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BoomDeployment
Input Load Estimation for Deployable Space Structures

Need for CFRP Booms in Deployable Space Structures:

@ CFRP Boom are viable alternative to massive truss
structures for deploying optical and communication
systems accurately and can assist in opening solar sails

@ lightweight and cheaper than standard metallic booms,
reduce the fuel mass requirements

Need for Modeling Dynamics of Deployable Booms:

@ Passive deployments can be violent and unpredictable,
can impact satellite dynamics

@ Performance prediction and ensuring reliability in harsh
environmental conditions

@ Mitigating risk of damage to the satellite components
Difficulties in Modeling:

Advanced Composite
@ Uncertainties in mass and stiffness Solarsail System (ACS)-3
@ Non-uniform cross section and shape with deployer

boundary conditions
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BoomDeployment

@ Risks of uncontrolled deployments:

@ Excessive vibration & resonance excitation

Coupling with spacecraft attitude control
@ Sensor/instrument misalignment
o Fatigue and long-term reliability issues

o Interference with other spacecraft elements

@ Measuring deployment forces directly is often impractical due to challenges in
placing a force sensor precisely at the point of force application.

@ Advantages of prediction of these deployment forces:

o Protect structure & avoid dynamic failure

@ Accurate controller design & safe deployment sequencing

Gugercin Learning dynamical systems from data 3/39



BoomDeployment
Boom under study

+  Bi-stable CFRP boom with parabolic cross section

- Composite layup properties [45PWc/0C/-45PWc] as shown in
table below.

. Dimensions:

« Flattened Width and Coil Height: 70 mm
« Bistable Coil Diameter: ~78.3 mm

« Thickness: 0.17 mm

« Parabola Tip Separation: 52.63 mm

« Parabola Height: 31.56 mm

« Length: 1219.2 mm (4 ft) Boom geometry
Ply Material Fiber/Resin E, [GPa] E>[GPa] vi2 G12 [GPa] Thickness ¢ [um]
Unidirectional Carbon Fiber MR60H/PMT-F7 144.1 5.2 0.335 2.8 40.0
Plain Weave Carbon Fiber M30S/PMT-F7 89.0 89.0 0.035 42 58.2

Boom layup properties
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BoomDeployment
Boom under st

8 cables per side

Cross-section

PV

Boom tip IMU circuit
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BoomDeployment
Experimental Setup

Boom Deployer

Isolation Table

Laser Vibrometer

Power Amplifier
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BoomDeployment

Shaker  Refl (Force)

TF1
Ref2
(Voltage)
Boom
TF2

Vib (Velocity)

‘ Side view showing shaker ‘ ‘ Boom Tip Velocity Measurement
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BoomDeployment

Linear dynamical systems with inputs and outputs

S: () — — y(1)

@ x(r) € R": Internal degrees of freedom (position and velocity)
@ u(r) € R: input (force due to the end of deployment shock)
© y(¢r) € R: output (velocity at the tip (near IMU))

Q E A cR™, b,ceR"

O o-
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BoomDeployment

Data-driven modeling for dynamical systems

@ In many instances, we only have

Black-box
— (1)

dynamical system

@ Dynamics are not available; only access to input/output (u(¢)/y(¢)) data.

E, x, (1) = A, x,(f) + b, u(r) directly from

Construct ) = s ) input/output data

@ Learn the reduced order operators (E., A,, b, ¢,) (without access to the full-order
operators (E, A, b, ¢)) such that y,(r) ~ y(¢) for a wide range of input functions

@ Data in this talk: Frequency-domain samples

Gugercin Learning dynamical systems from data 9/39



BoomDeployment
Outline of the talk

@ Data-driven rational least-square approximants

@ Application to boom deployment:
With Deven Mhadgut and Austin Phoenix from VT

@ Learning parametric dynamical systems from data:

With Andrea Carracedo Rodriguez and Linus Balicki from VT
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RationalFunc

Rational approximants for learning dynamical systems

= y(t) = (Su)(r) = /Oth(t — 7)u(T)dT

@ h(t)=c’e*b whenE =1
@ Transform the problem into the frequency domain via Laplace transform:
H(s) = / h(t)e "dt = ¢" (sE — A)"'b
0

@ H(s) is called the transfer function. In the frequency domain, we have
y(w) = H(w)ir(w)
@ H(s) is a degree-n rational function:

o+ piSs+past A4 pais”T!

