Learning dynamical systems from frequency-response data

Serkan Gugercin

Department of Mathematics, Virginia Tech
Division of Computational Modeling and Data Analytics, Virginia Tech

Reduced Order and Surrogate Modeling for Digital Twins
Institute for Mathematical and Statistical Innovation
November 11, 2025

Thanks to: US National Science Foundation

Input Load Estimation for Deployable Space Structures

Need for CFRP Booms in Deployable Space Structures:

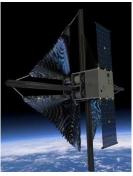
- CFRP Boom are viable alternative to massive truss structures for deploying optical and communication systems accurately and can assist in opening solar sails
- lightweight and cheaper than standard metallic booms, reduce the fuel mass requirements

Need for Modeling Dynamics of Deployable Booms:

- Passive deployments can be violent and unpredictable, can impact satellite dynamics
- Performance prediction and ensuring reliability in harsh environmental conditions
- Mitigating risk of damage to the satellite components

Difficulties in Modeling:

- Uncertainties in mass and stiffness
- Non-uniform cross section and shape with deployer boundary conditions



Advanced Composite Solarsail System (ACS)-3

- Risks of uncontrolled deployments:
 - Excessive vibration & resonance excitation
 - Coupling with spacecraft attitude control
 - Sensor/instrument misalignment
 - Fatigue and long-term reliability issues
 - Interference with other spacecraft elements
- Measuring deployment forces directly is often impractical due to challenges in placing a force sensor precisely at the point of force application.
- Advantages of prediction of these deployment forces:
 - Protect structure & avoid dynamic failure
 - Accurate controller design & safe deployment sequencing

Boom under study

Bi-stable CFRP boom with parabolic cross section

 Composite layup properties [45PWc/0C/-45PWc] as shown in table below

Dimensions:

Flattened Width and Coil Height: 70 mm

Bistable Coil Diameter: ~78.3 mm

Thickness: 0.17 mm

Parabola Tip Separation: 52.63 mm

Parabola Height: 31.56 mm

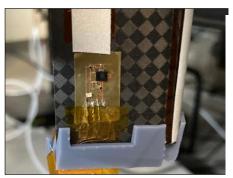
Length: 1219.2 mm (4 ft)

Boom geometry

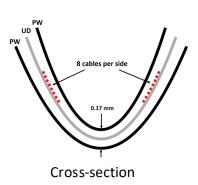
Ply Material	Fiber/Resin	E_1 [GPa]	E ₂ [GPa]	ν_{12}	G ₁₂ [GPa]	Thickness t [μm]
Unidirectional Carbon Fiber	MR60H/PMT-F7	144.1	5.2	0.335	2.8	40.0
Plain Weave Carbon Fiber	M30S/PMT-F7	89.0	89.0	0.035	4.2	58.2

Boom layup properties

Boom under study

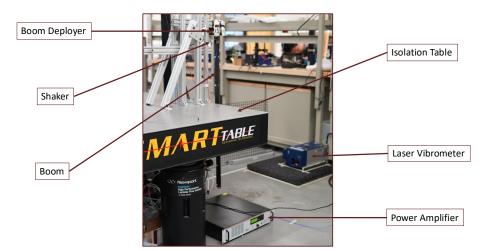


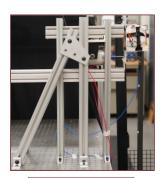
Boom tip IMU circuit



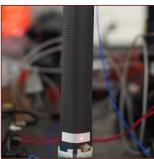
Gugercin

Experimental Setup

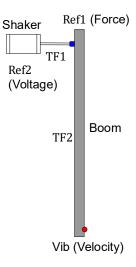




Side view showing shaker



Boom Tip Velocity Measurement



Linear dynamical systems with inputs and outputs

$$S: \qquad u(t) \longrightarrow \begin{vmatrix} \mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) \\ y(t) = \mathbf{c}^T\mathbf{x}(t) \end{vmatrix} \longrightarrow y(t)$$

- $\mathbf{0}$ $\mathbf{x}(t) \in \mathbb{R}^n$: Internal degrees of freedom (position and velocity)
- $u(t) \in \mathbb{R}$: input (force due to the end of deployment shock)
- $y(t) \in \mathbb{R}$: output (velocity at the tip (near IMU))
- **4 E**, $\mathbf{A} \in \mathbb{R}^{n \times n}$, \mathbf{b} , $\mathbf{c} \in \mathbb{R}^n$

$$\mathbf{E} \qquad \begin{vmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{x}} \end{vmatrix} = \mathbf{A} \qquad \begin{vmatrix} \mathbf{x} \\ \mathbf{x} \end{vmatrix} + \mathbf{b} \qquad \begin{vmatrix} \mathbf{y} \\ \mathbf{y} \end{vmatrix} = \mathbf{c}^T \qquad \mathbf{x}$$

Data-driven modeling for dynamical systems

In many instances, we only have

$$u(t) \longrightarrow \begin{bmatrix} & \text{Black-box} \\ & \text{dynamical system} \end{bmatrix} \longrightarrow y(t)$$

• Dynamics are not available; only access to input/output (u(t)/y(t)) data.

