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Introduction

We consider the problem of approximating a subset K of a normed space X by a
low-dimensional set M,, from samples in K.

V)

n

A common setting (in statistics) if when K is the range of some vector or function-valued
random variable.

Another classical setting is the solution of forward or inverse problems for
parameter-dependent equations, where

K={u(y):y €Y} with R(u(y);y)=0.
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Introduction

The approximating sets M, can be

@ constructed offline by manifold approximation methods, using samples from K,

@ used online to compute approximations of elements in K with low computational
complexity, or from limited information.
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Encoder-Decoder

A large class of manifold approximation methods can be described by an encoder
E: K — R" and a decoder D : R" — X.

The decoder provides a parametrization of a n-dimensional “manifold”

M, ={D(a) : a € R"}.

Mn
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Encoder-Decoder

A large class of manifold approximation methods can be described by an encoder
E: K — R" and a decoder D : R" — X.

The decoder provides a parametrization of a n-dimensional “manifold”
M, ={D(a) : a € R"}.

The encoder is related to the approximation process (algorithm). It associates to u € K a
parameter value a = E(u) € R".

Y,
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Encoder-Decoder

A large class of manifold approximation methods can be described by an encoder
E: K — R" and a decoder D : R" — X.

The decoder provides a parametrization of a n-dimensional “manifold”
M, ={D(a) : a € R"}.

The encoder is related to the approximation process (algorithm). It associates to u € K a
parameter value a = E(u) € R".

Y,
E

N R

D

An element u € K is approximated by D o E(u) € M,.

This problem is equivalent to approximating the identity map on K by Do E
(auto-encoder of K).
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Optimal performance

Manifold approximation methods can be classified in terms of the properties of their
encoders and decoders.

The optimal performance of a given class £, of encoders from X to R" and a given class
D, of decoders from R” — X can be assessed in worst-case setting by

inf sup |lu— D o E(u)l|x.
DEDn,EEE, ,,GEH (w)llx
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Optimal performance

Manifold approximation methods can be classified in terms of the properties of their
encoders and decoders.

The optimal performance of a given class £, of encoders from X to R" and a given class
D, of decoders from R” — X can be assessed in worst-case setting by

inf sup |lu— D o E(u)l|x.
DEDn,EEE, ,,GEH (w)llx

If the set K is equipped with a measure p, the optimal performance can be measured in

aVerage sense by
1/p
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Optimal performance

Manifold approximation methods can be classified in terms of the properties of their
encoders and decoders.

The optimal performance of a given class £, of encoders from X to R" and a given class
D, of decoders from R” — X can be assessed in worst-case setting by

inf sup |lu— D o E(u)l|x.
DEDn,EEE, ,,GEH (w)llx

If the set K is equipped with a measure p, the optimal performance can be measured in

aVerage sense by
1/p
. o p
oo ([ oD E@Igap)

These errors define measures of complexity (widths) of K.
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Linear approximation - Worst case setting

The range M, of a linear decoder D : R" — X is a
linear space with dimension at most n.
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Linear approximation - Worst case setting
The range M, of a linear decoder D : R" — X is a
linear space with dimension at most n. ™M

Restricting the decoder and encoder to be linear
yields the approximation numbers (linear widths)

K)x = inf —A
an(K)x ,ank'?A):nfg,BH’“’ ullx,

where the infimum is taken over all linear maps
A: X — X with rank n.
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Linear approximation - Worst case setting

The range M, of a linear decoder D : R" — X is a
linear space with dimension at most n.

Restricting the decoder and encoder to be linear
yields the approximation numbers (linear widths)
K)x = inf —A
an(K)x ok SUP llu— Aullx,

where the infimum is taken over all linear maps
A: X — X with rank n.

Restricting only the decoder to be linear yields the Kolmogorov n-width

O = ol 32p A0 14— DAl

inf  sup inf |ju— v|x.
dim Mp=n ,c x v€EM,
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Linear approximation - Worst case setting

The range M, of a linear decoder D : R" — X is a
linear space with dimension at most n. ™M

Restricting the decoder and encoder to be linear
yields the approximation numbers (linear widths)

K)x = inf —A
an(K)x ,ank'?A):nfg,BH’“’ ullx,

where the infimum is taken over all linear maps
A: X — X with rank n.

