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Structure in Big Data

26 -> 37
13 -> quarante-six

54 -> one hundred and sixteen
59 -> 133

10 -> setenta y nueve

43 -> ochenta y tres

40 -> soixante-quatre

25 -> fifty-five
83 ->

@
A
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one hundred and seventy-four 1316%
cent soixante-quatorze: 110%
ciento setenta y cuatro: 21.69%

CT Scanner: https://medicine.umich.edu/sites/default/files/RAD_NewsletterFall2011.pdf
LLMs demonstrate In-Context learning: https://arxiv.org/abs/2410.05603
Power Grid: https://news.engin.umich.edu/2019/02/how-air-conditioners-could-advance-a-renewable-power-grid/
Traffic images and markings from the “Hopkins 155" Dataset, R. Vidal lab, Johns Hopkins University.
Aviation Sensing: http://interactive.aviationtoday.com/smart-sensors-expand-in-variety-scope/
Air quality sensing: http://www.livescience.com/27992-portable-pollution-sensors-improve-data-nsf-ria.html
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Introduction

Low-dimensional Structure in Matrix Data

@ In all these applications, we
believe there is some
structure in the data.

@ That structure helps us:

o predict and learn,
interpret and understand,
impute,
detect anomalies,
compress for memory and
computational efficiency

: .

Air quality around the lworld
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e W o etc.
: Simulated air flov;/ around wind -terines
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Introduction

Subspace Model for Matrix Data

For 124 years, Principal Component Analysis (PCA) has been used
to investigate linear structure in a dataset
[Pearson, 1901, Spearman, 1904, Hotelling, 1933]:

Summary of data for Corsican pine, East Anglia
(Number of props = 180)

- Variable  Minimum Mean  Maximum  Sjendard
N ‘ToPDIAM 2:38 421 600 0-98
3 Village School, 24 Oldest Children. e b oss 5% uw
E A. Original Data. TestsG 0365 0877 1217 ggﬁ,ﬂ;
PR OVENSG 0-289 0415 0993
N Sex. . | Discriminative Intellectual R 7 135 P
H e Threskold. Rank. Reasur s 163 2% 395
H Pitch | Light Sense| Cleverness Bowmax 013 065 250 043
B IR B ol bl g o 9 oy A 90
HE RS ™| ™ WiioRLS 1 20 g 3
[N ETCH IR PR PR I R Kon o S tes
T s |uld|i|el4] T Dissvor 0 o082 165 0325
1 13 8 13 4 9 1 T 1
Toluad |[S5) 0] e|al 3
y ] :E Bl 8| b - The analysis therefo_re suggests that
,;'; E i é: S ,?, é = B there are probably six major
fl ool lnldlnlaldl & components of the physical variables,
[S earman 1904] accounting for about 87% of the
p ' variability, and ... focuses the
attention of the research worker on
[Pearson, 1901] on of the ! orer
the basic dimensions of which his

variables are only first
approximations. [Jeffers, 1967]
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Introduction

Subspace Model for Matrix Data
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Why are big data matrices approximately low rank? [Udell and Townsend, 2019]
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Introduction

Subspace Model for Matrix Data

Principal components of a data matrix Y are computed with the
Singular Value Decomposition (SVD):

y =uxv?

where U, V' have orthonormal columns and 3. is diagonal.

=lF'-J

L. Balzano University of Michigan
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Introduction

Linear Low Rank Subspaces via SVD

If your data matrix Y is not exactly low-rank but you wish to find
the best low-dimensional linear structure that models the data, you
can use the SVD; that makes it a useful exploratory data analysis
tool. The SVD gives the solution to the following nonconvex
optimization problem for any k!:

minimize [uw? —v|% (1)
UERka,WER"Xk

subject to U € G(k,d)

where G(k, d) is the Grassmannian, the space of all k-dimensional
subspaces of R?.

1This result was discovered independently by first Schmidt in 1907
[Schmidt, 1907, Stewart, 1993, Stewart, 2011] and then Eckart and Young
[Eckart and Young, 1936].

