matrix in a finite field. Fix � > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n with its value drawn uniformly from the field.

If k > 2rn � r2 + �(rn � r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En) ⇤ 0 as n ⇤ ⌅.
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v 2 Rn is a single vectorized image
(e.g. one video frame)

Given Ut which approximates the span of the column space of data so far,
incorporate new data v⌦t

into Ut+1.

Estimate the weights: w = arg min
a

kU⌦a � v⌦k2
2

Compute the residual: v? =

⇢
v � Uw on ⌦

0 otherwise

Update the SVD:

[X, v] =
h

U v?
kv?k

i 
S w
0 kv?k

�

| {z }


V 0
0 1

�T

Diagonalize.

Theorem: Let X be an n ⇥ n matrix in a finite field. Fix ✏ > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n, with its value drawn uniformly from the non-

zero elements of the field. If k > 2rn � r2 + ✏(rn � r2

2 ), then the probability
that the exhaustive-search minimum rank decoder makes a mistake estimating
X, P(En) ! 0 as n ! 1.

Theorem: Let X be an n ⇥ N matrix, N = O(np) for p � 2, whose columns
lie in the union of k ⌧ N rank r < n incoherent subspaces which are not “too
close” to one another. Then the matrix X can be perfectly reconstructed from
O(�rN log N) measurements with probability at least 1 � 6kN�2(��1) log2 N .

Theorem: Let X be an n⇥N matrix whose columns lie in the union of k ⌧ N
rank r incoherent subspaces which are not “too close” to one another, and let
N = O(np) for p � 2. Then the matrix X can be perfectly reconstructed from
O(rN log N) measurements with high probability.
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Why are big data matrices approximately low rank? [Udell and Townsend, 2019]
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Subspace Model for Matrix Data

Principal components of a data matrix Y are computed with the
Singular Value Decomposition (SVD):

Y = UΣV T

where U, V have orthonormal columns and Σ is diagonal.

=

L. Balzano University of Michigan
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Linear Low Rank Subspaces via SVD

If your data matrix Y is not exactly low-rank but you wish to find
the best low-dimensional linear structure that models the data, you
can use the SVD; that makes it a useful exploratory data analysis
tool. The SVD gives the solution to the following nonconvex
optimization problem for any k1:

minimize
U∈Rd×k,W∈Rn×k

‖UW T − Y ‖2F (1)

subject to U ∈ G(k, d)

where G(k, d) is the Grassmannian, the space of all k-dimensional
subspaces of Rd.

1This result was discovered independently by first Schmidt in 1907
[Schmidt, 1907, Stewart, 1993, Stewart, 2011] and then Eckart and Young
[Eckart and Young, 1936].

L. Balzano University of Michigan
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Modern Generalizations

• An observation function
(e.g., missing or sketched data, or
calibration) represented as g(·)
• Deeper factorizations UWL · · ·WT

1

• Generative probabilistic coefficient
and noise models (non-iid-Gaussian)

• Different loss functions `(·)
• Any regularization or constraint

(e.g., to encourage structure in the
factors) represented as h(·)
• Other matrix manifolds of k

dimensions, represented as Mk

minimize
U,WL,...,W1

`(g(UWL · · ·W T
1 ), g(Y )))

subject to h(U,WL, . . . ,W1) ≤ τ
U ∈Mk

L. Balzano University of Michigan

Low-Rank Optimization 9



Introduction Convergence LRMC/Streaming SVD Heteroscedastic PCA Reduced Order Modeling

Modern Generalizations

If we change the model slightly or add anything to the cost
function, how do we adjust the SVD computation?

minimize
U,WL,...,W1

`(g(UWL · · ·W T
1 ), g(Y ))) (2)

subject to h(U,WL, . . . ,W1) ≤ τ
U ∈Mk

With the lack of an obvious extension to SVD computations, we
turn to nonconvex optimization!