Construct
$$\mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{b}_r u(t)$$
 directly from input/output da

input/output data

- Learn the reduced order operators $(\mathbf{E}_r, \mathbf{A}_r, \mathbf{b}_r, \mathbf{c}_r)$ (without access to the full-order operators $(\mathbf{E}, \mathbf{A}, \mathbf{b}, \mathbf{c}))$ such that $y_r(t) \approx y(t)$ for a wide range of input functions
- Data in this talk: Frequency-domain samples

Outline of the talk

Data-driven rational least-square approximants

Application to boom deployment:
 With Deven Mhadgut and Austin Phoenix from VT

Learning parametric dynamical systems from data:
 With Andrea Carracedo Rodriguez and Linus Balicki from VT

Rational approximants for learning dynamical systems

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) \\
y(t) = \mathbf{c}^{T}\mathbf{x}(t)$$

$$\implies y(t) = (Su)(t) = \int_{0}^{t} h(t - \tau)u(\tau)d\tau$$

- $h(t) = \mathbf{c}^T e^{\mathbf{A}t} \mathbf{b}$ when $\mathbf{E} = \mathbf{I}$.
- Transform the problem into the frequency domain via Laplace transform:

$$H(s) = \int_0^\infty h(t)e^{-st}dt = \mathbf{c}^T(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{b}$$

 \bullet H(s) is called the transfer function. In the frequency domain, we have

$$\hat{\mathbf{y}}(\omega) = H(\imath \omega) \hat{\mathbf{u}}(\omega)$$

• H(s) is a degree-n rational function:

$$H(s) = \mathbf{c}^{T} (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b} = \frac{p_0 + p_1 s + p_2 s^2 + \dots + p_{n-1} s^{n-1}}{1 + q_1 s + q_2 s^2 + \dots + q_n s^n}$$

Enforce the same structure in the learned model

$$\mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{b}_r u(t)$$
$$y_r(t) = \mathbf{c}_r^T \mathbf{x}_r(t)$$

• Enforce the learned-transfer function to be a degree-r rational function:

$$H_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \frac{\alpha_0 + \alpha_1 s + \alpha_2 s^2 + \dots + \alpha_{r-1} s^{r-1}}{1 + \beta_1 s + \beta_2 s^2 + \dots + \beta_r s^r}$$

Original model: $\hat{y}(\omega) = H(\imath \omega)\hat{u}(\omega)$ Learned model: $\hat{y}_r(\omega) = H_r(\imath \omega)\hat{u}(\omega)$

• The error is determined by the mismatch between H(s) and $H_r(s)$:

$$||y - y_r|| < ||H - H_r|| ||u||$$

• Constructing $H_r(s)$ becomes a rational approximation problem

Enforce the same structure in the learned model

$$\mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{b}_r u(t)$$
$$y_r(t) = \mathbf{c}_r^T \mathbf{x}_r(t)$$

Enforce the learned-transfer function to be a degree-r rational function:

$$H_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \frac{\alpha_0 + \alpha_1 s + \alpha_2 s^2 + \dots + \alpha_{r-1} s^{r-1}}{1 + \beta_1 s + \beta_2 s^2 + \dots + \beta_r s^r}$$

Original model: $\hat{y}(\omega) = H(\imath \omega)\hat{u}(\omega)$ Learned model: $\hat{y}_r(\omega) = H_r(\imath \omega)\hat{u}(\omega)$

• The error is determined by the mismatch between H(s) and $H_r(s)$:

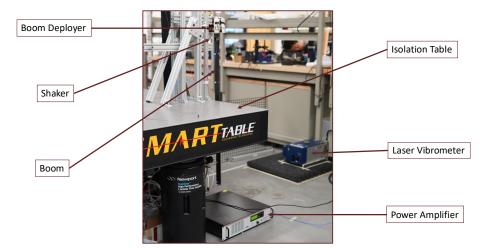
$$||y - y_r|| < ||H - H_r|| ||u||$$

• Constructing $H_r(s)$ becomes a rational approximation problem

Goal: Given the samples $\{H(s_1), H(s_2), \dots, H(s_N)\}$, construct/learn $H_r(s)$

BoomDeployment RationalFunc LSFit Intplt ParamSys pAAA

Recall: 3D Laser Vibrometer Measurements



Rational least-squares fitting for learning dynamics

- Experiments measure the transfer function at the IMU tip location (excitation from the input force)
 - H(s) has a single input and single output
- Input: Force. Output: Velocity response at a single location
- Measurements are in the [0, 100] Hz range.
- Overall N = 12800 samples

$$H(s_k) \in \mathbb{C}, \ s_k = \imath \omega_k, \ \text{for} \ k = 1, 2, \dots, N$$