L. Balzano University of Michigan
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Introduction

Modern Generalizations

e An observation function e Different loss functions £(-)
(e.g., missing or sketched data, or

; : e Any regularization or constraint
calibration) represented as g(+)

(e.g., to encourage structure in the
o Deeper factorizations UWr, - - - Wi factors) represented as h(-)

e Generative probabilistic coefficient e Other matrix manifolds of k&
and noise models (non-iid-Gaussian)  dimensions, represented as M

ITVIVnLI,T!%% (gUWL--- Wy ),9(Y)))

subject to  h(U,Wpg,..., W) <7
Ue Mg

L. Balzano University of Michigan
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Introduction

Modern Generalizations

If we change the model slightly or add anything to the cost
function, how do we adjust the SVD computation?

. . . L T
(ninimize  £(g(UWL--- W), 9(Y))) (2)
subject to  A(U,Wp,..., Wi) <7
U e M,

With the lack of an obvious extension to SVD computations, we
turn to nonconvex optimization!

L. Balzano University of Michigan
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Introduction

Our work probing this framework

L. Balz

An observation function represented as g(-)

Matrix completion [Balzano et al., 2010, Kennedy et al., 2016, Balzano and Wright, 2014,

Zhang and Balzano, 2016, Liu et al., 2024], Sketching [Alarcon et al., 2016, Zhang and Balzano, 2018],
Variety completion [Ongie et al., 2017, Ongie et al., 2021], Ordinal embedding [Bower et al., 2018]
Deeper factorizations UWy, - - - Wi

Deep matrix completion [Kwon et al., 2024] and Deep low-rank adaptation [Yaras et al., 2024]
Generative probabilistic coefficient and noise models (non-Gaussian)
Heteroscedastic PCA [Hong et al., 2018, Hong et al., 2021, Hong et al., 2023, Cavazos et al., 2023,
Gilman et al., 2025a, Gilman et al., 2025b], Markov Online Dictionary Learning [Lyu et al., 2020]
Different loss functions £(-, -)

Robust PCA [He et al., 2012, He et al., 2014, Gilman and Balzano, 2019], Subspace clustering

[Lipor and Balzano, 2017, Gitlin et al., 2018, Lipor et al., 2021, Wang et al., 2022], Cross entropy loss
[Yaras et al., 2022, Yaras et al., 2023], Reduced order modeling [Newton et al., 2023]

Any regularization or constraint represented as h(:) or other matrix
manifolds of k dimensions

Supervised PCA [Ritchie et al., 2020], Sparse PCA [Xiao and Balzano, 2016], Stiefel Manifold
Optimization [Ritchie et al., 2020, Hong et al., 2019, Blocker et al., 2023]

Low-Rank Optimization



Convergence

Outline

Introduction

Convergence guarantees

Matrix completion and streaming SVD
Heteroscedastic PCA

Reduced order modeling
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Convergence

Convergence

Can we guarantee convergence for nonconvex problems? (assuming
differentiable)

@ Global convergence to a stationary
point of the objective function (from
any initialization)

@ Local convergence (within a region of
the stationary point, usually a local
minima)

@ Identification of a guaranteed good T
initialization within the basin of Figure courtesy Science Magazine
attraction of a global minima

@ Convergence to global minima

L. Balzano University of Michigan
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Convergence

Nonconvex Provable Global Results (or “hidden” convexity)

Low-rank matrix completion/sensing [candes and Recht, 2009, Chi et al., 2019]
Low-rank tensor decomposition (kilel et al., 2021]

Phase Retrieval [chen et al., 2019]

Dictionary Learning [sun et al, 2017a, Sun et al., 2017b]

Deep Linear Networks with MSE 1oss [varas et al., 2024]
Nonnegative/Sparse/Robust PCA wright et al., 2009]

Mixed Linear Regression (two component) [chen et al, 2017)

Blind Deconvolution/CaIibration [Ling and Strohmer, 2019, Bilen et al., 2014]
Superresolution [Candes and Fernandez-Granda, 2013, Yang et al., 2016]

System identification for (hybrid) linear dynamical systems

[Feng et al., 2010, Hardt et al., 2018]

Also see https://sunju.org/research/nonconvex/ (last updated 2021)

L. Balzano
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Convergence

Convergence

Block Variable (Alternating) MM and/or Riemannian methods
[Li et al., 2023, Li et al., 2024]