L. Balzano University of Michigan
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Our work probing this framework
An observation function represented as g(·)
Matrix completion [Balzano et al., 2010, Kennedy et al., 2016, Balzano and Wright, 2014,

Zhang and Balzano, 2016, Liu et al., 2024], Sketching [Alarcon et al., 2016, Zhang and Balzano, 2018],

Variety completion [Ongie et al., 2017, Ongie et al., 2021], Ordinal embedding [Bower et al., 2018]

Deeper factorizations UWL · · ·WT
1

Deep matrix completion [Kwon et al., 2024] and Deep low-rank adaptation [Yaras et al., 2024]

Generative probabilistic coefficient and noise models (non-Gaussian)

Heteroscedastic PCA [Hong et al., 2018, Hong et al., 2021, Hong et al., 2023, Cavazos et al., 2023,

Gilman et al., 2025a, Gilman et al., 2025b], Markov Online Dictionary Learning [Lyu et al., 2020]

Different loss functions `(·, ·)
Robust PCA [He et al., 2012, He et al., 2014, Gilman and Balzano, 2019], Subspace clustering

[Lipor and Balzano, 2017, Gitlin et al., 2018, Lipor et al., 2021, Wang et al., 2022], Cross entropy loss

[Yaras et al., 2022, Yaras et al., 2023], Reduced order modeling [Newton et al., 2023]

Any regularization or constraint represented as h(·) or other matrix
manifolds of k dimensions

Supervised PCA [Ritchie et al., 2020], Sparse PCA [Xiao and Balzano, 2016], Stiefel Manifold

Optimization [Ritchie et al., 2020, Hong et al., 2019, Blocker et al., 2023]

L. Balzano University of Michigan
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Outline

Introduction

Convergence guarantees

Matrix completion and streaming SVD

Heteroscedastic PCA

Reduced order modeling

L. Balzano University of Michigan
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Convergence

Can we guarantee convergence for nonconvex problems? (assuming
differentiable)

Global convergence to a stationary
point of the objective function (from
any initialization)

Local convergence (within a region of
the stationary point, usually a local
minima)

Identification of a guaranteed good
initialization within the basin of
attraction of a global minima

Convergence to global minima

Figure courtesy Science Magazine

L. Balzano University of Michigan
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Nonconvex Provable Global Results (or “hidden” convexity)

Low-rank matrix completion/sensing [Candès and Recht, 2009, Chi et al., 2019]

Low-rank tensor decomposition [Kileel et al., 2021]

Phase Retrieval [Chen et al., 2019]

Dictionary Learning [Sun et al., 2017a, Sun et al., 2017b]

Deep Linear Networks with MSE loss [Yaras et al., 2024]

Nonnegative/Sparse/Robust PCA [Wright et al., 2009]

Mixed Linear Regression (two component) [Chen et al., 2017]

Blind Deconvolution/Calibration [Ling and Strohmer, 2019, Bilen et al., 2014]

Superresolution [Candès and Fernandez-Granda, 2013, Yang et al., 2016]

System identification for (hybrid) linear dynamical systems
[Feng et al., 2010, Hardt et al., 2018]

Also see https://sunju.org/research/nonconvex/ (last updated 2021)

L. Balzano University of Michigan

Low-Rank Optimization 14

https://sunju.org/research/nonconvex/


Introduction Convergence LRMC/Streaming SVD Heteroscedastic PCA Reduced Order Modeling

Convergence
Block Variable (Alternating) MM and/or Riemannian methods
[Li et al., 2023, Li et al., 2024]

Convergence and complexity of block majorization-minimization on Riemannian manifolds

1.1 Related work

Block majorization-minimization methods in the Euclidean setting for convex problems are
studied in Hong et al. (2017) with general surrogates, in Xu and Yin (2013) with prox-linear
surrogates. On the other hand, the majorization-minimization method on Riemannian
manifolds is studied in Li et al. (2009) and Bento et al. (2017) with proximal surrogates on
Hadamard manifolds, in Chen et al. (2020) with tangent prox-linear surrogates on Stiefel
manifolds. These works under the Riemannian setting, however, only consider the MM
method in the one-block case.

Methods Manifold Objective Constraints Blocks Complexity
Inexact
comp.

Euclidean BMM

Euclidean convex convex many eO("�1) 7
(Hong et al., 2017)
Euclidean Block PGD
(Beck and Tetruashvili, 2013)

Euclidean BMM-DR Euclidean non-convex convex many eO("�2) X
(Lyu and Li, 2025)
Riemannian prox. Hadamard g-convex g-convex 1 - 7
(Li et al., 2009)

Riemannian prox. Hadamard g-convex g-convex 1 eO("�1) 7
(Bento et al., 2017)
Riemannian Prox-linear Riemannian & non-convex &