Restricting only the decoder to be linear yields the Kolmogorov n-width

dn(K)x = R

inf sup inf ||u— D(a)]|x = _inf sup inf |ju— v|x.
EL(R™X) ycKk a€ER" dim M, cK VEM,

i h=n

For X a Hilbert space, a,(K)x = dn(K)x and an optimal auto-encoder D o E is given by
the orthogonal projection Py, onto an optimal space M,.

In practice optimal linear spaces in worst-case error are out of reach but near to optimal
spaces M, can be obtained by greedy algorithms, that generate an increasing sequence of
spaces from samples in K [Buffa, Maday, Patera, Prud’homme, Turinici, Binev, Cohen,
Dahmen, DeVore,...].
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Linear approximation - Average setting

When X is a Hilbert space and the error is measured in average sense, it yields the
average Kolmogorov n-width

dP(K, )% = inf / inf |lu — D(a)||%dp(u) / lu — Py, ul&dp(u).

DeL(RM;X) Jx a€Rn

For p = 2 (mean-squared error), an optimal space M, is given by a dominant eigenspace
of the (compact) operator

T(v):/Ku(U,V)de(“)a veX,
and
/||u—PMnu|\xdp(u)—d (K. p)k = > M(T)

i>n

If p is a probability measure, assuming @ = [udp(u) =0, T is the covariance operator
of p and this corresponds to Principal Component Analysis (PCA).
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Nonlinear continuous manifold approximation

Restricting both the encoder and decoders to be continuous (possibly nonlinear) yields
the notion of nonlinear manifold width of [DeVore, Howard and Michelli 1989]

oK) = L By ooy SRl = Do Wl

Further restricting encoders and decoders to be Lipschitz continuous yields the notion
of stable manifold width [Cohen et al 2022]

SEH(K)x = inf inf _DoE .
(K)x Lipl(g)SL LipEB)gL SEEHU o E(u)llx
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Nonlinear continuous manifold approximation

Restricting both the encoder and decoders to be continuous (possibly nonlinear) yields
the notion of nonlinear manifold width of [DeVore, Howard and Michelli 1989]

on(K)x = inf inf  sup|lu— Do E(u)|x-

E€C(X;R") DEC(R™X) ek

Further restricting encoders and decoders to be Lipschitz continuous yields the notion
of stable manifold width [Cohen et al 2022]

SE5(K)x = inf inf _DoE .
(K)x Lipl(g)SL LipEB)gL fgﬁ”“ o E(u)llx

Lipschitz continuity ensures stability of the approximation process, a crucial property in
practice.

However, implementation of optimal nonlinear encoders may be difficult or even
infeasible, e.g. associated with NP-hard optimization problems.
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Linear encoder and nonlinear decoder

Restricting the encoder to be linear and continuous yields the n-th minimal error of
linear information (sometimes called sensing numbers)

en(K)x =inf inf sup|lu— D(¢1(u),...,Ln(u))|x
D €1l yeK
where the infimum is taken over all linear forms ¢1,...,£, and all nonlinear maps D.
This benchmark are relevant in many applications where the available information

E(u) = (t1(u), ..., Ln(u)) is linear in u (point evaluations of functions, local averages of
functions or more general linear functionals).

Anthony Nouy Centrale Nantes, Nantes Université 9



Linear encoder and nonlinear decoder

In a Hilbert setting and worst case setting, this corresponds to

inf inf — A(P
dimE?(n):n A:)I(?%X ig’e ||U ( Xn U)HX

For a given X,, an optimal algorithm A : X, — X is such that A(v) is the Chebychev
center of the slice

KN(v+X,)={ueK:Pxu=v}

This yields an optimal n-dimensional manifold

M, = C(K, X,) := {cen(K N (v + X;7)) : v € Px,K}.
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Linear encoder and nonlinear decoder

In a Hilbert setting and worst case setting, this corresponds to

inf inf — A(P
dimé?(n):n A:)I(?%X ig’e ||U ( Xn U)HX

For a given X,, an optimal algorithm A : X, — X is such that A(v) is the Chebychev
center of the slice

KN(v+X,)={ueK:Pxu=v}

This yields an optimal n-dimensional manifold
M, = C(K, X,) := {cen(K N (v + X;7)) : v € Px,K}.