Methods Manifold Objective ~ Constraints ~ Blocks ~ Complexity I:::f;“

Euclidean BMM
(Hong et al., 2017) ) =
Budidean Block PGD Euclidean convex convex many O 1) X
(Beck and Tetruashvili, 2013)
Euclidean BMM-DR Euclidean non-convex convex many O(e~2) v
(Lyu and Li, 2025)
Riemannian prox. Hadamard g-convex g-convex 1 - X
(Li et al., 2009)
Riemannian prox. Hadamard g-convex g-convex 1 oY) X
(Bento et al., 2017)

i i rox-li Ri ian &  non-convex & = o
(line search)(Chen ct al., 2020) Compact smooth! N/A 1 0% X
Block Riemannian GD (Exp) ) . o
(Gutman and Ho-Nguyen, 2023)  Tuemannian non-convex N/A many 0™ x
BMM on manifolds Riemannian & = g
(Peng and Vidal, 2023) compact non-convex N/A many 0@E"*) 4

RBMM (Ours) with surr.:
g-smooth (Thm. 10) Riemannian “s;‘nc‘s’;‘;‘;"tf g-convex  many O(=~2) v

Riemannian proximal S non-convex & ) —
(Thm. 7) Riemannian hon-smooth g-convex many O(=?2) v
Euclidean proximal Riemannian  non-convex &  g-convex & 52 v
(Thm. 7) C Euclidean non-smooth compact 4 (7%
Fuclidean/  non-convex &  convex/ = g
Smooth (Cor. 11) Stiefel non-smooth g-convex many 0(™?) v

L. Balzano University of Michigan
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LRMC/Streaming SVD

Outline

Introduction

Convergence guarantees

Matrix completion and streaming SVD
Heteroscedastic PCA

Reduced order modeling
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LRMC/Streaming SVD

Low Rank Matrix Completion

— R
sES' £ ]
E R R R
e e
HEF LT i
=
= =
EReeagate E-,E
= 2 2l -
original rank 2 matrix uniform sampling
: Uniform Sampling e The optimization landscape is benign for nice
|[—s—gradient norm .
enough sampling (and you need very few
“ samples for a low-rank reconstruction!)
e The objective function is strongly convex
around a planted low-rank matrix
e You almost always get global convergence to
the global min using all kinds of solution

0 20 400 0 0 1000
Tterations

methods (though not always easy to prove)

L. Balzano University of Michigan
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LRMC/Streaming SVD

Low Rank Matrix Completion

£ =2
) e
- B )_,
o 7.:. H
original rank 2 matrix form sampling ReLU sampling

S ) What happens with less nice

S e sampling? Consider observing

.y\.\ largest 50% entries.

M e The objective function is still
strongly convex around a planted
low-rank matrix

T s e e w o s o= = & With a nice initialization you will
converge to the global minimum

ReLu Sampling

L. Balzano University of Mich!
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LRMC/Streaming SVD

Use case: missing data and online setting

@ Often in wireless sensing, due to sensor failure or sensors
going offline for calibration, we have missing observations.

o Additionally, processing in batch could be prohibitive, due to
computation and/or memory storage, or the data streams in
real-time.

] k T : & t=0 Missing entries

=)7s . Time sse GB of data
o s in the cloud
o t=T

Figure: AQI monitoring with streaming, incomplete samples.

L. Balzano University of Michigan
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LRMC/Streaming SVD

The Incremental SVD for Euclidean Subspace Estimation

Given matrix Y = USVT, form the SVD of? [V 1y].
Compute the weights: w = argmin||Ua — vy
a

Compute the residual: r; = v, — Uw.

Update the SVD:

Y w]=|U ||:§||Hf)J HZHHX HT

and diagonalize the center matrix [Bunch and Nielsen, 1978].

2You can also add a row or remove a row or column.
L. Balzano University of Michigan
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LRMC/Streaming SVD

The Incremental SVD with Missing Data

Update the SVD:

K ||:§|IH§ IIZIIHK ?]T

and diagonalize the center matrix.

@ The inner matrix grows if the residual is always nonzero.
@ Truncating the singular values as we stream is a heuristic.
@ We could sketch [Ghashami et al., 2016].

@ What about matrix completion?

L. Balzano University of Michigan
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LRMC/Streaming SVD

The Incremental SVD with Missing Data

Given matrix Y = UXV7T, form the SVD of [Y vt].
Estimate the weights: w = argmin,, || Po, (Ua — v;) |3 .
Compute the residual: r; = vy — Uw on €); ; zero otherwise.

Update the SVD:

K ||:§||H§ HZHH‘S HT

and diagonalize the center matrix.

