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Description -

In many digital twin (DT) applications, the complexity of the forward models, the high dimensionality of the
inference parameter and decision variable spaces, the need for real-time response, and the imperative of
accounting for uncertainties all conspire to make the underlying inverse and optimal control problems
intractable using high fidelity forward models. Surrogates and reduced order models (ROMs) can make these
tasks tractable, provided they are sufficiently accurate and can be constructed with sufficiently few forward
model solves.

Specific challenges arising in the DT setting and that will be addressed in this workshop include: (1) The
surrogates/ROMs need not represent the full spatiotemporal system dynamics well, but only the control
objectives and data assimilation observables—how this “goal-orientation” is best done remains a challenge;
(2) since DTs typically evolve the dynamics over long time periods, there is a need to make ROMs structure
preserving (e.g., energy conserving); (3) Neural network representations have shown much promise as
surrogates in high dimensions, but work remains to be done to provide guarantees of their trustworthiness,
particularly in the few data regime; (4) the surrogates/ROMs must be parametric with respect to not just state
space, but also control variable space and uncertain parameter space, since the DT framework executes data
assimilation and control problems repeatedly over a moving horizon; (5) many methods for surrogates rely on
an intrinsically low-dimensional map from parameters to outputs of interest, and for ROMs an intrinsically
low-dimensional solution manifold, yet linear subspaces may not capture this low-dimensionality efficiently
for certain classes of problems (e.g., high frequency wave propagation, advection-dominated flow and
transport); and (6) using surrogates trained on samples of high-fidelity input-output maps and not their
Jacobians can result in poor approximation of gradients, leading to inaccurate solutions of optimization
problems underlying data assimilation and optimal control.
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Model Predictive Control (MPC)

MPC solves online the following discrete-time optimal control problem (OCP),

N—-1

min Z((Xk,Uk + pn(xn)

SUN—1

S.t. X1 = f(xk,uk), k € N(I)Vil
h(Xk) S 0
g(ux) <0
xo = x(t)
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Model Predictive Control (MPC)

MPC solves online the following discrete-time optimal control problem (OCP),
N—1
min Z £(Xk, uk) + pn(xn)

SUN—1

s.t. Xey1 = f(xk, uk), k € NQFI
h(x) <0
g(ux) <0
= x(t)

A typical reference-tracking objective with a reference ry and control action penalty,
2 2
£(x; us i) =[x = w2 4 [|u] 2
The system dynamics are assumed to be differentiable,
X1 = Axg + Bug, or  xiy1 = ODESolve(f(xk, ux)).

This is the discretize-then-optimize approach to OCP.
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Differentiable Predictive Control (DPC)

DPC (Drgoiia et al. 2024) is sampling-based strategy with expected risk minimization
loss for approximately solving the following OCP,

)
it Brgmri s ([ U0 0(0) €0t + prix(T) )

ot d’;(tt) — F(x(t), u(t): ),

u(t) = m(x(t);: & v),
h(x(t); ) <0,
g(u(t):€) <0,

<
<
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Differentiable Predictive Control (DPC)

DPC (Drgoiia et al. 2024) is sampling-based strategy with expected risk minimization
loss for approximately solving the following OCP,

min B by 6 Pe vmpy (/Té(x(t)m(t);E)dtJrpr(x(T))>
dx(t) _

st. = = f(x(1),u(t);v),
u(t) = m(x(t): & v),
h(x(t); €) <0,
g(u(t):€) <0,

We use penalty method to include the constraints in the loss function,
N—1
mmi/n EXONPXO!ENP& v~ Py, |:Z (e(Xk, Uk, é) + ph(h(xk7 5)) + pg(g(uk7 g))) + pN(XN):|
k=0

tit1
st Xeq1 = Xk +/ f(x(t),u(t); v)dt, wux=7mw(xq &, v).
tk

@ Assumes known differentiable dynamics and objectives for policy optimization.
@ This can be considered as discretize-then-sample-and-learn approach.
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Model, data-driven or learning-based control: comparison