In average setting, an average minimal error can be defined, and optimal manifold is
obtained by averaging over slices.
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Linear encoder and nonlinear decoder

With (¢i)i>1 an orthonormal basis of X and X, = span{¢1,...,¢n}, this is associated
with the linear encoder

E(Ll) = ((U, ()0/))7:1
and a decoder of the form
D(a) = AD _aipi) = > _aipi+ »_ ai(a)pi = Di(a) + Du(a),
i=1 i=1 i>n

where the functions g; : R" — R are nonlinear maps.

Dy is a linear operator from R"” to M
Xn :=span{p1,...,pn} such that n
Dy(E(u)) = Px, u. )<n

Dy maps R” to the complementary
space of X, in X.

For a feasible implementation, we

truncate to the first NV terms, so that ’D (a,>
the range of D is a nonlinear manifold L

M, C Xy = span{e1,...,¢on}-
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Linear encoder and nonlinear decoder

The structure of the decoder relies on the fact that for

n

u= Zai(u)gpi + Z ai(u)pi € K,

i=1 i>n

the coefficients a;(u) for i > n may be well approximated as functions gi(E(u)) of the
first few coefficients E(u) = (aj(u))i;.
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Linear encoder and nonlinear decoder

The structure of the decoder relies on the fact that for

n

u= Zai(u)gpi + Z ai(u)pi € K,

i=1 i>n
the coefficients a;(u) for i > n may be well approximated as functions gi(E(u)) of the
first few coefficients E(u) = (ai(uv))i;.
Natural choices for functions g; are
@ Quadratic polynomials [Barnett and Farhat 2022][Geelen et al 2023]
@ Sums of univariate high-order polynomials [Geelen et al 2024]

o Neural networks or random forests [Barnett, Farhat and Maday 2023],
[Cohen et al 2023]
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Linear encoder and nonlinear decoder

The structure of the decoder relies on the fact that for

n

u= Zai(u)g@i + Z ai(u)pi € K,

i=1 i>n
the coefficients a;(u) for i > n may be well approximated as functions gi(E(u)) of the
first few coefficients E(u) = (ai(uv))i;.
Natural choices for functions g; are
@ Quadratic polynomials [Barnett and Farhat 2022][Geelen et al 2023]
@ Sums of univariate high-order polynomials [Geelen et al 2024]

o Neural networks or random forests [Barnett, Farhat and Maday 2023],
[Cohen et al 2023]

The relation between a;(u) and E(u) may be highly nonlinear. Even highly expressive
approximation tools may result in poor accuracy, due to the difficulty of learning with
limited data.
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Linear encoder and nonlinear decoder

In many applications, a coefficient a;(u) for i > n may have a highly nonlinear relation
with the first n coefficients a = E(u) but a much smoother relation when expressed in
terms of a and additional coefficients a;(u) with n < j < J.

Bl —

Bl

(a) K = {(a1(t), a2(t), a3(t)) : t € [0,1]} ‘ (b) a2 as function of a;
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Linear encoder and nonlinear decoder

In many applications, a coefficient a;(u) for i > n may have a highly nonlinear relation
with the first n coefficients a = E(u) but a much smoother relation when expressed in
terms of a and additional coefficients a;(u) with n < j < i.

Bl S

(c) a3 as function of a3 (d) a3 as function of (a1, az)
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Decoder based on compositional polynomial network (CPN)

This suggests the following compositional structure of the decoder’s functions

g,-(a) = ﬁ(a’ (gj(a))"<JSnf)7

where the f; are polynomial functions.

Figure: A compositional polynomial network (CPN) with N =7 and n = 3, maximum number of
compositions 3.
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Decoder based on compositional polynomial network (CPN)

The variables (a, (gj(a))n<j<n;) take values in a set of measure zero in R™, but it is still
possible to learn polynomial functions f; from a limited training set.

17

B

Figure: Learning a3 as function of (a1, az)

In practice, for high-dimensional approximation of f; : R" — R from samples, use of
sparse polynomial approximation (CPN-S) or low-rank approximation (tensor networks)
(CPN-LR) in PE"™.