L. Balzano University of Michigan
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LRMC/Streaming SVD

Incremental SVD with Missing Data: SAGE GROUSE
Given matrix Y = USVT, form the SVD of [V ).
Estimate the weights: w = argmin,, || Po, (Ua — vy) |5 .
Compute the residual: r; = v; — Uw on ) ; zero otherwise.

Update the SVD:

EE (1)]T

and take the SVD of the center matrix. This is equivalent to the
incremental gradient method on the Grassmannian (GROUSE or
Oja's method) for a particular step size

[Balzano and Wright, 2013, Balzano, 2022].

L. Balzano University of Michigan
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LRMC/Streaming SVD

Incremental SVD with Missing Data Options

projection weights w = argminy, || Po, (Ura — v,)||%;
residual: 4 = v; — Uw on € ; zero otherwise.

_ o T
ISVD with interpolation: | U |Tt| . ][V 0]

[rell | L0 ||| 0 1
. 17 I w Vo !
I F
SAGE GROUSE: | U ip | | g 1y ] [ 0 1 ]

i SRR v ol]"
[Brand, 2002(3 <1):| U 1o II:ZIIH0 1]

There are also variants that handle more ill-conditioned data
[Kennedy et al., 2014]; perform updates for a robust (¢;) loss
function [He et al., 2012]; generalize to RLS approach

[Chi et al., 2012] with a more complex update.

L. Balzano University of Michigan
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LRMC/Streaming SVD

Incremental SVD with Missing Data Performance

10% entries observed ~ 30% entries observed 509, entries observed ~ 95% entries observed  100% entries observed
1

~ ~ ~GROUSE
3 100 - J100 10° 10°| | —SAGEGROUSE
C“’ S | R e ISVD with interpolation
P —— 8%, =95
o >
g (3
2 o
o o
s 2
E 10° 10° N
z 0 2000 4000 O 2000 4000 o 2000 4000 O 2000 4000 0 2000 4000
§
z 10° 10°
= 5 10° S
R N
o - N
= n
c - N\ . -10
® S 405 o' o
[
@a
o
2
10 20 020 20 4020
102000 4000 0 2000 4000 O 2000 4000 o 2000 4000 O 2000 4000

# vectors observed

Incremental SVD has been used in reduced order modeling!
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Heteroscedastic PCA

Outline

Introduction

Convergence guarantees

Matrix completion and streaming SVD
Heteroscedastic PCA

Reduced order modeling
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Introduction Co ce RMC Heteroscedastic PCA Reduced Order Mc

Modern data are heteroscedastic

Modern data are often corrupted by heteroscedastic noise.

varying radiation levels varying atmosphere varying sensor quality

We want to be able to use the predictive power of these data combined,
instead of doing analysis on each dataset separately.

http://www.medicalnewstoday.com/articles/153201.php
https://www.nasa.gov/multimedia/imagegallery/iotd.html
http://www.livescience.com/27992-portable-pollution-sensors-improve-data-nsf-ria.html

L. Bal University of Michigan
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Heteroscedastic PCA

What happens when we apply PCA?

@ Noise variance 0.01
@ Noise variance 1.0
— True

Suppose we seek the first principal component of these data,
blue and red combined. How will it look?

L. Balzano University of Michigan
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Heteroscedastic PCA

What happens when we apply PCA?

@ Noise variance 0.01
@ Noise variance 1.0
— True
—PCA
— HPPCA
— —WHPCA

PCA is not robust, but our methods
can handle the high variance data.

L. Balzano University of Michigan
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Heteroscedastic PCA

Two Approaches

Weighted PCA Heterosced Probabilistic PCA

Yj = U@zj‘ + nj€;

n
. 2 2
min » ajlly; — Uzl3
Uz JZ_; J Zj NN(O,Ik),Gj NN(O,Id)

Q; € {wl,...,wL}

@ Maximum Likelihood can

@ Use vanilla SVD algorithm

@ Amenable to analysis:

@ asymptotic recovery results

incorporate estimates of all
parameters

o Including noise variances!

o optimal weights to maximize
asymptotic recovery

@ Non-concave but probably “nice”

o ) ] @ Algorithms don’t have guarantees
@ But is it the “right” thing to do? (yet)

@ Requires knowledge or estimate of
unknown parameters

@ Makes distributional assumptions

University of Michigan
30
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Heteroscedastic PCA

Numerical Simulation - Weighted SVD

Optimal weights are not inverse noise variance [Hong et al., 2023]
@ Asymptotic analysis with problem size

@ Intuition: PCA is not robust to heavy outliers; must
downweight more

3/4 . .
/ asymptotic optimal

o 1/2
only use Y] (cleaner block)
14 only use Y inverse noise variance
(larger block) unweighted =
0 | | | | IS . .\ I I = L

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Block 2 noise variance o3
Two blocks Y7 € R¥X"1 and Yy € R?X"™2 with d = 103, ny = 103, ny = 10%, and signal component
variance 0% = 2. The first block noise variance is a% = 1 and the second block noise variance is on the x-axis.