H(s)=c SE—A)"'b=
(5) (s ) L+ qis++qs? + - - + gus”

Gugercin Learning dynamical systems from data 11/39



RationalFunc

Enforce the same structure in the learned model

E, x,(t) = A, x.(t) + b, u()
yr(t) = e/ x,(t)

@ Enforce the learned-transfer function to be a degree-r rational function:

o+ s+ ans®+ o+ oy 5!

L+ Bis+ +0257 + - + +0Bs"

H,(s) = c,.T(sE,. — A,<)_lb, =

Original model: j(w) = H(w)i(w) Learned model: .(w) = H:(w)i(w)

@ The error is determined by the mismatch between H(s) and H,(s):
[y = yell < 1H = He[| [[u]

@ Constructing H,(s) becomes a rational approximation problem
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RationalFunc

Enforce the same structure in the learned model

E, x,(t) = A, x.(t) + b, u()
yr(t) = e/ x,(t)

@ Enforce the learned-transfer function to be a degree-r rational function:

o+ s+ ans®+ o+ oy 5!

L+ Bis+ +0257 + - + +0Bs"

H,(s) = c,.T(sE,. — A,<)_lb, =
Original model: j(w) = H(w)i(w) Learned model: .(w) = H:(w)i(w)

@ The error is determined by the mismatch between H(s) and H,(s):
[y = yell < 1H = He[| [[u]

@ Constructing H,(s) becomes a rational approximation problem

Goal: Given the samples {H(s1),H(s2), ..., H(sy)}, construct/learn H,(s) |
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RationalFunc
Recall: 3D Laser Vibrometer Measurements

Boom Deployer

Isolation Table

Laser Vibrometer

Power Amplifier
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LSFit

Rational least-squares fitting for learning dynamics

@ Experiments measure the transfer function at the IMU tip location (excitation from
the input force)

H(s) has a single input and single output

@ Input: Force. Output: Velocity response at a single location
@ Measurements are in the [0, 100] Hz range.
@ Overall N = 12800 samples

H(sy) € C, s =wwy, for k=1,2,...,N
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LSFit

Rational least-squares fitting for learning dynamics

@ Experiments measure the transfer function at the IMU tip location (excitation from
the input force)
H(s) has a single input and single output
@ Input: Force. Output: Velocity response at a single location
@ Measurements are in the [0, 100] Hz range.
@ Overall N = 12800 samples
H(sy) € C, s =wwy, for k=1,2,...,N

Given {H(s1), H(s2), ..., H(sy)}, construct H,(s) = ¢! (sE. — A,)~'b, such that
the least-squares error is minimized:
N
Z |H,(si) — H(s,-)|2 — min.

i=1
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LSFit

Choosing the form of the rational approximant

E, x,(t) = A x.(1) + b u()
(1) = eI x,(1)

@ We can learn H,(s) in many different forms: So far we have seen

Contoust s+ o s

U \)I/_ L+ Bis+ +52s2 4 -+ + 455
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LSFit

Choosing the form of the rational approximant

E, x,(t) = A x.(1) + b u()
(1) = eI x,(1)

@ We can learn H,(s) in many different forms: So far we have seen

Contoust s+ o s

SN Y = L Bis B2 b BT

@ We can also use the pole-residue form:

i) =37,
i=1 '
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LSFit

Choosing the form of the rational approximant

E, x,(t) = A x.(1) + b u()
(1) = eI x,(1)

@ We can learn H,(s) in many different forms: So far we have seen

_atastas 4 +as!

SN Y = L Bis B2 b BT

@ We can also use the pole-residue form:

Hi(s) = 30
i=1 !