Rational least-squares fitting for learning dynamics

- Experiments measure the transfer function at the IMU tip location (excitation from the input force)
 - H(s) has a single input and single output
- Input: Force. Output: Velocity response at a single location
- Measurements are in the [0, 100] Hz range.
- Overall N = 12800 samples

$$H(s_k) \in \mathbb{C}, \ s_k = \imath \omega_k, \ \text{for} \ k = 1, 2, \dots, N$$

Given $\{H(s_1), H(s_2), \dots, H(s_N)\}$, construct $H_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r$ such that the least-squares error is minimized:

$$\sum_{i=1}^{N} |H_r(s_i) - H(s_i)|^2 \longrightarrow \min.$$

Choosing the form of the rational approximant

$$\mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{b}_r u(t)$$
$$y_r(t) = \mathbf{c}_r^T \mathbf{x}_r(t)$$

• We can learn $H_r(s)$ in many different forms: So far we have seen

$$H_r(s) = \underbrace{\mathbf{c}_r^T}_{1 \times r} (s \underbrace{\mathbf{E}_r}_{r \times r} - \underbrace{\mathbf{A}_r}_{r \times r})^{-1} \underbrace{\mathbf{b}_r}_{r \times 1} = \frac{\alpha_0 + \alpha_1 s + \alpha_2 s^2 + \dots + \alpha_{r-1} s^{r-1}}{1 + \beta_1 s + \beta_2 s^2 + \dots + \beta_r s^r}$$

Choosing the form of the rational approximant

$$\mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{b}_r u(t)$$
$$y_r(t) = \mathbf{c}_r^T \mathbf{x}_r(t)$$

• We can learn $H_r(s)$ in many different forms: So far we have seen

$$H_r(s) = \underbrace{\mathbf{c}_r^T}_{1 \times r} (s \underbrace{\mathbf{E}_r}_{r \times r} - \underbrace{\mathbf{A}_r}_{r \times r})^{-1} \underbrace{\mathbf{b}_r}_{r \times 1} = \frac{\alpha_0 + \alpha_1 s + \alpha_2 s^2 + \dots + \alpha_{r-1} s^{r-1}}{1 + \beta_1 s + \beta_2 s^2 + \dots + \beta_r s^r}$$

• We can also use the *pole-residue* form:

$$H_r(s) = \sum_{i=1}^r \frac{\psi_i}{s - \lambda_i}$$

Choosing the form of the rational approximant

$$\mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{b}_r u(t)$$
$$y_r(t) = \mathbf{c}_r^T \mathbf{x}_r(t)$$

• We can learn $H_r(s)$ in many different forms: So far we have seen

$$H_r(s) = \underbrace{\mathbf{c}_r^T}_{1 \times r} (s \underbrace{\mathbf{E}_r}_{r \times r} - \underbrace{\mathbf{A}_r}_{r \times r})^{-1} \underbrace{\mathbf{b}_r}_{r \times 1} = \frac{\alpha_0 + \alpha_1 s + \alpha_2 s^2 + \dots + \alpha_{r-1} s^{r-1}}{1 + \beta_1 s + \beta_2 s^2 + \dots + \beta_r s^r}$$

• We can also use the pole-residue form:

$$H_r(s) = \sum_{i=1}^r \frac{\psi_i}{s - \lambda_i}$$

• Solve the nonlinear rational least-squares problem using the chosen form:

$$\sum_{i=1}^{N} |H_r(s_i) - H(s_i)|^2 \longrightarrow \min.$$

• Take
$$H_r(s) = \frac{s+1}{s+2}$$
.

• Take $H_r(s) = \frac{s+1}{s+2}$. Easy to verify that

$$s+1 = -4(s-4) + 5(s-3)$$
 and $s+2 = -5(s-4) + 6(s-3)$.

• Take $H_r(s) = \frac{s+1}{s+2}$. Easy to verify that

$$s+1 = -4(s-4) + 5(s-3)$$
 and $s+2 = -5(s-4) + 6(s-3)$.

• Write $H_r(s)$ as

$$H_r(s) = \frac{s+1}{s+2} = \frac{-4(s-4) + 5(s-3)}{-5(s-4) + 6(s-3)}$$

• Take $H_r(s) = \frac{s+1}{s+2}$. Easy to verify that

$$s+1 = -4(s-4) + 5(s-3)$$
 and $s+2 = -5(s-4) + 6(s-3)$.

• Write $H_r(s)$ as

$$H_r(s) = \frac{s+1}{s+2} = \frac{-4(s-4) + 5(s-3)}{-5(s-4) + 6(s-3)}$$

• Define $\ell(s) = (s-3)(s-4)$ and divide by $\ell(s)$ to obtain

• Take $H_r(s) = \frac{s+1}{s+2}$. Easy to verify that

$$s+1 = -4(s-4) + 5(s-3)$$
 and $s+2 = -5(s-4) + 6(s-3)$.