For each weighting scheme, the dashed black curve is the predicted asymptotic performance, the solid colored curve
is the average from 400 trials, and the ribbon indicates the corresponding interquartile interval.

L. Balz
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Heteroscedastic PCA

Solving PPCA
We have several alternatives:
o Alternating MM [Hong et al., 2021]
@ Nuclear norm optimization and a difference of convex
approximation [Cavazos et al., 2023]
@ Streaming Stochastic MM [Gilman et al., 2025b]

% = Vgﬁ:fg

®5{

380

»r %y
‘ 75

b
oW,
oqu .

-2
L3
365 \ 365
%S ERY i
6.0 ™\ | 0 \ 36.0 N
-123 -122 -121 -120 -123 -122 -121 -120 -123 -122 -121 -120
AirNow & PurpleAir PC loadings: AirNow PC loadings: AirNow + PurpleAir

sensor locations

L. Balzano University of Michigan
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Heteroscedastic PCA

Air quality sensing

Total Train NRMSE AirNow Train NRMSE PurpleAir Train NRMSE
o5 -7 * . 05
0.20

0.4 015 0.4
w w w
] & ]
H E H
&g . Z 010 &g .

03 03

E 0.05 E
02 0.00 f—r—r ° 02 é +
PPCAAN PPCAPA  PPCA  HePPCAT PPCAAN PPCAPA  PPCA  HePPCAT PPCAAN PPCAPA  PPCA  HePPCAT

Figure: Box plots showing Normalized RMSE for the 30-dimensional
subspace learned over each of 200 train/test splits of the data.

L. Balzano University of Michigan
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Heteroscedastic PCA

Air quality sensing

Total Train NRMSE AirNow Train NRMSE PurpleAir Train NRMSE
o5 -7 * . 05
020
0.4 015} 04
w w w
] & ]
z H z
&g . Zo10f &g .
03 03
E 005} E
0.2 * + 0.00 f——ou o 0.2 é +
PPCAAN PPCAPA  PPCA  HePPCAT PPCAAN PPCAPA  PPCA  HePPCAT PPCAAN PPCAPA  PPCA  HePPCAT
Total Test NRMSE AirNow Test NRMSE PurpleAir Test NRMSE
o
0.50 o . 0.50
0.20f
0.45 0.45
015t
w w w
9 9 9
£ 040 H Z 040
£ £ £
010}
035 ; 035
0.30 0.051 é 0.30
PPCA-AN PPCAPA  PPCA  HePPCAT PPCA-AN PPCAPA  PPCA  HePPCAT PPCAAN PPCAPA  PPCA  HePPCAT

Figure: Box plots showing Normalized RMSE for the 30-dimensional
subspace learned over each of 200 train/test splits of the data.
L. Balza
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Reduced Order Modeling

Outline

Introduction

Convergence guarantees

Matrix completion and streaming SVD
Heteroscedastic PCA

Reduced order modeling
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Reduced Order Modeling

Model-based data-driven ROM

Consider a (potentially non-linear)
system of difference equations

Tpt1 =f (g, ug) T
yr =h(zk, u)

with states z; € R™, input uy € R™, Wind farm simu-
lation with 6.3 million states
and output R".
Put Y € [Meyers and Meneveau, 2012].

Collect data through simulation or experimentation as snapshots of

the system
Xo = [(Eo xr1 ... :cns_l] € R"=Xns
X; = [Il o ... l‘ns] € RM=*ns
Uy = [uo U ... uns_l] € R™uxns
Yo=[wo ¥1 - Yne—1] € RWM

L. Balzano

University of Michigan
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Reduced Order Modeling

Linearizing the System

Using this data, the non-linear system can be approximated as the
linear system

{xk—i-l = Axy + Bug (3)

Yk = Cux + Dug
by solving the least-squares problem3

Aé_ar o [[X] o [A B) [
¢ Dl T M ABEp| | v C D||Uy

2

(4)

F

3Note that this is the best-fit linear system in an f-sense, which may or
may not be what we really need for downstream applications.