@ Solve the nonlinear rational least-squares problem using the chosen form:

N
Z |H,(si) — H(s;)|* — min.
i=1
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LSFit

Barycentric form of the rational approximant

o Take H,(s) = ji;
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LSFit

Barycentric form of the rational approximant

s+ 1
s+2°

@ Take H,(s) = Easy to verify that

s+1=—-4(s—4)+5(s—3) and s+2=-5(s—4)+6(s—3).
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LSFit

Barycentric form of the rational approximant

s+ 1
s+2°

@ Take H,(s) = Easy to verify that

s+1=—-4(s—4)+5(s—3) and s+2=-5(s—4)+6(s—3).

@ Write H,(s) as
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LSFit

Barycentric form of the rational approximant

s+ 1
s+2°

@ Take H,(s) = Easy to verify that

s+1=—-4(s—4)+5(s—3) and s+2=-5(s—4)+6(s—3).

@ Write H,(s) as

s+1  —4(s—4)+5(-3)
s+2 —5(s—4)+6(s—3)

H,(s) =

@ Define £(s) = (s — 3)(s — 4) and divide by ¢(s) to obtain
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LSFit

Barycentric form of the rational approximant

o Take H.(s) = ji; Easy to verify that

s+1=—-4(s—4)+5(s—3) and s+2=-5(s—4)+6(s—3).

@ Write H,(s) as
s+l —4(s—4)+5(s-3)
Hi(s) = s+2 —5(s—4)+6(s—3)

@ Define £(s) = (s — 3)(s — 4) and divide by ¢(s) to obtain

2
s—4 s—3 —4 5 Z ¢
4 "% 15 B S -
() =11 £(s) ) _5-3 s a_m=°"%
T s2 T s—4  s=3 7 5 6 2
5f(s) 6 £(s) s—3+s—4 Zsfja.
J

16/39
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LSFit

@ In the general case, define

r+1 r+1
4(s) = H(s —ox) and L(s) = H(s — o%)
(= -

@ Then, write H,(s) in the barycentric form:

r+1 r+1 r+1

(s %
or(s) ;M() Zas, g(s ;s_gj
Hr (S) = (S) = r+1 = r+l E(S) = r+1 o
ar > witi(s) D g > =
= = £(s) = s—o
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. . n(s) =1 5T
@ Giventhedata H(s;),fori=1,...,N,find H,(s) = ) = —
Z Pj 1
Pl

with » < N such that the least-squares error is minimized:

- i) — a\si Si 2
ZIH;(sl —HEP =Y n(si) — d(si)H(si)

— min.
= d(si) ‘
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. . n(s) =1 5T
@ Giventhedata H(s;),fori=1,...,N,find H,(s) = ) = —
Z Pj 1
Pl

with » < N such that the least-squares error is minimized:

- i) — a\si Si 2
ZIH;(sl —HEP =Y n(si) — d(si)H(si)

— min.
= d(si) ‘

@ Solve a sequence of linear least-squares problems ([Sanathanan/Koerner,63]:)

D () — a5 H(s) |
d® (s;)

w _ n®(s) -

= 20 (s)’ — min.

i=1

@ Atthe k™ step: Solve
|A® (Ax T — p)|j, — min

@ [Sanathanan/Koerner, 63], [Gustavsen/Semlyen, 99], [Drmaé/G./Beattie, 15]
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LSFit
Back to Boom Deployment: Matching the frequency response

o Data: H(sx) € C sy = ww, for k=1,2,...,12800
@ We fit an order r = 50 rational function H,(s) to the data

100 ‘Transfer tunction fit‘ with r=50‘
Data
—— LS-Fit
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£ 1072
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107 ] i ; j ]
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Frequency (Hz)
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LSFit
Force Estimation

@ “Invert" the observed velocity output y(¢) using the learn model to estimate the
experimental (measured) forcing.

04 Force Estimation using : Sine estimated from Periodic Chirp Transfer Function
. T T T T

— Estimated Force
—Measured Force
0.3 B

0.2~ B

0.1

Force (N)
o
T

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (s)

Gugercin Learning dynamical systems from data 20/39



Intplt
Interpolation via Barycentric form

@ For the dynamical system H(s), as before, assume access to its samples

hi:H(S,’), si € C, for i=1,...,N.