N/A 1 eO("�2) 7
(line search)(Chen et al., 2020) Compact smooth†

Block Riemannian GD (Exp)
Riemannian non-convex N/A many eO("�2) 7

(Gutman and Ho-Nguyen, 2023)
BMM on manifolds Riemannian &

non-convex N/A many eO("�2) 7
(Peng and Vidal, 2023) compact

RBMM (Ours) with surr.:

g-smooth (Thm. 10) Riemannian
non-convex &

g-convex many eO("�2) X
non-smooth

Riemannian proximal
Riemannian

non-convex &
g-convex many eO("�2) X

(Thm. 7) non-smooth

Euclidean proximal Riemannian non-convex & g-convex &
many eO("�2) X

(Thm. 7) ✓ Euclidean non-smooth compact

Smooth (Cor. 11)
Euclidean/ non-convex & convex/

many eO("�2) X
Stiefel non-smooth g-convex

Table 1: Our main contributions and comparison to existing results. “g-smooth” means
being geodesically smooth with respect to the geometry of the underlying manifold, and
“smooth” means being smooth with respect to the Euclidean geometry. “g-convex” means
geodesic convexity of subsets of manifolds. eO(·) notation means big-O up to logarithmic
factors. The objective function marked by “smooth†” only needs to be smooth in the Eu-
clidean sense; In all other cases, it is required to be g-smooth with respect to the underlying
manifold. The last column shows whether the method allows the inexact solution to a sub-
problem, i.e., the robustness under inexact computation. Details of comparison to known
results can be found in Section 4.

Recently, a tangential type of block coordinate descent has been discussed in Gutman
and Ho-Nguyen (2023). There, the authors established a sublinear convergence rate for
an interesting block-wise Riemannian gradient descent. However, the retraction considered
there is restricted to the exponential map, which excludes many commonly used retractions
in the literature. A general framework on inexact first-order Riemannian optimization algo-

5
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Outline

Introduction

Convergence guarantees

Matrix completion and streaming SVD

Heteroscedastic PCA

Reduced order modeling
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Low Rank Matrix Completion

original rank 2 matrix uniform sampling ReLU sampling
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100

102

104

106
Uniform Sampling • The optimization landscape is benign for nice

enough sampling (and you need very few
samples for a low-rank reconstruction!)

• The objective function is strongly convex
around a planted low-rank matrix

• You almost always get global convergence to
the global min using all kinds of solution
methods (though not always easy to prove)

L. Balzano University of Michigan
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Low Rank Matrix Completion

original rank 2 matrix uniform sampling ReLU sampling

0 200 400 600 800 1000
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Uniform Sampling
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10-2

100

102

104

106
ReLu Sampling • What happens with less nice

sampling? Consider observing
largest 50% entries.

• The objective function is still
strongly convex around a planted
low-rank matrix

• With a nice initialization you will
converge to the global minimum

L. Balzano University of Michigan
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Use case: missing data and online setting
Often in wireless sensing, due to sensor failure or sensors
going offline for calibration, we have missing observations.

Additionally, processing in batch could be prohibitive, due to
computation and/or memory storage, or the data streams in
real-time.

Figure: AQI monitoring with streaming, incomplete samples.

L. Balzano University of Michigan
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The Incremental SVD for Euclidean Subspace Estimation

Given matrix Y = UΣV T , form the SVD of2
[
Y vt

]
.

Compute the weights: w = arg min
a
‖Ua− vt‖22

Compute the residual: rt = vt − Uw.

Update the SVD:

[
Y vt

]
=
[
U rt

‖rt‖
] [ Σ w

0 ‖rt‖

] [
V 0
0 1

]T

and diagonalize the center matrix [Bunch and Nielsen, 1978].

2You can also add a row or remove a row or column.
L. Balzano University of Michigan
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The Incremental SVD with Missing Data

Update the SVD:

[
U rt

‖rt‖
] [ Σ w

0 ‖rt‖

] [
V 0
0 1

]T

and diagonalize the center matrix.

The inner matrix grows if the residual is always nonzero.

Truncating the singular values as we stream is a heuristic.

We could sketch [Ghashami et al., 2016].

What about matrix completion?

L. Balzano University of Michigan
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The Incremental SVD with Missing Data

Given matrix Y = UΣV T , form the SVD of
[
Y vt

]
.

Estimate the weights: w = arg mina ‖PΩt(Ua− vt)‖22 .

Compute the residual: rt = vt − Uw on Ωt ; zero otherwise.

Update the SVD:

[
U rt

‖rt‖
] [ Σ w

0 ‖rt‖

] [
V 0
0 1

]T

and diagonalize the center matrix.