L. Balzano University of Michigan
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Reduced Order Modeling

Reduced-Order Model (ROM)

Going further, we can project our state onto r-dimensional
subspace spanned by semi-orthogonal matrix (Q € R"=*"

2=Q'z e R"
to get the low-order system

2p+1 ~ Fzi + Guy
yr ~ Hzp + Dug

where F := Q" AQ,G :=Q"B,H := CQ.

L X Q O0l[F G1[QT o] [X
b o | b | A A R P

subjectto  Q € G(n,r)

2

(5)

F

L. Balzano University of Michigan
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Reduced Order Modeling

Reduced-Order Model (ROM)

Going further, we can project our state onto r-dimensional
subspace spanned by semi-orthogonal matrix (Q € R"=*"

2=Q 'z eR"

For a given projection matrix Q, the ROM that best fits this data
is given by the solution to the least-squares problem

F G . QT X, F G1[Q7X,
A L o e P

2

F

which leads to...

L. Balzano University of Michigan
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Reduced Order Modeling

Reduced-Order Model (ROM)

Going further, we can project our state onto r-dimensional
subspace spanned by semi-orthogonal matrix () € R"=*"

2=Q 'z e R’
] (@ o) [eTx [Qxa]' [@7 o] [xal|[
mmgnlze H{Yol]_[o I][ yol]{ UOO} [O I} {U(())] -
(5)

subject to @ € G(n,r)

L. Balzano University of Michigan
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Reduced Order Modeling

lllustrative Example

Example Problem

-0.7 0.7 o 0.5 "
€T =
M 05 05 | ot
Parameterize Q € R?*! as

o [1)

and visualize the landscape as a function of 6.

L. Balzano University of Michigan
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Reduced Order Modeling

lllustrative Example
Example Problem
-0.7 -0.7 0.5

x = T + U
A I WS - S B V4 B

< POD ||
o Optimal,

-m/4 0 /4 /2 3r/4 T 5m/4
0

Figure: Cost function (5) as a function of 6, the angle of the orthogonal
projection matrix Q.

L. Balzano University of Michigan
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Reduced Order Modeling

Wind Farm Experiment

Problem Setup borrowed from [Annoni and Seiler, 2017].

1 Table: Wind Farm Model
—— | | s Parameters

0

15 20

Parameter Value
@ Input is front turbine axial factor. Murb 2 turbines
o ] x-by-y grid | 201-by-101
° O.utput is wind speed at white g 40602 states
triangle. - 1 input
ny 1 output
N 200 samples

L. Balzano

University of Michigan

Low-Rank Optimization 40



Reduced Order Modeling

Wind Farm Experiment

Problem Setup borrowed from [Annoni and Seiler, 2017].

\ 1 Table: Comparison of Metrics for
OU 0

cooop e Method | Objective Value
POD 4380.41
GGD 4188.06

L. Balzano University of Michigan
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Reduced Order Modeling

But ... POD performs well!

Noise Coefficient =0.01
- * x

Optimization rarely has oy . ,
much room for PO ! ° i
improvement over POD in = % !
random examples (in I I
terms of best linear é "
approximations). 3 0.5 i l

Not only that, but our 08 100

10

1.2 3 4 5 6 7 8 ©°

Reduced Order 7

true end goal is not {5
best fit but usually some
downstream task, such as
control.

L. Balzano University of Michigan
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Reduced Order Modeling

Data-Driven ROM LQR Pipeline

@ Choose subspace Q and compute F, G as the least-squares solution:

P ¢ lamx) [4%)

@ Design LQR controller for ROM (with LQR cost matrices P, R):
K, =LQR(F,G,Q"PQ,R)
@ Lift controller to full state-space:

f= QT

L. Balzano University of Michigan
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Data-Driven ROM LQR Pipeline

@ Choose subspace Q using POD and compute F,G as the
least-squares solution:

7 é=fox [

@ Design LQR controller for ROM (with LQR cost matrices P, R):
K, = LQR(F,G,Q"PQ, R)

© Lift controller to full state-space:

How well does POD actually work for this method?