• Write $H_r(s)$ as

$$H_r(s) = \frac{s+1}{s+2} = \frac{-4(s-4) + 5(s-3)}{-5(s-4) + 6(s-3)}$$

• Define $\ell(s) = (s-3)(s-4)$ and divide by $\ell(s)$ to obtain

$$H_r(s) = \frac{s+1}{s+2} = \frac{-4\frac{s-4}{\ell(s)} + 5\frac{s-3}{\ell(s)}}{-5\frac{s-4}{\ell(s)} + 6\frac{s-3}{\ell(s)}} = \frac{\frac{-4}{s-3} + \frac{5}{s-4}}{\frac{-5}{s-3} + \frac{6}{s-4}} = \frac{\sum_{j=1}^{2} \frac{\phi_j}{s-\sigma_j}}{\sum_{j=1}^{2} \frac{\varphi_j}{s-\sigma_j}}$$

• In the general case, define

$$\ell_j(s) = \prod_{\substack{k=1 \ k \neq j}}^{r+1} (s - \sigma_k)$$
 and $\ell(s) = \prod_{k=1}^{r+1} (s - \sigma_k)$

• Then, write $H_r(s)$ in the barycentric form:

$$H_r(s) = \frac{p_r(s)}{q_r(s)} = \sum_{\substack{j=1 \ j=1}}^{r+1} \phi_j \ell_j(s) = \sum_{\substack{j=1 \ j=1}}^{r+1} \phi_j \frac{\ell_j(s)}{\ell(s)} = \sum_{\substack{j=1 \ j=1}}^{r+1} \phi_j \frac{\ell_j(s)}{\ell(s)} = \sum_{\substack{j=1 \ j=1}}^{r+1} \frac{\phi_j}{s - \sigma_j}$$

• Given the data $H(s_i)$, for $i=1,\ldots,N$, find $H_r(s)=\frac{n(s)}{d(s)}=\frac{\displaystyle\sum_{j=1}^r \frac{\phi_j}{s-\sigma_j}}{\displaystyle\sum_{j=1}^r \frac{\varphi_j}{s-\sigma_j}+1}$ with r< N such that the 1

with r < N such that the least-squares error is minimized:

$$\sum_{i=1}^N |H_r(s_i) - H(s_i)|^2 = \sum_{i=1}^N \left| \frac{n(s_i) - d(s_i)H(s_i)}{d(s_i)} \right|^2 \longrightarrow \min.$$

• Given the data $H(s_i)$, for $i=1,\ldots,N$, find $H_r(s)=\frac{n(s)}{d(s)}=\frac{\displaystyle\sum_{j=1}^r \frac{\phi_j}{s-\sigma_j}}{\displaystyle\sum_{i=1}^r \frac{\varphi_j}{s-\sigma_j}+1}$

with r < N such that the least-squares error is minimized:

$$\sum_{i=1}^N |H_r(s_i) - H(s_i)|^2 = \sum_{i=1}^N \left| \frac{n(s_i) - d(s_i)H(s_i)}{d(s_i)} \right|^2 \longrightarrow \min.$$

Solve a sequence of linear least-squares problems ([Sanathanan/Koerner,63]:)

$$H_r^{(k)} = \frac{n^{(k)}(s)}{d^{(k)}(s)}, \qquad \sum_{i=1}^{N} \left| \frac{n^{(k+1)}(s_i) - d^{(k+1)}(s_i)H(s_i)}{d^{(k)}(s_i)} \right|^2 \longrightarrow \min.$$

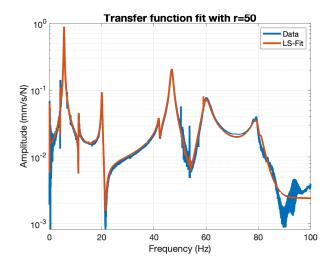
At the kth step: Solve

$$\|\Delta^{(k)}(\mathcal{A}x^{(k+1)}-h)\|_2 \to \min$$

• [Sanathanan/Koerner, 63], [Gustavsen/Semlyen, 99], [Drmač/G./Beattie, 15]

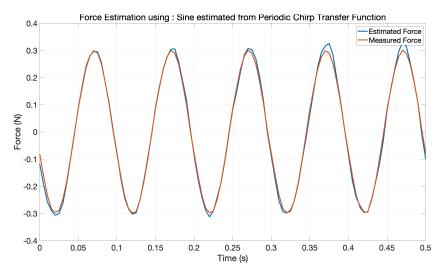
Back to Boom Deployment: Matching the frequency response

- Data: $H(s_k) \in \mathbb{C}$ $s_k = i\omega_k$, for k = 1, 2, ..., 12800
- We fit an order r = 50 rational function $H_r(s)$ to the data



Force Estimation

• "Invert" the observed velocity output y(t) using the learn model to estimate the experimental (measured) forcing.



