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Introduction

We consider the problem of approximating a subset K of a normed space X by a
low-dimensional set Mn, from samples in K .

A common setting (in statistics) if when K is the range of some vector or function-valued
random variable.

Another classical setting is the solution of forward or inverse problems for
parameter-dependent equations, where

K = {u(y) : y ∈ Y } with R(u(y); y) = 0.
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Introduction

The approximating sets Mn can be

constructed offline by manifold approximation methods, using samples from K ,

used online to compute approximations of elements in K with low computational
complexity, or from limited information.
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Encoder-Decoder

A large class of manifold approximation methods can be described by an encoder
E : K → Rn and a decoder D : Rn → X .

The decoder provides a parametrization of a n-dimensional “manifold”

Mn = {D(a) : a ∈ Rn}.

The encoder is related to the approximation process (algorithm). It associates to u ∈ K a
parameter value a = E(u) ∈ Rn.

An element u ∈ K is approximated by D ◦ E(u) ∈ Mn.

This problem is equivalent to approximating the identity map on K by D ◦ E
(auto-encoder of K).
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Optimal performance

Manifold approximation methods can be classified in terms of the properties of their
encoders and decoders.

The optimal performance of a given class En of encoders from X to Rn and a given class
Dn of decoders from Rn → X can be assessed in worst-case setting by

inf
D∈Dn,E∈En

sup
u∈K
‖u − D ◦ E(u)‖X .

If the set K is equipped with a measure ρ, the optimal performance can be measured in
average sense by

inf
D∈Dn,E∈En

(∫
K

‖u − D ◦ E(u)‖pXdρ(u)

)1/p

.

These errors define measures of complexity (widths) of K .
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Linear approximation - Worst case setting

The range Mn of a linear decoder D : Rn → X is a
linear space with dimension at most n.

Restricting the decoder and encoder to be linear
yields the approximation numbers (linear widths)

an(K)X = inf
rank(A)=n

sup
u∈K
‖u − Au‖X ,

where the infimum is taken over all linear maps
A : X → X with rank n.

Restricting only the decoder to be linear yields the Kolmogorov n-width

dn(K)X = inf
D∈L(Rn ;X )

sup
u∈K

inf
a∈Rn
‖u − D(a)‖X = inf

dim Mn=n
sup
u∈K

inf
v∈Mn

‖u − v‖X .

For X a Hilbert space, an(K)X = dn(K)X and an optimal auto-encoder D ◦ E is given by
the orthogonal projection PMn onto an optimal space Mn.

In practice optimal linear spaces in worst-case error are out of reach but near to optimal
spaces Mn can be obtained by greedy algorithms, that generate an increasing sequence of
spaces from samples in K [Buffa, Maday, Patera, Prud’homme, Turinici, Binev, Cohen,
Dahmen, DeVore,...].
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Linear approximation - Average setting

When X is a Hilbert space and the error is measured in average sense, it yields the
average Kolmogorov n-width

d (p)
n (K , ρ)pX = inf

D∈L(Rn ;X )

∫
K

inf
a∈Rn
‖u − D(a)‖pXdρ(u) = inf

dim Mn=n

∫
K

‖u − PMnu‖
p
Xdρ(u).

For p = 2 (mean-squared error), an optimal space Mn is given by a dominant eigenspace
of the (compact) operator

T (v) =

∫
K

u(u, v)Xdρ(u), v ∈ X ,

and ∫
K

‖u − PMnu‖
2
Xdρ(u) = d (2)

n (K , ρ)2
X =

∑
i>n

λi (T )

If ρ is a probability measure, assuming ū =
∫
u dρ(u) = 0, T is the covariance operator

of ρ and this corresponds to Principal Component Analysis (PCA).
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Nonlinear continuous manifold approximation

Restricting both the encoder and decoders to be continuous (possibly nonlinear) yields
the notion of nonlinear manifold width of [DeVore, Howard and Michelli 1989]

δn(K)X = inf
E∈C(X ;Rn)

inf
D∈C(Rn ;X )

sup
u∈K
‖u − D ◦ E(u)‖X .

Further restricting encoders and decoders to be Lipschitz continuous yields the notion
of stable manifold width [Cohen et al 2022]

δLn(K)X = inf
Lip(E)≤L

inf
Lip(D)≤L

sup
u∈K
‖u − D ◦ E(u)‖X .