@ Build a rational function H,(s) that interpolates the data

Hr(Sl‘) :H(Si) =h; for i= 1,2,...,N,

@ We will again use the barycentric form of a rational approximant:

_ J
H(s) = = = i (s) (= H.(s) =¢ B, —A) b, r=k—1)
k . di—1(s)
>
= § — 0j

where g; € C are the support (interpolation) points, a subset of the sampling
points {si,...,sv}, and ¢;, ¢; € C to be determined.

Gugercin Learning dynamical systems from data 21/39



Intplt

Barycentric rational interpolation via Loewner matrices

z o z .

s — oj
@ Construct H,(s) such that
Hr(Sl') = H(Sl‘) =h; for i= 1,2, e ,N.

@ Partition the sampling points and the corresponding function values:

sampling points:  {si1,...,sv} ={o1,...,0} U{G1,...,0n—k},
sampled values:  {hi,...,hn} ={g1,..., gt U {81, .., 8n—k}
@ To enforce interpolation at {o1, 02, ..., 0k}:

=17

k k
wihy »j
& =wil, @i #0 = H Z /I/ZJ
J J
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Intplt

{1,y = Ao, 003 U{G1, .., 6Nk}

k k
= —+} @i hj o
H.(s) = g E —
{hi,....hw} = A{g1,- -, 8} U{81,. ., 8nv—x} (s) S—Sj/ s—5

@ To enforce interpolation at 6;, fori=1,2,...,N —k:

H(6)) = Ho(67) = ZL%:O — Solve La=0
Ok

gi

j=l1
%’1 81 81 —8k ©1
G1—0o1 G1—0%
where L = . : and a=
N—k—&1 . BN—k—8&
GN—k— O] ON—k— Ok Pk

(N—k)xk Loewner matrix

@ Under some mild assumptions, a unique rational interpolant of minimal degree is
obtained ( [Antoulas/Anderson, 86] )

@ Optimal selection of interpolation points: [G./Antoulas/Beattie, 08]
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Intplt
A hybrid approach: Interpolate and LS

@ partition data:

(sampling points) {si,...,sn} ={o1,...,06} U {61,...,6n—}
(sampled values) {hi,.... v} ={gi,--., g} U {81,.-.,8nv—k}

@ Combine interpolation and LS:
Adaptive Anderson-Antoulas (AAA) [Nakatsukasa/Sete/Trefethen, 2018]

k k
Pj8i Pi
H.(s) =Y £ —
(S) j:ZlS—O'i j:ZIS—O'i

@ Interpolation on a subset of data
@ ¢;: via LS fit on the rest of data: Solve min [[Lal|,, a # 0.

@ Greedy selection for the next interpolation point: oy = arg max |h; — H,(s;)|
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ParamSys

Parametric Dynamical Systems

@ A parametric beam model with equations of the form

Mk (1; p) + Dx(1; p) + K(p)x(t;p) = bu(r), y(1) = ¢'x(t;p)

@ Laplace transform (frequency domain) ~ transfer function:

Y(s;p) =c¢' (M +sD+K(p)) 'bU(s)

H(s3p)
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ParamSys

Parametric Dynamical Systems

@ A parametric beam model with equations of the form

Mk (1; p) + Dx(1; p) + K(p)x(t;p) = bu(r), y(1) = ¢'x(t;p)

@ Laplace transform (frequency domain) ~ transfer function:

Y(s;p) =c¢' (M +sD+K(p)) 'bU(s)

H(s3p)

The new goal: J

{H(Slvpl)’H(Slvpz)’"'7H(SNapM)} = Hr(S,p)NH(S,p)
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ParamSys

@ In the boom deployment, vary the load level
@ Fifteen load-levels (voltages) are tested

Transfer Function (Magnitude)
T

Frequency (Hz)

@ Transfer function varies with the “load level".