L. Balzano University of Michigan
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Reduced Order Modeling

Lifted Low-Rank Structures

@ LQR regularity: (A, B) is stabilizable and (A, P) is detectable.

@ Low-rank: there exists matrices F' € R™", G € R"*"u,
P, € R™*" and @ € R™*" with orthonormal columns for
r < ng such that

A=QFQ",B=QG, P=QPQ". (6)

© Identifiability: the pair (F,G) in (2) is controllable.

@ Initial-state subspace consistency: xg € span(Q).

L. Balzano University of Michigan
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Reduced Order Modeling

Lifted Low-Rank Systems

Theorem 1 (Informal CTRESERIBESIED )

For a lifted low-rank LQR problem with sufficiently exciting input,
the POD controller found with the data-driven LQR pipeline is
equivalent to the optimal LQR controller for the full-order system.

. Lf\/\/LJ ”

0.3

0.25

0.2

0.15

Percentage of Unstable Trials

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
13 €

Parameters: n, = 100, n, =5, r = 20, ny = 125, £y =0

L. Balzano University of Michigan

Low-Rank Optimization 45



Reduced Order Modeling

Future Work

e More work incorporating missing data methods and
streaming data SVD methods into ROM

e ROM for heterogeneous fidelity data
e Optimization for ROM

@ Theory for other controllers besides LQR, and other
downstream tasks
@ Perturbation theory for approximately low-rank systems
© Techniques for identifying:
o when POD is sufficient
e when POD is not sufficient but an optimization-improved
subspace is sufficient

@ when nonlinear model structure is needed (see also
[Geelen et al., 2024])

L. Balzano University of Michigan
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Example Applications |
@ Missing Data SVD (Low-Rank Matrix Completion):
Pq projects onto the coordinates 2 C {1,...,n}.

minimize Po(UWT —Y)||%2 st. UeG(n,d) (7
pepminimize, - [1Pa( ) G(n,d) (7)

L. Balzano University of Michigan
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Example Applications |l
@ Robust SVD:

minimi Po(UwT -y t.
vepminimize - I1Pa i st Uegnd)
(8)
© Sparse SVD:
minimi PoUWT —Y)|% st U1 <
veaminimize - I1Pal Wist UL <r Ueg
(9)

.. JCAFREERA
- EREuEGEEE [
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Example Applications Il

@ Heteroscedastic PCA:

minimize ¢(U,Y )subject to U € G(n,d) (10)
UeRnxd

where /() is the negative log likelihood for heteroscedastic
PCA.

@ Dictionary learning / Non-neg Matrix Factorization:
minimize [uw?” —v|% (11)
UeRnxm WeRNXm:m>n
subject to  ||[W] <7
Wij >0

L. Balzano University of Michigan
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Example Applications IV
@ Calibration SVD:
inimi Po (gUWT —Y)) |2 12
pepminimize | [1Po (o ) % (12)
subject to g is L — Lipschitz and monotonic

Ue€g(n,d)
@ Data-Driven ROM

Collect input-output data from a
(potentially nonlinear) discrete-time
dynamical system, and find a system
matrices for a low-rank linear system
that best fits the data. Wind farm simu-

lation with 6.3 million states

Michigan
16
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Example Applications V

X Q 0l[F G1[QT o] [Xo]l”
b o | 1 A P | S
(13)

subject to @ € G(n,r)

L. Balzano University of Michigan
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Astronomical Imaging

Courtesy of https://noirlab.edu/public/news/noao1901/
Imaging the night sky is done with a variety of instrumentation
whose images are subject to nightly conditions.

e moonlight
@ haze, clouds, other particulate matter
@ imaging at the edge of the field of view

The measurements are noisier on some nights or for some locations
in the sky.

L. Balzano University of Michigan
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New Directions: Maximum Likelihood

yi = UOz; + 15

Suppose z; and ¢; are all iid normal N'(0,1). Then the maximum
likelihood estimator for U, © is given as

16
Ueng(li(k _2210g< 202+17> (ZyTUP Uty ) '

0;i=1,... 1=l

where I'; is a k x k diagonal matrix with entries 2 02+ 7 Given 6;

(and therefore T';) then the maximum likelihood U is identified by

Ur,U y; .
Uenéagk) Z Y yi

L. Balzano University of Michigan
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Linear-Quadratic Regulator

Denote LQR(A, B, P, R) as the

state-feedback problem Tk
L Tp1 = Azxy + Buy,
o0
m}}n Z (x;chxk + u;chuk)
k=0
subject to  xpy1 = Axg + Buy,
U = —-K T
When (A, B) are known, we can K
already solve this exactly, but the

computation scales with O(n3).