L. Balzano University of Michigan
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Incremental SVD with Missing Data: SAGE GROUSE

Given matrix Y = UΣV T , form the SVD of
[
Y vt

]
.

Estimate the weights: w = arg mina ‖PΩt(Ua− vt)‖22 .

Compute the residual: rt = vt − Uw on Ωt ; zero otherwise.

Update the SVD:

[
U rt

‖rt‖
] [ Ik w

0 ‖rt‖

] [
V 0
0 1

]T

and take the SVD of the center matrix. This is equivalent to the
incremental gradient method on the Grassmannian (GROUSE or
Oja’s method) for a particular step size
[Balzano and Wright, 2013, Balzano, 2022].

L. Balzano University of Michigan
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Incremental SVD with Missing Data Options
projection weights w = arg mina ‖PΩt(Uta− vt)‖22;
residual: rt = vt − Uw on Ωt ; zero otherwise.

ISVD with interpolation:
[
U rt

‖rt‖
] [ Σ w

0 ‖rt‖

] [
V 0
0 1

]T

SAGE GROUSE:
[
U rt

‖rt‖
] [ Ik w

0 ‖rt‖

] [
V 0
0 1

]T

[Brand, 2002](β ≤ 1) :
[
U rt

‖rt‖
] [ βΣ w

0 ‖rt‖

] [
V 0
0 1

]T

There are also variants that handle more ill-conditioned data
[Kennedy et al., 2014]; perform updates for a robust (`1) loss
function [He et al., 2012]; generalize to RLS approach
[Chi et al., 2012] with a more complex update.
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Incremental SVD with Missing Data Performance

Incremental SVD has been used in reduced order modeling!
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Modern data are heteroscedastic

Modern data are often corrupted by heteroscedastic noise.

varying radiation levels varying atmosphere varying sensor quality

We want to be able to use the predictive power of these data combined,
instead of doing analysis on each dataset separately.

http://www.medicalnewstoday.com/articles/153201.php
https://www.nasa.gov/multimedia/imagegallery/iotd.html
http://www.livescience.com/27992-portable-pollution-sensors-improve-data-nsf-ria.html
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What happens when we apply PCA?

Suppose we seek the first principal component of these data,
blue and red combined. How will it look?
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What happens when we apply PCA?

PCA is not robust, but our methods
can handle the high variance data.
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Two Approaches
Weighted PCA

min
U,z

n∑

j=1

α2
j‖yj − Uzj‖22

αj ∈ {w1, . . . , wL}

Use vanilla SVD algorithm

Amenable to analysis:

asymptotic recovery results

optimal weights to maximize

asymptotic recovery

But is it the “right” thing to do?

Requires knowledge or estimate of
unknown parameters

Heterosced Probabilistic PCA

yj = UΘzj + ηjεj ,

zj ∼ N (0, Ik), εj ∼ N (0, Id)

Maximum Likelihood can

incorporate estimates of all

parameters

Including noise variances!

Non-concave but probably “nice”

Algorithms don’t have guarantees
(yet)

Makes distributional assumptions
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Numerical Simulation - Weighted SVD

Optimal weights are not inverse noise variance [Hong et al., 2023]

Asymptotic analysis with problem size

Intuition: PCA is not robust to heavy outliers; must
downweight moreOPTIMALLY WEIGHTED PCA FOR HIGH-DIMENSIONAL HETEROSCEDASTIC DATA 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1/4

1/2

3/4

1

inverse noise variance

asymptotic optimal

unweighted

only use Y1 (cleaner block)

only use Y2

(larger block)

Block 2 noise variance �2
2

r1

Figure 4. Performance comparison of weighting schemes for an illustrative example with two blocks of data
Y1 2 Rd⇥n1 and Y2 2 Rd⇥n2 with d = 103, n1 = 103, n2 = 104, and signal component variance �1 = 2. The
first block noise variance is v1 = 1 and the second block noise variance ranges from v2 = 1 to v2 = 20. For each
weighting scheme, the dashed black curve is the asymptotic performance from Theorem 2.1 and Proposition 4.1,
the solid colored curve is the average from 400 trials, and the ribbon indicates the corresponding interquartile
interval.