Anthony Nouy Centrale Nantes, Nantes Université 15



Control of error (mean-squared setting)

Assume X is a Hilbert space and consider D : R" — Xy, with Xy the subspace with
orthonormal basis ¢1,..., on.

The mean squared error

(Do E)* = [id = Do |} = [ flu= DEC)kdr(w)

N
satisfies ex(Do E)* = Y €, +|lid — Pxyl3, €2=ai—gioal.
i=n+1
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Control of error (mean-squared setting)

Assume X is a Hilbert space and consider D : R" — Xy, with Xy the subspace with
orthonormal basis ¢1,..., on.

The mean squared error

(Do E)* = [id = Do |} = [ flu= DEC)kdr(w)

N
satisfies ex(Do E)* = Y €, +|lid — Pxyl3, €2=ai—gioal.
i=n+1
Given a prescribed precision 0 < € < 1, it holds

\eg(DoE)geez(O)\

whenever

llid — Pxy||2 < Be*ex(0)?

&, <&y = wi(l-B)ée(0)?, Vi>n

where 0 < 8 < 1 and (w;)X.,,1 are such that "7 w; = 1.
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Control of error (mean-squared setting)

Assume X is a Hilbert space and consider D : R" — Xy, with Xy the subspace with
orthonormal basis ¢1,..., on.

The mean squared error

(Do E)* = [id = Do |} = [ flu= DEC)kdr(w)

N
satisfies ex(Do E)* = Y €, +|lid — Pxyl3, €2=ai—gioal.
i=n+1
Given a prescribed precision 0 < € < 1, it holds

’eg(DoE)geez(O)‘

whenever
lid = Px, |13 < B e(0)? e)
Gy <&y =wi(l - B)e(0)’, Vi>n 2)
where 0 < 8 < 1 and (w;)X.,,1 are such that "7 w; = 1.

(1) is achieved by using PCA to define Xy, with a suitable selection of N = N(e).
(2) is achieved by a control of the approximation of a; by fi((gj(a));”,), using validation.
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Control of stability

Given an orthonormal basis @1, ..., ¢n, the encoder E : X — R" is 1-Lipschitz

\ IE(u) — E(u)]l2 = [IPx, (u — u)]lx < [lu— ullx

Given v = (7)Y,.1, we equip R" with the norm
n —1
151 = max{l (b2, max 7131}
and define the corresponding Lipschitz norm (estimated from samples)

|fi(b) — fi(b)]
filliy =
H H Y ng,X Hb_ blHi,'y

Given a prescribed Lipschitz constant L > 1, letting ||f||;, = i and assuming 72 < 7?2
with 37 57 < 1> — 1, it holds

[ID(a) = D(@)lIx < Llla— 2]
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Adaptive algorithm

The prescribed bounds for errors
€ip < Eip

or Lipschitz constants

vi = filliy < i
may not be satisfied for some indices i € {1,..., N}.

This requires to progressively adapt the set of indices {1,...,n} associated with the
encoder.

Prescribed upper bounds €, and 4; can be updated during the algorithm in order to
obtain a sharper control of error and stability.
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Numerical illustration: KdV

We consider the Korteweg-de Vries (KdV) equation

ou du  du
54»4“&4»%70 on [771—771-])([0’1]

with periodic boundary conditions and some initial condition. We consider the manifold
K= {U(~7 t) ‘te [07 1]}

We use 5000 samples u; = u(-, t;) as training samples.

-2

1l

0.00 025 0.50 0.75  1.00

Figure: Function u(x, t).
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| Method p[n] N] REwan | REs
| Linear /5] 5] 0435 | 0450
Quadratic 2[5]20] 0.094 0.099
Additive + AM |5 | 5 | 43| 0.081 0.084
Sparse 5|15 |43 0.013 0.014

CPN-S (=10"") [ 5 [ 5 [ 43 [ 0.000072 | 0.000074

Table: Comparison of methods for the same manifold dimension n =5. CPN-S with sparse

polynomials of degree p = 5.
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Figure: Compositional networks for g10, g21 and gaz (e = 1074, p = 5)
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Tolerance | n N RE:rain RE est
e=10"1 | 2 [ 15| 6.2x 1072 6.4 x 1072
e=10"2 | 2 | 25| 6.67x107% | 6.84x10°®
e=10"% | 3 | 34| 6.83x107* 7 x107*
e=10"%* | 5 | 43 | 7.170 x 107% | 7.367 x 107°
e=10"% | 6 | 52| 6.76x107°% | 6.916 x 10~°
e=10"% | 11 | 61 | 7.689 x 10~7 | 7.885 x 10~’

Table: Results of CPN-S for p = 5 and different target precisions .