Method Offline cost Constraint- Handles
aware? unknown
dynamics?
v v X
Classical MPC high online cost  zero offline cost industry needs recursive
standard system ID*
Approx. MPC X v X
(supervised) requires labelled postprocessing requires online
dataset & verification correction
DPC v v X
(self-supervised) low cost: no constraints needs known
labelled data embedded model
needed during training
Goal v v v
FEITE T



Modeling the Dynamics Using Function Encoders

o FE (Ingebrand et al. 2024) learns a set of NODE basis functions {g1,82,...,85}
that span a subspace F = span{gi, 8>, ...,8g} supported by the data.

@ Given some v, the dynamics are approximated as f ~ f € F, which takes the form of
a linear combination of the learned basis functions under time discretization,

tht1 1 B
Xkt1 :Xk+/ f(x(t),u(t);u)dtzxk+/ > Gi(v) gi(x(t), uk; 6;) dt
t =
B tet1
~xt Y o) [ gio.uas)d (1)
Jj=1 tk

where 0; are the network parameters of the basis network g;.

o Importantly, the NODE basis functions {g1,8>,...,8s} do not depend explicitly on
v; as such, the dynamics function is uniquely determined by the coefficients ¢ € RE.
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Offline Learning of FE Basis Functions for System Dynamics

@ The coefficients ¢ to some f € F can be computed in closed-form via the normal
equation as (G + Al)c =F.

o Here, Gj = (gi, g;) and F; = (f,g;) can both be easily computed using Monte Carlo
integration from a small amount of input-output data collected online.
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Offline Learning of FE Basis Functions for System Dynamics

@ The coefficients ¢ to some f € F can be computed in closed-form via the normal
equation as (G + Al)c =F.

o Here, Gj = (gi, g;) and F; = (f,g;) can both be easily computed using Monte Carlo
integration from a small amount of input-output data collected online.

Algorithm 2 (using xx4+1 = X, + At - f(x, uy; v) for simplicity).

Input: set of datasets D collected from dynamics F, learning rate o
Initialize basis functions g1, . . . , gg with trainable parameters 61, ..., 0pg
while not converged do
for all D; € D do
reset loss L = 0
for all (x4, uy, xc41) € D; do
c+ (G+ANTIF
Rit1 < Rpyq from (1)
o 2
L L+ [Ixks1 — Reqall2

end for
6 +— 6 —aVgl
end for
end while
Output: trained basis functions g1, ..., 8

Igbal et al. (UT Austin & JHU) FE-DPC 7/18



DPC with FE-NODE Dynamics

N—-1
min Exgn g, enrg. enPe {Z (£0xks i €) + pu(h(xi €)) + Pa(g(ux, €))) + pN(xN)} @
k=0
"t &
st Xkp1 = Xk + / ¢ gj(x(t), ux; 6;) dt, 3)
ty j=1
up = mw(xx; €, €). (4)

Algorithm 3

Offline learning of parametric neural policies via DPC

Input: pre-trained NODE basis functions g1, . . ., gg, learning rate 3
Initialize policy network 7y with parameters W
while not converged do
for all xg ~ PXO’ £~ P&’ c ~ Pc do
loss L <— 0
for k=0,1,N — 1do
uy — mw(xk: €, €)
Xp+1 < Xkt from (3)
end for
L «+ L from (2)
W+ W — gVylL
end for
end while
Output: trained policy network 7y
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DPC with FE-NODE Dynamics and Neural Policies

Offline Learning of Function Encoder (FE) Dynamics and Control Policies

1. Offline Learning of FE-NODE Basis Functions

3. Online Adaptation

Step 1: Update FE Coefficients

system trajectories

85

AVt

trajectory matching

system trajectory

=
53R
f
-
R S

g

offline training

function encoder

time-stepper

system identification

trajectories

2. DPC Policy Learning

loss

online
trajectories

update function
encoder coefficients ¢

Step 2: Zero-shot Adaptive Control Policy

N 20 pavpe o 20
] o >4 reference tracking @ >4
initial conditions xg @ @ [ o @
control params & (] @ @ o
FE coefficients ¢ @ constraints penalties’ @
parameters parametric Pre-trained model predictive new coefficients ¢ parametric
neural policy FE-NODE control loss and params x¢,&