L. Balzano University of Michigan
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Optimality of POD

Theorem 2 (Informal)

For a lifted low-rank LQR problem with sufficiently exciting input,
the POD controller found with the data-driven LQR pipeline is
equivalent to the optimal LQR controller for the full-order system.

Proof outline:

@ Prove POD identifies the correct subspace using persistently
exciting assumption.

@ Prove equivalence of K% = LQR(A, B, P, R) and POD
controller using low-rank assumptions.

L. Balzano University of Michigan
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Perturbations to the Low-Rank Assumption

Given parameters

Low-order system
Perturbations

Orthogonal matrix
LQR Costs

FeR™
F| € R(n’” )X (ng—Tr)

[Q QL] Eanxnm,
R=1I,,

G e RT*m
G, € R(ra—7)Xny
Q Q'@ Q=1
P = QPTQT

we generate an e-perturbed lifted low-order system defined by

A=QFQ" +eQ.F. Q]
B=0QG+eQ,G,

to evaluate the impact of breaking the low-rank system matrices

assumption.

L. Balzano
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Small Exactly Low-Rank Example

@ Problem setup
o Generate a random @ € R2*1, 0
F € R, G € R and construct 013
lifted low-rank system as Sn o
A=QFQT, B=QG, oo
P=QQT, and R = 1.
e Simulate and gather snapshots ol
for ng = 4 steps. o
o Define Q(6) = [sin(f), cos(9)] . "
@ POD controller is optimal for E
o Least-squares ROM cost (upper)
o End-to-end data-driven ROM O
LQR cost (lower)

L. Balzano University of Michigan
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LQR Solution

Lemma 3 (Section 3.3 of [Anderson and Moore, 2007])

When (A, B) is stabilizable and (A, Q) is detectable, there is a
unique solution Pt = 0 to the following DARE:

P—ATPA-Q-A"PB(R+B'PB)"'!B"PA=0 (14)

such that

K}:=(R+B'P;B)'BTP}A (15)
stabilizes the linear discrete time system (3) and minimizes the
quadratic cost in (20) with J (K7}, xo) = xJP;}xo for all initial
conditions.

L. Balzano University of Michigan
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LQR Intermediate Results Il

Proposition 4

Consider discrete LTI system matrices (A, B) and LQR cost
matrices (Q, R) that satisfy LLR Assumptions. Denote the Riccati
solution and optimal controller for LQR(A, B, P, R) as (P;, K;)
Let Q € R™*" pe any matrix with orthonormal columns such that
Span(V) = span(Q) Define F:= QT AQ, G := Q" B, and
Q, = QTPQ Then there exists a unique stabilizing solution, that
we denote (P, K7), to the reduced-order LQR(F,G, P,, R).
Moreover,

P} =QPQ", K;=K;Q'. (16)

University of Michigan
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LQR Intermediate Results IlI

Lemma 5 (extension of [Willems et al., 2005, Cor. 2])

Consider discrete LTI system matrices (A, B) that satisfy LLR
Assumptions with input {uk}zg)l persistently exciting of order
r+ 1. Then

@ rank(Xy) =r, and

Q rank([gg]) =7+ ny

University of Michigan
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LQR Intermediate Results |

Proposition 6

Consider discrete LTI system matrices (A, B) that satisfy LLR
Assumptions with input {uk}zsz_ol persistently exciting of order

r+ 1.
Let Q) be the POD projection matrix and (F, G’) be the resulting
reduced-order model matrices. Then

span(V) = span(Q) (17)

and X X
F=T7'FT, G=T"'G (18)

for the orthogonal matrix T := V1 Q.

L. Balzano University of Michigan
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LQR Theorem Formal Statement

Theorem 7 ( LQR Theorem Slide )

Consider discrete LTI system matrices (A, B) and LQR(A, B, P, R)
problem that satisfy Lifted Low-Rank Assumptions with input

{u 3! Rersistent/y exciting of order r + 1. Then, the POD
controller Ky is the optimal LQR controller for the full-order
system, i.e. Kf = Kj*c

L. Balzano University of Michigan
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