P n N REtrain REtest

31943 7401x107° | 7.574x107°
4743 7524x107° | 7.720 x 10~°
5|5 43 ] 7170x107° | 7.367 x 10~°

Table: Results of CPN-S with different degrees p for e = 107*

Anthony Nouy
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Figure: Compositional networks for gip and go1 (e = 1072, p= 5)

S
<7

Figure: Compositional networks for gio and go1 (¢ = 1073, p = 5)
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l Method l p l n l N l RE:rain l RE:est ‘

| Linear | /]2] / [663x107"[6.91x107" |
Quadratic 2[2] 5 [533%x10°1]566x10"
Additive-AM 5] 2143]210x107 1| 547 x1071
Sparse 5[ 2]43]1.73x107 1| 1.85x10°"
Low-Rank 512143747 %1072 | 7.94x 102
CPN-LR(e=10""%)[5[2 | 43]6.85x10™° | 7.06 x 10°

Table: Comparison of methods for the same manifold dimension n = 5. CPN-LR uses low-rank
polynomials with degree p =5 (tensor train format).

1 0

Figure: Comparison of methods for predicting u(-, t) at t = 0.5 (left) and t = 1 (right). Same
dimension n = 5.
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(a) Exact solution (b) Linear

2% 2
2 20 2 20

15 hs
0 0
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5 5
= —2

0 / 0
000 025 050 075 100 000 025 050 075 100

(c) Quadratic (d) CPN-LR

Figure: Predictions for different methods, with manifold dimension n = 2.
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Optimal linear encoders and associated spaces

The encoder (or associated space X,) can be optimized.

A natural choice is to consider the optimal or near-optimal spaces of linear methods,
given by principal component analysis (optimal in mean-squared error) or greedy
algorithms (close to optimal in worst case error) [Barnett and Farhat 2022,

Geelen et al 2023, Barnett, Farhat and Maday 2023, Geelen et al 2024].
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Optimal linear encoders and associated spaces

The encoder (or associated space X,) can be optimized.

A natural choice is to consider the optimal or near-optimal spaces of linear methods,
given by principal component analysis (optimal in mean-squared error) or greedy
algorithms (close to optimal in worst case error) [Barnett and Farhat 2022,

Geelen et al 2023, Barnett, Farhat and Maday 2023, Geelen et al 2024].

However, these may be far from optimal for nonlinear approximation.

K K
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Optimal linear encoders and associated spaces

The encoder (or associated space X,) can be optimized.

A natural choice is to consider the optimal or near-optimal spaces of linear methods,
given by principal component analysis (optimal in mean-squared error) or greedy
algorithms (close to optimal in worst case error) [Barnett and Farhat 2022,

Geelen et al 2023, Barnett, Farhat and Maday 2023, Geelen et al 2024].

However, these may be far from optimal for nonlinear approximation.

K K

/

=%

In [Schwerdtner and Peherstorfer 2024], greedy algorithm for a (near to) optimal
construction of X, for quadratic manifold approximation (quadratic decoder).

Xn

I:S
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Optimal spaces guided by Lipschitz stability (worst case setting)

The benchmark for a linear encoder and a Lipschitz stable decoder is

L . .
= f f — D(E
G LS ST AT GO

where the infimum is taken over linear 1-Lipschitz encoders and L-Lipschitz decoders.
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Optimal spaces guided by Lipschitz stability (worst case setting)

The benchmark for a linear encoder and a Lipschitz stable decoder is

L . .
= f f — D(E
G LS ST AT GO

where the infimum is taken over linear 1-Lipschitz encoders and L-Lipschitz decoders.