Figure 4 overlaid the asymptotic recoveries for each weighting scheme. For optimally257

weighted PCA, this limit was given in (2.6). The following proposition provides an analogous258

result for the existing weighting schemes.259

Proposition 4.1 (Performance of existing weighting schemes). Under the setting of Theo-260

rem 2.1, the weighting schemes (4.1)–(4.4) have corresponding recovery converging as261

inverse noise variance: ri(w, Y )
a.s.�! max

✓
0,

c� v̄2/�2
i

c + v̄/�i

◆
,(4.5)262

only use Y1: ri(w, Y )
a.s.�! max

✓
0,

c1 � v2
1/�

2
i

c1 + v1/�i

◆
,(4.6)263

only use Y2: ri(w, Y )
a.s.�! max

✓
0,

c2 � v2
2/�

2
i

c2 + v2/�i

◆
,(4.7)264

unweighted: ri(w, Y )
a.s.�! max

✓
0,

A(�i)

�iB0
i(�i)

◆
,(4.8)265

266

where c := c1 + · · · + cL, p` := c`/c, v̄ := (p1/v1 + · · · + pL/vL)�1, �i is the largest real root of267

the function Bi, and268

A(x) := 1�
LX

`=1

c`v
2
`

(x� v`)2
, Bi(x) := 1� �i

LX

`=1

c`
x� v`

.269

270

Proposition 4.1 is a by-product from our proof of Theorem 2.1, with some parts shown271

previously and some in this paper. Specifically, (4.6) and (4.7) are exactly the well-studied ho-272

mogeneous case [?], since the noise is homogeneous when using only Y1 or Y2. For unweighted273

This manuscript is for review purposes only.

Two blocks Y1 ∈ Rd×n1 and Y2 ∈ Rd×n2 with d = 103, n1 = 103, n2 = 104, and signal component
variance θ21 = 2. The first block noise variance is σ2

1 = 1 and the second block noise variance is on the x-axis.
For each weighting scheme, the dashed black curve is the predicted asymptotic performance, the solid colored curve
is the average from 400 trials, and the ribbon indicates the corresponding interquartile interval.
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Solving PPCA
We have several alternatives:

Alternating MM [Hong et al., 2021]

Nuclear norm optimization and a difference of convex
approximation [Cavazos et al., 2023]

Streaming Stochastic MM [Gilman et al., 2025b]
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Air quality sensing

Figure: Box plots showing Normalized RMSE for the 30-dimensional
subspace learned over each of 200 train/test splits of the data.
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Air quality sensing

Figure: Box plots showing Normalized RMSE for the 30-dimensional
subspace learned over each of 200 train/test splits of the data.
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Model-based data-driven ROM
Consider a (potentially non-linear)
system of difference equations

xk+1 =f(xk, uk)

yk =h(xk, uk)

with states xk ∈ Rnx , input uk ∈ Rnu ,
and output yk ∈ Rny .

Wind farm simu-
lation with 6.3 million states
[Meyers and Meneveau, 2012].

Collect data through simulation or experimentation as snapshots of
the system

X0 =
[
x0 x1 . . . xns−1

]
∈ Rnx×ns

X1 =
[
x1 x2 . . . xns

]
∈ Rnx×ns

U0 =
[
u0 u1 . . . uns−1

]
∈ Rnu×ns

Y0 =
[
y0 y1 . . . yns−1

]
∈ Rny×ns

L. Balzano University of Michigan
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Linearizing the System

Using this data, the non-linear system can be approximated as the
linear system {

xk+1 = Axk +Buk

yk = Cxk +Duk
(3)

by solving the least-squares problem3

[
Â B̂

Ĉ D̂

]
= arg min

A,B,C,D

∥∥∥∥
[
X1

Y0

]
−
[
A B
C D

] [
X0

U0

]∥∥∥∥
2

F

(4)

3Note that this is the best-fit linear system in an `2-sense, which may or
may not be what we really need for downstream applications.
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Reduced-Order Model (ROM)
Going further, we can project our state onto r-dimensional
subspace spanned by semi-orthogonal matrix Q ∈ Rnx×r

z:=Q>x ∈ Rr

to get the low-order system

zk+1 ≈ Fzk +Guk

yk ≈ Hzk +Duk

where F := Q>AQ,G := Q>B,H := CQ.

minimize
Q,F,G,H,D

∥∥∥∥
[
X1

Y0

]
−
[
Q 0
0 I

] [
F G
H D

] [
Q> 0
0 I

] [
X0

U0

]∥∥∥∥
2

F

(5)

subject to Q ∈ G(n, r)
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Reduced-Order Model (ROM)