FE-DPC

neural policy
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Example 1: Stabilizing a Van der Pol Oscillator

X1 = X2,

x = u(l— XIZ)XQ —x1 + u,
where [xi, %] " € [~2,2] x [~5,5], u € [-3.0, 3.0], and parameters ;1 ~ 1[0.1,3.0] and
d € {—1,1} determine the dynamics. The objective is, pn(xn) = ||xn]||* and
Z(X’ﬂu/ﬂg) = HukHz'
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Example 1: Stabilizing a Van der Pol Oscillator

)'(1 =d- X2,

=p(l— Xlz)XQ —x1 + u,

where [xi, %] " € [~2,2] x [~5,5], u € [-3.0, 3.0], and parameters ;1 ~ 1[0.1,3.0] and
d € {—1,1} determine the dynamics. The objective is, pn(xn) = ||xn]||* and

é(x’ﬂ Uy, £) = Huk”z'

X2

Uncontrolled system

Stabilizing control
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Example 2: Reference Tracking of a Two-tank System
x1 =di(1=v)p—d/xi,
%o = divp+ do/XT — doy/R.

where [x1,x] " € [0,1]?, control inputs [p,v]" € [0,1]?, di ~ U[0.06, 0.1] and
d> ~ U[0.01, 0.06]. The objective is pn(xn) = ||xn — Xrer(€)]|* and
Uk, i, €) = [Ix — xeer(€)|* + [lue]*.
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Example 2: Reference Tracking of a Two-tank System

)'(1 = d1(1 — V)p — dg\/)Tl,

X2 =divp+ dQ\/)Tl— C/Q\/>72~
where [x1,x] " € [0,1]?, control inputs [p,v]" € [0,1]?, di ~ U[0.06, 0.1] and
d» ~ U[0.01, 0.06]. The objective is pn(xn) = ||xn — Xref(€)||* and
Uk, i, €) = [Ix — xeer(€)|* + [lue]*.

--= Ref  =—— X1 — X2 ==+ Model switch -= Bounds =—— vV ——p
1.0
0.5 A
0.0
1.0 A 3 =
0.5 R : :
0.0 4 __LS—0 LS : l / : IJ

T
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Figure: Two-tank system reference tracking under multiple system switches using FE-DPC.
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Example 3: Reference Tracking of a Glycolytic Oscillator (GO)

X1 =Jo— ﬁ + u, (no control in below figure)
X =2t — kexa(N — x5) — Koxaxs,

X3 = koxo(N — x5) — kaxz(A — x6),

Xa = kaxs(A — x6) — kaxaxs — k(xa — x7),

X5 = koxo(N — x5) — kaxaxs — kexoxs,

Xe = —2% + 2ksxz(A — x6) — ksxe,

X7 = Yr(xa — x7) — kxz.

where ki € {80,90,100} and K; € {0.5,0.75}.
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Example 3: Reference Tracking of a Glycolytic Oscillator (GO)

X1 =Jo— % + u, (no control in below figure)
)52 = HI&:% — kzXz(N — X5) — k5X2X5,

)63 = kQXQ(N — X5) — k3X3(A — Xa),

)54 = k3X3(A — Xs) — k4X4X5 — H(X4 — X7),

X5 = koxo(N — x5) — kaxaxs — kexoXs,

X6 = —2% + 2k3x3(A — x5) — ksxs,

)57 = wli(X4 — X7) — kX7.

where k € {80,90,100} and K; € {0.5,0.75}.