Interpolation via Barycentric form

 \bullet For the dynamical system H(s), as before, assume access to its samples

$$h_i = H(s_i), \quad s_i \in \mathbb{C}, \quad \text{for } i = 1, \dots, N.$$

• Build a rational function $H_r(s)$ that interpolates the data

$$H_r(s_i) = H(s_i) = h_i$$
 for $i = 1, 2, ..., N$.

• We will again use the barycentric form of a rational approximant:

$$H_r(s) = \frac{\sum_{j=1}^k \frac{\phi_j}{s - \sigma_j}}{\sum_{j=1}^k \frac{\varphi_j}{s - \sigma_j}} = \frac{n_{k-1}(s)}{d_{k-1}(s)} \qquad (\Longrightarrow H_r(s) = \mathbf{c}_r^\top (s\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{b}_r, \ r = k - 1)$$

where $\sigma_j \in \mathbb{C}$ are the support (interpolation) points, a subset of the sampling points $\{s_1, \ldots, s_N\}$, and $\phi_j, \varphi_j \in \mathbb{C}$ to be determined.

Barycentric rational interpolation via Loewner matrices

$$H_r(s) = \sum_{j=1}^k \frac{\phi_j}{s - \sigma_j} / \sum_{j=1}^k \frac{\varphi_j}{s - \sigma_j}$$

• Construct $H_r(s)$ such that

$$H_r(s_i) = H(s_i) = h_i$$
 for $i = 1, 2, ..., N$.

Partition the sampling points and the corresponding function values:

sampling points:
$$\{s_1, \ldots, s_N\} = \{\sigma_1, \ldots, \sigma_k\} \cup \{\hat{\sigma}_1, \ldots, \hat{\sigma}_{N-k}\},$$

sampled values: $\{h_1, \ldots, h_N\} = \{g_1, \ldots, g_k\} \cup \{\hat{g}_1, \ldots, \hat{g}_{N-k}\}.$

• To enforce interpolation at $\{\sigma_1, \sigma_2, \dots, \sigma_k\}$:

$$\phi_j = \varphi_j h_j, \quad \varphi_j \neq 0 \quad \Longrightarrow \quad H_r(s) = \sum_{j=1}^k \frac{\varphi_j h_j}{s - s_j} / \sum_{j=1}^k \frac{\varphi_j}{s - s_j}$$

$$\{s_1, \dots, s_N\} = \{\sigma_1, \dots, \sigma_k\} \cup \{\hat{\sigma}_1, \dots, \hat{\sigma}_{N-k}\},$$

$$\{h_1, \dots, h_N\} = \{g_1, \dots, g_k\} \cup \{\hat{g}_1, \dots, \hat{g}_{N-k}\}.$$

$$H_r(s) = \sum_{j=1}^k \frac{\varphi_j h_j}{s - s_j} / \sum_{j=1}^k \frac{\varphi_j}{s - s_j}$$

• To enforce interpolation at $\hat{\sigma}_i$, for i = 1, 2, ..., N - k:

$$H(\hat{\sigma}_i) = H_r(\hat{\sigma}_i) \implies \sum_{j=1}^k \frac{\hat{g}_i - g_j}{\hat{\sigma}_i - \sigma_k} \varphi_j = 0 \implies \text{Solve } \mathbb{L} \mathbf{a} = \mathbf{0}$$

$$\text{where } \mathbb{L} = \begin{bmatrix} \frac{\hat{g}_1 - g_1}{\hat{\sigma}_1 - \sigma_1} & \cdots & \frac{\hat{g}_1 - g_k}{\hat{\sigma}_1 - \sigma_k} \\ \vdots & \ddots & \vdots \\ \frac{\hat{g}_{N-k} - g_1}{\hat{\sigma}_{N-k} - \sigma_1} & \cdots & \frac{\hat{g}_{N-k} - g_k}{\hat{\sigma}_{N-k} - \sigma_k} \end{bmatrix} \quad \text{and} \quad \mathbf{a} = \begin{bmatrix} \varphi_1 \\ \vdots \\ \varphi_k \end{bmatrix}$$

 $(N-k) \times k$ Loewner matrix

- Under some mild assumptions, a unique rational interpolant of minimal degree is obtained ([Antoulas/Anderson, 86])
- Optimal selection of interpolation points: [G./Antoulas/Beattie, 08]

A hybrid approach: Interpolate and LS

partition data:

(sampling points)
$$\{s_1,\ldots,s_N\} = \{\sigma_1,\ldots,\sigma_k\} \cup \{\hat{\sigma}_1,\ldots,\hat{\sigma}_{N-k}\}$$

(sampled values) $\{h_1,\ldots,h_N\} = \{g_1,\ldots,g_k\} \cup \{\hat{g}_1,\ldots,\hat{g}_{N-k}\}$

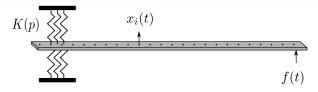
Combine interpolation and LS:

Adaptive Anderson-Antoulas (AAA) [Nakatsukasa/Sete/Trefethen, 2018]

$$H_r(s) = \sum_{j=1}^k \frac{\varphi_j g_i}{s - \sigma_i} / \sum_{j=1}^k \frac{\varphi_j}{s - \sigma_i}$$

- Interpolation on a subset of data
- φ_j : via LS fit on the rest of data: Solve $\min \|\mathbb{L} \mathbf{a}\|_2$, $\mathbf{a} \neq 0$.
- Greedy selection for the next interpolation point: $\sigma_{k+1} = \arg \max_{s_i} |h_i H_r(s_i)|$

Parametric Dynamical Systems



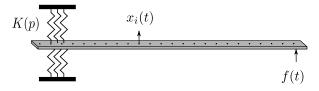
• A parametric beam model with equations of the form

$$\mathbf{M}\ddot{\mathbf{x}}(t; \mathbf{p}) + \mathbf{D}\dot{\mathbf{x}}(t; \mathbf{p}) + \mathbf{K}(\mathbf{p})\mathbf{x}(t; \mathbf{p}) = \mathbf{b}\,u(t), \quad y(t) = \mathbf{c}^T\mathbf{x}(t; \mathbf{p})$$

• Laplace transform (frequency domain) → transfer function:

$$Y(s;p) = \underbrace{\mathbf{c}^{\top} (s^2 \mathbf{M} + s \mathbf{D} + \mathbf{K}(p))^{-1} \mathbf{b}}_{H(s;p)} U(s)$$

Parametric Dynamical Systems



• A parametric beam model with equations of the form

$$\mathbf{M}\ddot{\mathbf{x}}(t; \mathbf{p}) + \mathbf{D}\dot{\mathbf{x}}(t; \mathbf{p}) + \mathbf{K}(\mathbf{p})\mathbf{x}(t; \mathbf{p}) = \mathbf{b} u(t), \quad y(t) = \mathbf{c}^T \mathbf{x}(t; \mathbf{p})$$

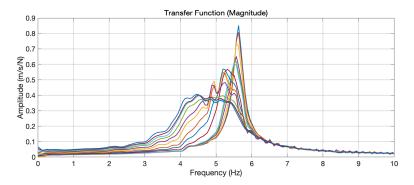
• Laplace transform (frequency domain) → transfer function:

$$Y(s;p) = \underbrace{\mathbf{c}^{\top} (s^2 \mathbf{M} + s \mathbf{D} + \mathbf{K}(p))^{-1} \mathbf{b}}_{H(s;p)} U(s)$$

The new goal:

$$\{H(s_1, p_1), H(s_1, p_2), \dots, H(s_N, p_M)\} \implies H_r(s, p) \approx H(s, p)$$

- In the boom deployment, vary the load level
- Fifteen load-levels (voltages) are tested



Transfer function varies with the "load level".

Barycentric forms for parametric dynamical systems and pAAA

• Recall the nonparametric case:
$$H_r(s) = \frac{\displaystyle\sum_{j=1}^r \frac{\phi_j}{s-\sigma_j}}{\displaystyle\sum_{j=1}^r \frac{\varphi_j}{s-\sigma_j}}$$

• Find a bivariate rational approximation to H(s,p): $H_r(s,p) = \frac{n(s,p)}{d(s,p)}$

$$H_r(s,p) = \sum_{i=1}^k \sum_{j=1}^q \frac{\phi_{ij}}{(s-\sigma_i)(p-\pi_j)} \left/ \sum_{i=1}^k \sum_{j=1}^q \frac{\varphi_{ij}}{(s-\sigma_i)(p-\pi_j)} \right|$$

• pAAA Algorithm ([Carracedo Rodriguez/Balicki/G., 23]): Extended the AAA algorithm of [Nakatsukasa/Sete/Treftehnen, 18] to parametric systems.

Parametric AAA (pAAA) [Carracedo Rodriguez/Balicki/G., 23]

$$H_r(s,p) = \sum_{i=1}^k \sum_{j=1}^q \frac{\phi_{ij}}{(s-\sigma_i)(p-\pi_j)} / \sum_{i=1}^k \sum_{j=1}^q \frac{\varphi_{ij}}{(s-\sigma_i)(p-\pi_j)}$$

pAAA is an iterative algorithm and partitions the data at iteration k:

$$[s_1,\ldots,s_N] = [\sigma_1,\ldots,\sigma_k] \cup [\hat{\sigma}_1,\ldots,\hat{\sigma}_{N-k}] \qquad \text{freq. samples}$$

$$[p_1,\ldots,p_M] = [\pi_1,\ldots,\pi_q] \cup [\hat{\pi}_1,\ldots,\hat{\pi}_{M-q}] \qquad \text{par. samples}$$

$$[h_{ij}] = \begin{bmatrix} \frac{[H(\sigma_i,\pi_j)] & [H(\sigma_i,\hat{\pi}_j)] \\ [H(\hat{\sigma}_i,\pi_j)] & [H(\hat{\sigma}_i,\hat{\pi}_j)] \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{H}_{11}}{\mathbf{H}_{21}} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix} \quad \text{values}$$