Going further, we can project our state onto r-dimensional
subspace spanned by semi-orthogonal matrix Q ∈ Rnx×r

z:=Q>x ∈ Rr

For a given projection matrix Q̂, the ROM that best fits this data
is given by the solution to the least-squares problem

[
F̂ Ĝ

Ĥ D̂

]
:= arg min

F,G,H,D

∥∥∥∥
[
Q̂>X1

Y0

]
−
[
F G
H D

] [
Q̂>X0

U0

]∥∥∥∥
2

F

which leads to...
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Reduced-Order Model (ROM)

Going further, we can project our state onto r-dimensional
subspace spanned by semi-orthogonal matrix Q ∈ Rnx×r

z:=Q>x ∈ Rr

minimize
Q

∥∥∥∥∥

[
X1

Y0

]
−
[
Q 0
0 I

] [
Q>X1

Y0

] [
Q>X0

U0

]† [
Q> 0
0 I

] [
X0

U0

]∥∥∥∥∥

2

F

(5)

subject to Q ∈ G(n, r)
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Illustrative Example

Example Problem

{
xk+1 =

[
−0.7 −0.7

0.5 0.5

]
xk +

[
0.5

0.7

]
uk

Parameterize Q ∈ R2×1 as

Q =

[
sin(θ)
cos(θ)

]

and visualize the landscape as a function of θ.
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Illustrative Example
Example Problem

{
xk+1 =

[
−0.7 −0.7

0.5 0.5

]
xk +

[
0.5

0.7

]
uk

Figure: Cost function (5) as a function of θ, the angle of the orthogonal
projection matrix Q.
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Wind Farm Experiment

Problem Setup borrowed from [Annoni and Seiler, 2017].

Input is front turbine axial factor.

Output is wind speed at white
triangle.

Table: Wind Farm Model
Parameters

Parameter Value

nturb 2 turbines
x-by-y grid 201-by-101

nx 40602 states
nu 1 input
ny 1 output
ns 200 samples
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Wind Farm Experiment

Problem Setup borrowed from [Annoni and Seiler, 2017].

Table: Comparison of Metrics for
Wind Farm Model

Method Objective Value
POD 4380.41
GGD 4188.06
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But ... POD performs well!

Optimization rarely has
much room for
improvement over POD in
random examples (in
terms of best linear
approximations).

Not only that, but our
true end goal is not `2
best fit but usually some
downstream task, such as
control.
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Data-Driven ROM LQR Pipeline

1 Choose subspace Q̂ and compute F̂ , Ĝ as the least-squares solution:

[
F̂ Ĝ

]
=
[
Q̂>X1

] [Q̂>X0

U0

]†

2 Design LQR controller for ROM (with LQR cost matrices P,R):

K̂r = LQR(F̂ , Ĝ, Q̂>PQ̂,R)

3 Lift controller to full state-space:

K̂f = K̂rQ̂
>

L. Balzano University of Michigan
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Data-Driven ROM LQR Pipeline

1 Choose subspace Q̂ using POD and compute F̂ , Ĝ as the
least-squares solution:

[
F̂ Ĝ

]
=
[
Q̂>X1

] [Q̂>X0

U0

]†

2 Design LQR controller for ROM (with LQR cost matrices P,R):

K̂r = LQR(F̂ , Ĝ, Q̂>PQ̂,R)

3 Lift controller to full state-space:

K̂f = K̂rQ̂
>

How well does POD actually work for this method?
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Lifted Low-Rank Structures

1 LQR regularity: (A,B) is stabilizable and (A,P ) is detectable.

2 Low-rank: there exists matrices F ∈ Rr×r, G ∈ Rr×nu ,
Pr ∈ Rr×r and Q ∈ Rnx×r with orthonormal columns for
r ≤ nx such that

A = QFQ> , B = QG , P = QPrQ
>. (6)

3 Identifiability: the pair (F,G) in (2) is controllable.

4 Initial-state subspace consistency: x0 ∈ span(Q).
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Lifted Low-Rank Systems

Theorem 1 (Informal Theorem Details )

For a lifted low-rank LQR problem with sufficiently exciting input,
the POD controller found with the data-driven LQR pipeline is
equivalent to the optimal LQR controller for the full-order system.
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Parameters: nx = 100, nu = 5, r = 20, ns = 125, x0 = 0
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Future Work

More work incorporating missing data methods and
streaming data SVD methods into ROM