Lipschitz continuity ensures stability of the approximation process, a crucial property in
practice.

However, implementation of optimal nonlinear encoders may be difficult or even
infeasible, e.g. associated with NP-hard optimization problems.
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Linear encoder and nonlinear decoder

Restricting the encoder to be linear and continuous yields the n-th minimal error of
linear information (sometimes called sensing numbers)

en(K)X = inf
D

inf
`1,...,`n

sup
u∈K
‖u − D(`1(u), . . . , `n(u))‖X

where the infimum is taken over all linear forms `1, . . . , `n and all nonlinear maps D.

This benchmark are relevant in many applications where the available information
E(u) = (`1(u), . . . , `n(u)) is linear in u (point evaluations of functions, local averages of
functions or more general linear functionals).
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Linear encoder and nonlinear decoder

In a Hilbert setting and worst case setting, this corresponds to

inf
dim(Xn)=n

inf
A:Xn→X

sup
u∈K
‖u − A(PXnu)‖X

For a given Xn, an optimal algorithm A : Xn → X is such that A(v) is the Chebychev
center of the slice

K ∩ (v + X⊥n ) = {u ∈ K : PXnu = v}.

This yields an optimal n-dimensional manifold

Mn = C(K ,Xn) := {cen(K ∩ (v + X⊥n )) : v ∈ PXnK}.

In average setting, an average minimal error can be defined, and optimal manifold is
obtained by averaging over slices.
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Linear encoder and nonlinear decoder

With (ϕi )i≥1 an orthonormal basis of X and Xn = span{ϕ1, . . . , ϕn}, this is associated
with the linear encoder

E(u) = ((u, ϕi ))ni=1

and a decoder of the form

D(a) = A(
n∑

i=1

aiϕi ) =
n∑

i=1

aiϕi +
∑
i>n

gi (a)ϕi = DL(a) + DN(a),

where the functions gi : Rn → R are nonlinear maps.

DL is a linear operator from Rn to
Xn := span{ϕ1, . . . , ϕn} such that
DL(E(u)) = PXnu.

DN maps Rn to the complementary
space of Xn in X .

For a feasible implementation, we
truncate to the first N terms, so that
the range of D is a nonlinear manifold
Mn ⊂ XN = span{ϕ1, . . . , ϕN}.
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Linear encoder and nonlinear decoder

The structure of the decoder relies on the fact that for

u =
n∑

i=1

ai (u)ϕi +
∑
i>n

ai (u)ϕi ∈ K ,

the coefficients ai (u) for i > n may be well approximated as functions gi (E(u)) of the
first few coefficients E(u) = (ai (u))ni=1.

Natural choices for functions gi are

Quadratic polynomials [Barnett and Farhat 2022][Geelen et al 2023]

Sums of univariate high-order polynomials [Geelen et al 2024]

Neural networks or random forests [Barnett, Farhat and Maday 2023],
[Cohen et al 2023]

The relation between ai (u) and E(u) may be highly nonlinear. Even highly expressive
approximation tools may result in poor accuracy, due to the difficulty of learning with
limited data.
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Linear encoder and nonlinear decoder

In many applications, a coefficient ai (u) for i > n may have a highly nonlinear relation
with the first n coefficients a = E(u) but a much smoother relation when expressed in
terms of a and additional coefficients aj(u) with n < j < i .

(a) K = {(a1(t), a2(t), a3(t)) : t ∈ [0, 1]} (b) a2 as function of a1
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Decoder based on compositional polynomial network (CPN)

This suggests the following compositional structure of the decoder’s functions

gi (a) = fi (a, (gj(a))n<j≤ni ),

where the fi are polynomial functions.

a1

a2

a3

g4(a) g5(a)

g6(a)

g7(a)

Figure: A compositional polynomial network (CPN) with N = 7 and n = 3, maximum number of
compositions 3.
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Decoder based on compositional polynomial network (CPN)

The variables (a, (gj(a))n<j≤ni ) take values in a set of measure zero in Rni , but it is still
possible to learn polynomial functions fi from a limited training set.