—_X — X2 — X3 — Xy — X5 — Xg —— X7
—---Predx; ---Predx; ---Predxs ---Predxs ---Predxs ---Predxs --- Predx;

N I'M\’ N\
W

100 B

1071 4

¥

0 500 Time steps 1000 1500

Figure: Parameters switch every 500 step, predictions calibrated against true states every 50 step.
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Example 3: Reference Tracking of a Glycolytic Oscillator (GO)

Control objective is defined by py(xn) = [|x1,n — x1,ref(€)]|* and
(% Uk, &) =[xk — X eer(€)17 + w1
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Example 3: Reference Tracking of a Glycolytic Oscillator (GO)

Control objective is defined by py(xn) = [|x1,n — X1 rer(€)]|> and
(i, i, €) = [[xk — X1,rer(€) 17 + [Jui®.

WB-MPC
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Figure: WB-MPC (left) and FE-DPC (right) based reference tracking of x; (blue) state.
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Example 4: Controlling a Quadrotor

pn = cosfcospu
+ (sin ¢sin @ cos ) — cos psinh) v
+ (cos ¢sin @ costp + sin psinh) w,

F = mg —10(h — a1) + 3w,
T¢:7(¢7a2)7p7
9 =—(0 —as) —q,

Pe = cosBsinyu

+ (sin ¢sin@sint + cos p cosp) v

+ (cos ¢sin@siny — sinpcos ) w,
h= sinf u — sin ¢ cosf v — cos ¢ cos b w,

¢=p+singtanf g+ cosptanfr,
6 = cospqg—singr,
¥ = (sin ¢/ cosB) q + (cos ¢/ cosh) r,

U=rv—qw—gsind,

V= pw — ru+ gosfsing, b= (s — L)/ L) ar + (1) 1) 7o,
W= qu—pvtgcosteosd— (F/m),  a=((— 1)/ 1) pr+(1/0)m0,
Ty = 0., F= (b~ )/ ))pa+ (1)) Ty,
T
0, —0.524, —0.524
[01, 02,05] " € latmin, @mad = |7} £"0"00n 0504 | C R
m~UL2, 1.6], Jy = J, ~U[0.050, 0.058], J, ~ 1/[0.090, 0.110].

Objective: maintain an altitude of 0.4m with zero linear and angular velocities.

Igbal et al. (UT Austin & JHU)
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Example 4: Controlling a Quadrotor
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Figure: 20 quadrotor models with distinct dynamics parameterization are randomly initialized
within state bounds. Each experiences a random dynamics switch between 2-20 s.
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Inference Times
The main trade-off

Algorithm  Metric Van der Pol Two Tank GO (7D) Quad (12D)

FE.DPC Error (MSE) 0.0027 0.0085 0.1803 0.0220
Time (s) 0.53 113 5.89 1.93

WB-MPC* Ell'ror (MSE) 0.0027 0.0042 0.0323 0.0242
Time (s) 1.21 6.75 136.07 155.85

Table: Comparison of error (MSE) and computation time (s) for each benchmark.

* Assumed no plant-model mismatch.
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Conclusion

We introduced FE-DPC, a framework for zero-shot adaptive predictive control:

FE-NODE to identify unknown dynamics online from a few data points.

DPC to learn a parametric policy offline conditioned on identified dynamics.
@ Instantly adapts to unknown dynamics without retraining.
Examples shown for high-dimensional (12D) and stiff (7D) systems.

Achieves accuracy competitive with MPC at fraction of computational cost.

Igbal et al. (UT Austin & JHU) FE-DPC 17 /18



Conclusion

We introduced FE-DPC, a framework for zero-shot adaptive predictive control:

FE-NODE to identify unknown dynamics online from a few data points.

DPC to learn a parametric policy offline conditioned on identified dynamics.
@ Instantly adapts to unknown dynamics without retraining.

Examples shown for high-dimensional (12D) and stiff (7D) systems.
Achieves accuracy competitive with MPC at fraction of computational cost.

Some remarks and future work:

@ Complimentary to model-based approaches, potential benefits by combining e.g.
parameter estimation, preconditioning, uncertain systems etc.

o Closed-loop guarantees.
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