Equivalently
L . .
K)x = inf f — AP
(K0 = i, 20p = APl
where |A(Px, 1) — A(Px )|
Lip(A) =  su X U) = AATX U)X )
P = S T pu Povix -
Px,, (u—v)#0
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Optimal spaces guided by Lipschitz stability (worst case setting)

The benchmark for a linear encoder and a Lipschitz stable decoder is

L e i i —
0K = ol 2 10— DL

where the infimum is taken over linear 1-Lipschitz encoders and L-Lipschitz decoders.
Equivalently

L . .
K)x = inf f —A(P
en(K0x = il i<y 2R e = AP, ) x
where JA(Px, ) — A(Px,u)]|
Lip(A) =  su e Y
P(A) P |Px,u—Px,vlx  —
Px,, (u—v)#0
A dual version is
n L .
&l (K)x = dim(I?(,f):n |r2‘f Lip(A)

where the infimum is taken over maps A such that
sup [lu — A(Px,u)l[x <n
ueK

eb(K)x or &7(K)x can be seen as notions of " Lipschitz widths” of K, using linear
encoder. See related notion in [Petrova and Wojtaszczyk 2023] with arbitrary encoders.
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Optimal spaces guided by Lipschitz stability (worst case setting)

Consider 7 = 0, assuming the existence of an exact recovery map A, for some X,. This
requires K to be a n-dimensional manifold, and A, is a global chart associated to X,.

K

LL = Av\ (_PX“U\

% ><n
qu

)
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Optimal spaces guided by Lipschitz stability (worst case setting)

Consider 7 = 0, assuming the existence of an exact recovery map A, for some X,. This
requires K to be a n-dimensional manifold, and A, is a global chart associated to X,.

K
w= Av\ (_PX»\UW

% ><y‘.

P
X4

Then we obtain a measure of Lipschitz regularity of K related to X, as

. lu = viix

Lip(A,) = S _

P(A) = SUP B (a = v)lx
PX"(u—v);éO

=: Lip(K, Xa)x

and the corresponding notion of Lipschitz width of K
Lo(K)x == . ip(f):n Lip(K, Xn)x

im(
which defines an optimal space X, in terms of stability of the corresponding chart A,.
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Optimal spaces guided by Lipschitz stability (worst case setting)

It holds
L(K)x = % with S = {ﬁ .z€ (K —K)\{0}}.
< S
[
><\r\ o
" \
Lo(K)x = min Lip(K, Xo)x | = 4:(S)x = min (S, X,)x

Close to optimal spaces can be obtained by greedy algorithms.
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Optimal spaces guided by Lipschitz stability (average setting)

In the average setting, possible relaxation by considering the average width d(2)(5,7r)x,
with 7 the push-forward measure on S of p ® p through the map

(u,v) = (u—=v)/llu—vlx.

Instead of

dn(S) = dim&f):ni‘gg |z = Px,zllx

we consider

d?(S,m)x = inf / — Px,z|[xd
(Simx = inf_ | llz = Pxzlixdn(z)

that is an eigenvalue problem.

In practice, we introduce estimators from finitely many samples in K.
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Optimal spaces guided by Lipschitz stability

Previous notions may not be well defined for sets K that are not smooth n-dimensional
manifolds described by global chart.

This requires to consider relaxations &7(K)x that balance Lipschitz stability and
approximation error, or n-dimensional approximations of the set K.

The design of practical strategies using samples from K is a challenging problem.
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Conclusions

@ Nonlinear manifold approximation method with linear encoder and nonlinear decoder
based on compositional polynomial networks, with control of error and stability [1].

Reference
[1] A. Bensalah, A. Nouy, and J. Soffo. Nonlinear manifold approximation using
compositional polynomial networks. arXiv e-prints arXiv:2502.05088, Feb. 2025.
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Conclusions

@ Nonlinear manifold approximation method with linear encoder and nonlinear decoder
based on compositional polynomial networks, with control of error and stability [1].

@ Optimal spaces/encoders based on Lipschitz stability of decoders.

@ Some challenging problems related to online approximation with nonlinear manifolds:
optimization and sampling/discretization.

Reference
[1] A. Bensalah, A. Nouy, and J. Soffo. Nonlinear manifold approximation using
compositional polynomial networks. arXiv e-prints arXiv:2502.05088, Feb. 2025.

THANK YOU FOR YOUR ATTENTION
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