Gugercin Learning dynamical systems from data 26/39



PAAA

Barycentric forms for parametric dynamical systems and pAAA

@ Recall the nonparametric case: H,(s) = =~

@ Find a bivariate rational approximation to H(s,p): H,(s,p) = n(s,p)

£ 9251/ P Pij
S DR oL S .

T
i=1 j=lI J i=1 j=1 J)

@ pAAA Algorithm ([Carracedo Rodriguez/Balicki/G., 23]): Extended the AAA algorithm
of [Nakatsukasa/Sete/Treftehnen, 18] to parametric systems.
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PAAA

Parametric AAA (pAAA) [Carracedo Rodriguez/Balicki/G., 23]

v
1]
MQ

Crir zz T
(s—oi)p—m) (s—oi)(p—m)

i=1 j=1 i=1 j=1

@ pAAA is an iterative algorithm and partitions the data at iteration &:

[sl, ... 7SN] = [0’1, o ,O’k] U [(31, . ,&ka} freq. Samples
Pry-espu] =7, gl U R, o =g par. samples
[H(oi, )] ‘ [H(oi, )] Hy, ‘ Hp,
[hy] = = values
H ) | (HGn )] H | Hy

@ Select greedily some of the data pairs (oi, p;) for interpolation. At iteration k:

(o%, m) = ar(gmi)ix |y — H:(si,pj))| = & = @ihy, hy = H(oi, ;)
SisDj

@ Minimize a linearized LS error on the rest of the data
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YV
[oYAVAVAY

q k q
Pij hlj Pij
H’(Tvp) =
22 o)) / 22 o)
Partition data at iteration &:
[$1,.- s8] =[o1,..., 0] U[G1,..., 68—k freq. samples
P1y--opu] =71, U R, - i) par. samples

[H(oi,m)] | [H(ow, 7)) }_[ Hi | Hp } values
[H(6i, )] ‘ HG 7)) | | Ha ‘ Hz

[hy] =

Choose ¢;; to minimize the linearized LS error in the remainin data [ i E]Z ]
21 22

Leads to a linear LS problem in every step. Algorithm stops after a tolerance value is
reached. The complexity (order) and interpolation points are automatically chosen.
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PAAA

Algorithm (pAAA)

Given {s:}, {p;}, and {hy} = {H(si, p;)}
Initialize: k = 0 and g = 0
For 1st iteration, define: H,(s,p) = average(h;) and set error <
while error > desired tolerance do
Select (si, p;) by greedy search
Update the data partitioning
if s; was not selected at a previous iteration then
k+—k+1
Ok < S}
end if
if p; was not selected at a previous iteration then
qg<+—q+1
Tq < Pj
end if
Build the Loewner matrix L, and solve min ||L,a||; s.t. |ja]j> =1
Update the rational approximation H,(s, p)
error « Ml =[Er(sip)]ll oo

1] oo
end while
return H,(s,p)

| T3] = [Hr (siop)] Il oo
17211 oo
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PAAA

@ Multi-parameter extension is (theoretically) straightforward

k q 0

k q 0
_ Pije wije
Hepd =22 2 - 222 G- e

@ Multi-input/multi-output problems are handled via tangential sampling:

H(S,'7[)j) e Crirre = llTH(Si,pj)V eC

o Inspired by [Elsworth/Glittel,19] for the non-parametric AAA.
e This leads to a type of tangential interpolation and weighted LS solution
([Carracedo Rodriguez/Balicki/G.,23])
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PAAA
Parameterized Gyroscope Model

@ The butterfly gyroscope is a vibrating
micro-mechanical structure used for
inertia-based navigation.