Figure: Learning a3 as function of (a1, a2)

In practice, for high-dimensional approximation of fi : Rni → R from samples, use of
sparse polynomial approximation (CPN-S) or low-rank approximation (tensor networks)
(CPN-LR) in P⊗ni

p .
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Control of error (mean-squared setting)

Assume X is a Hilbert space and consider D : Rn → XN , with XN the subspace with
orthonormal basis ϕ1, . . . , ϕN .

The mean squared error

e2(D ◦ E)2 := ‖id − D ◦ E‖2
2 :=

∫
K

‖u − D(E(u))‖2
Xdρ(u)

satisfies e2(D ◦ E)2 =
N∑

i=n+1

ε2
i,2 + ‖id − PXN ‖

2
2, εi,2 = ‖ai − gi ◦ a‖2

Given a prescribed precision 0 < ε < 1, it holds

e2(D ◦ E) ≤ ε e2(0)

whenever

‖id − PXN ‖
2
2 ≤ βε2e2(0)2 (1)

ε2
i,2 ≤ ε̄2

i,2 := ωi (1− β)ε2e2(0)2, ∀i > n (2)

where 0 < β < 1 and (ωi )
N
i=n+1 are such that

∑N
i=1 ωi = 1.

(1) is achieved by using PCA to define XN , with a suitable selection of N = N(ε).
(2) is achieved by a control of the approximation of ai by fi ((gj(a))nij=1), using validation.
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Control of stability

Given an orthonormal basis ϕ1, . . . , ϕN , the encoder E : X → Rn is 1-Lipschitz

‖E(u)− E(u′)‖2 = ‖PXn (u − u′)‖X ≤ ‖u − u′‖X

Given γ = (γi )
N
i=n+1, we equip Rni with the norm

‖b‖i,γ = max{‖(bj)nj=1‖2, max
n<j≤ni

γ−1
j |bj |}

and define the corresponding Lipschitz norm (estimated from samples)

‖fi‖i,γ = max
b,b′

|fi (b)− fi (b
′)|

‖b − b′‖i,γ

Given a prescribed Lipschitz constant L ≥ 1, letting ‖fi‖i,γ = γi and assuming γ2
i ≤ γ̄2

i

with
∑n

i=n+1 γ̄
2
i ≤ L2 − 1, it holds

‖D(a)− D(a′)‖X ≤ L‖a− a′‖2
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Adaptive algorithm

The prescribed bounds for errors
εi,p ≤ ε̄i,p

or Lipschitz constants
γi = ‖fi‖i,γ ≤ γ̄i

may not be satisfied for some indices i ∈ {1, . . . ,N}.

This requires to progressively adapt the set of indices {1, . . . , n} associated with the
encoder.

Prescribed upper bounds ε̄i,p and γ̄i can be updated during the algorithm in order to
obtain a sharper control of error and stability.
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Numerical illustration: KdV

We consider the Korteweg-de Vries (KdV) equation

∂u

∂t
+ 4u

∂u

∂x
+
∂3u

∂x3
= 0 on [−π, π]× [0, 1]

with periodic boundary conditions and some initial condition. We consider the manifold

K = {u(·, t) : t ∈ [0, 1]}

We use 5000 samples ui = u(·, ti ) as training samples.

Figure: Function u(x , t).
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Method p n N REtrain REtest

Linear / 5 5 0.435 0.450

Quadratic 2 5 20 0.094 0.099
Additive + AM 5 5 43 0.081 0.084

Sparse 5 5 43 0.013 0.014

CPN-S (ε = 10−4) 5 5 43 0.000072 0.000074

Table: Comparison of methods for the same manifold dimension n = 5. CPN-S with sparse
polynomials of degree p = 5.
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Figure: Compositional networks for g10, g21 and g42 (ε = 10−4, p = 5)
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Tolerance n N REtrain REtest

ε = 10−1 2 15 6.2× 10−2 6.4× 10−2

ε = 10−2 2 25 6.67× 10−3 6.84× 10−3

ε = 10−3 3 34 6.83× 10−4 7× 10−4

ε = 10−4 5 43 7.170× 10−5 7.367× 10−5

ε = 10−5 6 52 6.76× 10−6 6.916× 10−6

ε = 10−6 11 61 7.689× 10−7 7.885× 10−7

Table: Results of CPN-S for p = 5 and different target precisions ε.