• Select greedily some of the data pairs (σ_i, p_i) for interpolation. At iteration k:

$$(\sigma_k, \pi_k) = \underset{(s_i, p_i)}{\operatorname{argmax}} |h_{ij} - H_r(s_i, p_j)| \implies \phi_{ij} = \varphi_{ij}h_{ij}, \quad h_{ij} = H(\sigma_i, \pi_j)$$

• Minimize a linearized LS error on the rest of the data

pAAA

$$H_r(s,p) = \sum_{i=1}^k \sum_{j=1}^q \frac{\varphi_{ij} h_{ij}}{(s-\sigma_i)(p-\pi_j)} \left/ \sum_{i=1}^k \sum_{j=1}^q \frac{\varphi_{ij}}{(s-\sigma_i)(p-\pi_j)} \right|$$

Partition data at iteration k:

$$\begin{split} [s_1,\ldots,s_N] &= [\sigma_1,\ldots,\sigma_k] \cup [\hat{\sigma}_1,\ldots,\hat{\sigma}_{N-k}] & \text{freq. samples} \\ [p_1,\ldots,p_M] &= [\pi_1,\ldots,\pi_q] \cup [\hat{\pi}_1,\ldots,\hat{\pi}_{M-q}] & \text{par. samples} \\ [h_{ij}] &= \begin{bmatrix} \frac{[H(\sigma_i,\pi_j)] & [H(\sigma_i,\hat{\pi}_j)]}{[H(\hat{\sigma}_i,\hat{\pi}_i)] & [H(\hat{\sigma}_i,\hat{\pi}_j)]} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{H}_{11}}{\mathbf{H}_{21}} & \mathbf{H}_{12} \\ \hline \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix} & \text{values} \end{split}$$

Choose φ_{ij} to minimize the linearized LS error in the remainin data $\begin{bmatrix} & \mathbf{H}_{12} \\ \hline \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix}$

Leads to a linear LS problem in every step. Algorithm stops after a tolerance value is reached. The complexity (order) and interpolation points are automatically chosen.

Algorithm (pAAA)

return $H_r(s,p)$

```
Given \{s_i\}, \{p_i\}, \text{ and } \{h_{ii}\} = \{H(s_i, p_i)\}
Initialize: k = 0 and q = 0
                                                                                                 ||[h_{ij}]-[H_r(s_i,p_i)]||_{\infty}
For 1st iteration, define: H_r(s,p) = average(h_{ii}) and set error \leftarrow
                                                                                                        ||[h_{ii}]||_{\infty}
while error > desired tolerance do
   Select (s_{\hat{i}}, p_{\hat{j}}) by greedy search
   Update the data partitioning
   if s_i was not selected at a previous iteration then
       k \leftarrow k + 1
       \sigma_k \leftarrow s_{\hat{i}}
   end if
   if p_{\hat{j}} was not selected at a previous iteration then
       q \leftarrow q + 1
       \pi_a \leftarrow p_{\hat{i}}
   end if
   Build the Loewner matrix \mathbb{L}_2 and solve \min \|\mathbb{L}_2 \mathbf{a}\|_2 s.t. \|\mathbf{a}\|_2 = 1
   Update the rational approximation H_r(s, p)
   error \leftarrow \frac{\|[h_{ij}] - [H_r(s_i, p_j)]\|_{\infty}}{\|[h_{ij}]\|_{\infty}}
end while
```

Multi-parameter extension is (theoretically) straightforward

$$H_r(s, p, z) = \sum_{i=1}^k \sum_{j=1}^q \sum_{\ell=1}^o \frac{\phi_{ij\ell}}{(s - \sigma_i)(p - \pi_j)(z - \zeta_\ell)} / \sum_{i=1}^k \sum_{j=1}^q \sum_{\ell=1}^o \frac{\varphi_{ij\ell}}{(s - \sigma_i)(p - \pi_j)(z - \zeta_\ell)}$$

Multi-input/multi-output problems are handled via tangential sampling:

$$H(s_i, p_i) \in \mathbb{C}^{n_i \times n_o} \quad \Rightarrow \quad \mathbf{u}^T H(s_i, p_i) \mathbf{v} \in \mathbb{C}$$

- Inspired by [Elsworth/Güttel,19] for the non-parametric AAA.
- This leads to a type of tangential interpolation and weighted LS solution ([Carracedo Rodriguez/Balicki/G.,23])

Parameterized Gyroscope Model

- The butterfly gyroscope is a vibrating micro-mechanical structure used for inertia-based navigation.
- This is the parameterized Modified Gyroscope model from MORwiki (http://modelreduction.org/)

$$\mathbf{M}(p)\ddot{\mathbf{q}}(t) + \mathbf{D}(p,z)\dot{\mathbf{q}}(t) + \mathbf{K}(p)\mathbf{q}(t) = \mathbf{b}\,u(t), \quad y(t) = \mathbf{c}^{\top}\mathbf{q}(t)$$