ROM for heterogeneous fidelity data
Optimization for ROM

1 Theory for other controllers besides LQR, and other
downstream tasks

2 Perturbation theory for approximately low-rank systems
3 Techniques for identifying:

when POD is sufficient
when POD is not sufficient but an optimization-improved
subspace is sufficient
when nonlinear model structure is needed (see also
[Geelen et al., 2024])
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Example Applications I

1 Missing Data SVD (Low-Rank Matrix Completion):
PΩ projects onto the coordinates Ω ⊂ {1, . . . , n}.

minimize
U∈Rn×d,W∈RN×d

‖PΩ(UW T − Y )‖2F s.t. U ∈ G(n, d) (7)

2"
Figure 8: Real-time video background and foreground separation from partial information.
We show the separation quality at t = 1, 230, 1400. The resolution of the video is 144�176. The
first row is the original video frame at each time; the middle row is the recovered background at
each time only from 5% information; and bottom row is the foreground calculated by Equation
(4.7).

Figure 9: Real-time video background and foreground separation from partial information.
We show the separation quality at t = 1, 600, 1200. The resolution of the video is 320�256. The
first row is the original video frame at each time; the middle row is the recovered background at
each time only from 1% information; and bottom row is the foreground calculated by Equation
(4.7).
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Example Applications II

2 Robust SVD:

minimize
U∈Rn×d,W∈RN×d

‖PΩ(UW T − Y )‖1 s.t. U ∈ G(n, d)

(8)

3 Sparse SVD:

minimize
U∈Rn×d,W∈RN×d

‖PΩ(UW T − Y )‖2F s.t. ‖U‖1 ≤ τ, U ∈ G

(9)
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Example Applications III

4 Heteroscedastic PCA:

minimize
U∈Rn×d

`(U, Y )subject to U ∈ G(n, d) (10)

where `() is the negative log likelihood for heteroscedastic
PCA.

5 Dictionary learning / Non-neg Matrix Factorization:

minimize
U∈Rn×m,W∈RN×m:m≥n

‖UW T − Y ‖2F (11)

subject to ‖W‖1 ≤ τ
Wij ≥ 0

L. Balzano University of Michigan

Low-Rank Optimization 15



Example Applications IV
6 Calibration SVD:

minimize
U∈Rn×d,W∈RN×d,g

‖PΩ

(
g(UW T − Y )

)
‖2F (12)

subject to g is L− Lipschitz and monotonic

U ∈ G(n, d)

7 Data-Driven ROM

Collect input-output data from a
(potentially nonlinear) discrete-time
dynamical system, and find a system
matrices for a low-rank linear system
that best fits the data. Wind farm simu-

lation with 6.3 million states
[Meyers and Meneveau, 2012].
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Example Applications V

minimize
Q,F,G,H,D

∥∥∥∥
[
X1

Y0

]
−
[
Q 0
0 I

] [
F G
H D

] [
Q> 0
0 I

] [
X0

U0

]∥∥∥∥
2

F

(13)

subject to Q ∈ G(n, r)
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Astronomical Imaging

Courtesy of https://noirlab.edu/public/news/noao1901/

Imaging the night sky is done with a variety of instrumentation
whose images are subject to nightly conditions.

moonlight

haze, clouds, other particulate matter

imaging at the edge of the field of view

The measurements are noisier on some nights or for some locations
in the sky.
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New Directions: Maximum Likelihood

yi = UΘzi + ηiεi

Suppose zi and εi are all iid normal N (0, 1). Then the maximum
likelihood estimator for U,Θ is given as

max
U∈G(d,k)
θi,i=1,...,k

n

2

n∑

i=1

k∑

j=1

log

(
1

η2
i

− 1

η2
i

θ2
j

θ2
j + η2

i

)
+

1

2

(
n∑

i=1

yTi UΓiU
T yi

)
.

where Γi is a k × k diagonal matrix with entries 1
η2i

θ2j
θ2j+η2i

. Given θi

(and therefore Γi) then the maximum likelihood U is identified by

max
U∈G(d,k)

n∑

i=1

yTi UΓiU
T yi .

L. Balzano University of Michigan

Low-Rank Optimization 19



Linear-Quadratic Regulator

Denote LQR(A,B, P,R) as the
state-feedback problem

min
K

∞∑

k=0

(
x>k Pxk + u>k Ruk

)

subject to xk+1 = Axk +B uk,

uk = −K xk.