@ This is the parameterized Modified
Gyroscope model from MORwiki
(http://modelreduction.org/)

M(p)i(1) + D(p,2)a(1) + K(p)a(r) = bu(r), () =c q(7)
@ p: structural parameter, z : the rotation velocity
@ Transfer function:
H(s,p,z) = ¢ (sM(p) +sD(p,2) + K(p))"'b
® M(p) =Mi +pMz, D(p,2) = 2(G1 +pG2), K(p) =Ki+ Ko +pKs

@ 100 samples of s; in [0.025,0,25]27:, 10 samples of p; in [1,2],
and 10 samples of z; in [1077,1077)
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http://modelreduction.org/

@ pAAAresultsin (k,q,0) = (52,7,9) (orders in s, p, and z)

p =1.25,z=1e-05 p=1.5,z=1e-06 p=1.75,z=1e-07

Figure: p-AAA approximation of gyroscope model for various parameter combinations.
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PAAA
Back to the boom deployment

@ We have parametrically varying dynamics based on the load level

Transfer Function (Magnitude)
T

Frequency (Hz)

@ Our parameter in this case is the “load level".

@ We construct a data-driven parametric rational function H, (s, p) to fit the
measurements using p-AAA.
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PAAA

@ We have H,(s;,p;) samplesfori=1,...,1600andj =1,...,15.

@ p-AAA results in H,(s, p) with order k = 193 in s and order ¢ = 13 in p.

o Transfer Function 109 , Transfer Function
10 i —Data
—Data —p-AAA Fit
— pAAAFit| |
107 §10_1
8 €
3 =
= 102 )
2’ 2
< £102
108 £
1 0-4 10-3 ' ' i
10 20 30 40 50 60 70 0 20 40 60 80
Frequency (Hz) Frequency (Hz)
Load Case 1 Load Case 6

@ Neither load case was in the training data
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Parametric Force Estimation

@ “Invert" the observed velocity output y(¢) using the learn parametric model to
estimate the experimental (measured) forcing.

Force Estimation . )
T T Force Estimation

— Estimated Force 0.6 T —

—— Measured Force —— Estimated Force

——Measured Force

0.4

0.2+

Force (N)
o

-0.2

-0.4

i I I 206 L I I
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Time (s) Time (s)

@ Training was done using a chirp signal
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PAAA
Estimating the Deployment Force

@ So far, we have been collecting data by exciting the
system ourselves (using the shaker). The major goal is

Refl (Force)
to estimate the forcing from deployment. Shaker —

@ Remove the shaker. Roll up the boom and release the Dﬁ.
spool. Ref2
(Voltage)

@ Measure the deployment velocity at the tip and calculate
Ref1 (Force) based on the parametric TF2 transfer

. Boom
function model TF2

@ Calculate Ref2 Voltage from calculated Ref1 Force
using another parametric model for TF1

@ Reattach the shaker and apply this estimated Ref2
Voltage. Measure the velocity at the tip of the deployed
boom >

@ Compare this velocity with the velocity from released Vib (Velocity)
spool.
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PAAA

05 Deployment Velocity Comparison
B T T

T
—— Deployment
——Shaker Input-Force parameterization

Velocity(m/s)

1 1 1 1
10 15 20 25 30
Time(s)

Estimated forcing from the data-driven rational pAAA approximation leads to an output
correctly predicting the observed velocity
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PAAA

Conclusions and outlook: Data-driven rational approximants

@ Rational least-squares fit from data

@ Application to boom deployment:

“Input Load Estimation for Bistable Spacecraft Booms using System Identification"”, in
preparation. Earlier version to appear in 2026 AIAA SciTech

@ Extension to parametric dynamical systems (pAAA):

o Original pAAA with grid data: Carrecado Rodriguez, G., and Balicki: SIAM SISC
https://doi.org/10.1137/20M1322698.)

o pAAA with low-rank barycentric form for multiple-parameters: Balicki and G.:
ArXiV preprint arXiv:2502.03204.

o pAAA for scarred data sets: Balicki and G.: ArXiV preprint arXiv:2510.22861.

@ p-AAA Repository: https://github.com/lbalicki/parametric-AAA
@ Currently under investigation:

e Extending barycentric forms to structured and nonlinear dynamics

Gugercin Learning dynamical systems from data 39/39


https://github.com/lbalicki/parametric-AAA

	BoomDeployment
	RationalFunc
	LSFit
	Intplt
	ParamSys
	pAAA