- p: structural parameter, z: the rotation velocity
- Transfer function:

$$H(s, p, z) = \mathbf{c}^{\top} (s^2 \mathbf{M}(p) + s \mathbf{D}(p, z) + \mathbf{K}(p))^{-1} \mathbf{b}$$

- $\mathbf{M}(p) = \mathbf{M}_1 + p\mathbf{M}_2$, $\mathbf{D}(p, z) = z(\mathbf{G}_1 + p\mathbf{G}_2)$, $\mathbf{K}(p) = \mathbf{K}_1 + \frac{1}{p}\mathbf{K}_2 + p\mathbf{K}_3$
- 100 samples of s_i in $[0.025, 0, 25]2\pi i$, 10 samples of p_j in [1, 2], and 10 samples of z_ℓ in $[10^{-7}, 10^{-5}]$

• pAAA results in (k, q, o) = (52, 7, 9) (orders in s, p, and z)

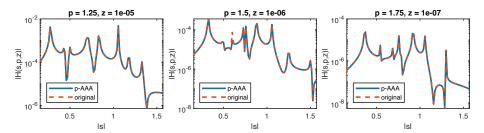
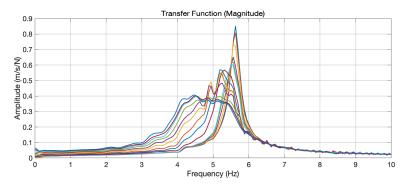


Figure: p-AAA approximation of gyroscope model for various parameter combinations.

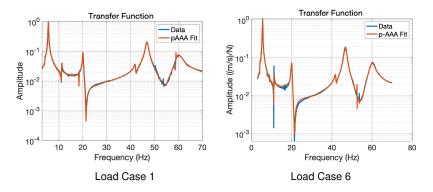
Back to the boom deployment

We have parametrically varying dynamics based on the load level



- Our parameter in this case is the "load level".
- We construct a data-driven parametric rational function $H_r(s,p)$ to fit the measurements using p-AAA.

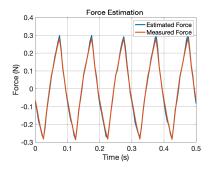
- We have $H_r(s_i, p_j)$ samples for i = 1, ..., 1600 and j = 1, ..., 15.
- p-AAA results in $H_r(s, p)$ with order k = 193 in s and order q = 13 in p.

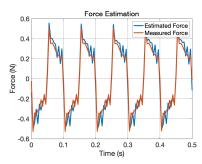


Neither load case was in the training data

Parametric Force Estimation

• "Invert" the observed velocity output y(t) using the learn parametric model to estimate the experimental (measured) forcing.

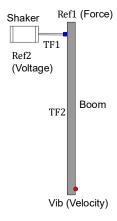


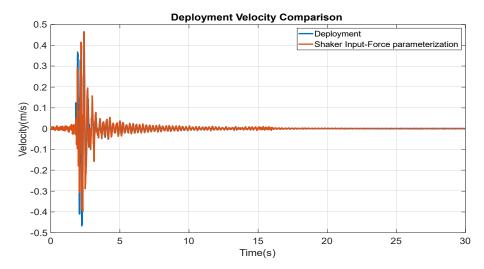


• Training was done using a chirp signal

Estimating the Deployment Force

- So far, we have been collecting data by exciting the system ourselves (using the shaker). The major goal is to estimate the forcing from deployment.
- Remove the shaker. Roll up the boom and release the spool.
- Measure the deployment velocity at the tip and calculate Ref1 (Force) based on the parametric TF2 transfer function model
- Calculate Ref2 Voltage from calculated Ref1 Force using another parametric model for TF1
- Reattach the shaker and apply this estimated Ref2 Voltage. Measure the velocity at the tip of the deployed boom
- Compare this velocity with the velocity from released spool.





Estimated forcing from the data-driven rational pAAA approximation leads to an output correctly predicting the observed velocity

Conclusions and outlook: Data-driven rational approximants

- Rational least-squares fit from data
- Application to boom deployment:

"Input Load Estimation for Bistable Spacecraft Booms using System Identification", in preparation. Earlier version to appear in 2026 AIAA SciTech

- Extension to parametric dynamical systems (pAAA):
 - Original pAAA with grid data: Carrecado Rodriguez, G., and Balicki: SIAM SISC https://doi.org/10.1137/20M1322698.)
 - pAAA with low-rank barycentric form for multiple-parameters: Balicki and G.: ArXiV preprint arXiv:2502.03204.
 - pAAA for scarred data sets: Balicki and G.: ArXiV preprint arXiv:2510.22861.
- p-AAA Repository: https://github.com/lbalicki/parametric-AAA
- Currently under investigation:
 - Extending barycentric forms to structured and nonlinear dynamics