When (A,B) are known, we can
already solve this exactly, but the
computation scales with O(n3x).

xk+1 = Axk +Buk

K

u xk
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Optimality of POD

Theorem 2 (Informal)

For a lifted low-rank LQR problem with sufficiently exciting input,
the POD controller found with the data-driven LQR pipeline is
equivalent to the optimal LQR controller for the full-order system.

Proof outline:

1 Prove POD identifies the correct subspace using persistently
exciting assumption.

2 Prove equivalence of K?
f = LQR(A,B, P,R) and POD

controller using low-rank assumptions.
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Perturbations to the Low-Rank Assumption

Given parameters
Low-order system F ∈ Rr×r G ∈ Rr×nu

Perturbations F⊥ ∈ R(nx−r)×(nx−r) G⊥ ∈ R(nx−r)×nu

Orthogonal matrix
[
Q Q⊥

]
∈ Rnx×nx ,

[
Q Q⊥

]> [
Q Q⊥

]
= I

LQR Costs R = Inu P = QPrQ
T

we generate an ε-perturbed lifted low-order system defined by

A = QFQ> + εQ⊥F⊥Q
>
⊥

B = QG+ εQ⊥G⊥

to evaluate the impact of breaking the low-rank system matrices
assumption.
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Small Exactly Low-Rank Example

Problem setup

Generate a random Q ∈ R2×1,
F ∈ R, G ∈ R and construct
lifted low-rank system as
A = QFQ>, B = QG,
P = QQ>, and R = 1.
Simulate and gather snapshots
for ns = 4 steps.
Define Q̂(θ) = [sin(θ), cos(θ)]>.

POD controller is optimal for

Least-squares ROM cost (upper)
End-to-end data-driven ROM
LQR cost (lower)
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LQR Solution

Lemma 3 (Section 3.3 of [Anderson and Moore, 2007])

When (A,B) is stabilizable and (A,Q) is detectable, there is a
unique solution P ?f � 0 to the following DARE:

P −A>PA−Q−A>PB (R+B>PB)−1B>PA = 0 (14)

such that
K?
f := (R+B>P ?fB)−1B>P ?fA (15)

stabilizes the linear discrete time system (3) and minimizes the
quadratic cost in (20) with J (K?

f , x0) = x>0 P
?
f x0 for all initial

conditions. LQR Slides
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LQR Intermediate Results II

Proposition 4

Consider discrete LTI system matrices (A,B) and LQR cost
matrices (Q,R) that satisfy LLR Assumptions. Denote the Riccati
solution and optimal controller for LQR(A,B, P,R) as (P ?f ,K

?
f ).

Let Q̂ ∈ Rnx×r be any matrix with orthonormal columns such that
span(V ) = span(Q̂). Define F̂ := Q̂>AQ̂, Ĝ := Q̂>B, and
Q̂r := Q̂>PQ̂. Then there exists a unique stabilizing solution, that
we denote (P̂ ?r , K̂

?
r ), to the reduced-order LQR(F̂ , Ĝ, P̂r, R).

Moreover,
P ?f = Q̂P̂ ?r Q̂

>, K?
f = K̂?

r Q̂
>. (16)
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LQR Intermediate Results III

Lemma 5 (extension of [Willems et al., 2005, Cor. 2])

Consider discrete LTI system matrices (A,B) that satisfy LLR
Assumptions with input {uk}ns−1

k=0 persistently exciting of order
r + 1. Then

1 rank(X0) = r, and

2 rank

([
X0

U0

])
= r + nu
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LQR Intermediate Results I

Proposition 6

Consider discrete LTI system matrices (A,B) that satisfy LLR
Assumptions with input {uk}ns−1

k=0 persistently exciting of order
r + 1.
Let Q̂ be the POD projection matrix and (F̂ , Ĝ) be the resulting
reduced-order model matrices. Then

span(V ) = span(Q̂) (17)

and
F̂ = T−1FT , Ĝ = T−1G (18)

for the orthogonal matrix T := V >Q̂.
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LQR Theorem Formal Statement

Theorem 7 ( LQR Theorem Slide )

Consider discrete LTI system matrices (A,B) and LQR(A,B, P,R)
problem that satisfy Lifted Low-Rank Assumptions with input
{uk}ns−1

k=0 persistently exciting of order r + 1. Then, the POD

controller K̂f is the optimal LQR controller for the full-order

system, i.e. K̂f = K?
f .
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