p n N REtrain REtest

3 9 43 7.401× 10−5 7.574× 10−5

4 7 43 7.524× 10−5 7.720× 10−5

5 5 43 7.170× 10−5 7.367× 10−5

Table: Results of CPN-S with different degrees p for ε = 10−4
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Figure: Compositional networks for g10 and g21 (ε = 10−2, p = 5)

Figure: Compositional networks for g10 and g21 (ε = 10−3, p = 5)
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Method p n N REtrain REtest

Linear / 2 / 6.63× 10−1 6.91× 10−1

Quadratic 2 2 5 5.33× 10−1 5.66× 10−1

Additive-AM 5 2 43 2.10× 10−1 5.47× 10−1

Sparse 5 2 43 1.73× 10−1 1.85× 10−1

Low-Rank 5 2 43 7.47× 10−2 7.94× 10−2

CPN-LR (ε = 10−4) 5 2 43 6.85× 10−5 7.06× 10−5

Table: Comparison of methods for the same manifold dimension n = 5. CPN-LR uses low-rank
polynomials with degree p = 5 (tensor train format).

Figure: Comparison of methods for predicting u(·, t) at t = 0.5 (left) and t = 1 (right). Same
dimension n = 5.
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(a) Exact solution (b) Linear

(c) Quadratic (d) CPN-LR

Figure: Predictions for different methods, with manifold dimension n = 2.
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Optimal linear encoders and associated spaces

The encoder (or associated space Xn) can be optimized.

A natural choice is to consider the optimal or near-optimal spaces of linear methods,
given by principal component analysis (optimal in mean-squared error) or greedy
algorithms (close to optimal in worst case error) [Barnett and Farhat 2022,
Geelen et al 2023, Barnett, Farhat and Maday 2023, Geelen et al 2024].

However, these may be far from optimal for nonlinear approximation.

Mn = Xn Mn = K

In [Schwerdtner and Peherstorfer 2024], greedy algorithm for a (near to) optimal
construction of Xn for quadratic manifold approximation (quadratic decoder).
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Optimal spaces guided by Lipschitz stability (worst case setting)

The benchmark for a linear encoder and a Lipschitz stable decoder is

eLn (K)X = inf
Lip(E)≤1

inf
Lip(D)≤L

sup
u∈K
‖u − D(E(u))‖X

where the infimum is taken over linear 1-Lipschitz encoders and L-Lipschitz decoders.

Equivalently
eLn (K)X = inf

dim(Xn)=n
inf

Lip(A)≤L
sup
u∈K
‖u − A(PXnu)‖X

where

Lip(A) = sup
u,v∈K

PXn (u−v)6=0

‖A(PXnu)− A(PXnu)‖X
‖PXnu − PXnv‖X

≤ L

A dual version is
ẽηn (K)X = inf

dim(Xn)=n
inf
A
Lip(A)

where the infimum is taken over maps A such that

sup
u∈K
‖u − A(PXnu)‖X ≤ η

eLn (K)X or ẽηn (K)X can be seen as notions of ”Lipschitz widths” of K , using linear
encoder. See related notion in [Petrova and Wojtaszczyk 2023] with arbitrary encoders.
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ẽηn (K)X = inf

dim(Xn)=n
inf
A
Lip(A)

where the infimum is taken over maps A such that

sup
u∈K
‖u − A(PXnu)‖X ≤ η
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ẽηn (K)X = inf

dim(Xn)=n
inf
A
Lip(A)

where the infimum is taken over maps A such that

sup
u∈K
‖u − A(PXnu)‖X ≤ η
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Optimal spaces guided by Lipschitz stability (worst case setting)

Consider η = 0, assuming the existence of an exact recovery map An for some Xn. This
requires K to be a n-dimensional manifold, and An is a global chart associated to Xn.

Then we obtain a measure of Lipschitz regularity of K related to Xn as

Lip(An) = sup
u,v∈K

PXn (u−v)6=0

‖u − v‖X
‖PXn (u − v)‖X

=: Lip(K ,Xn)X

and the corresponding notion of Lipschitz width of K

Ln(K)X := inf
dim(Xn)=n

Lip(K ,Xn)X

which defines an optimal space Xn in terms of stability of the corresponding chart An.
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Optimal spaces guided by Lipschitz stability (worst case setting)

It holds

Ln(K)X =
1

1− dn(S)X
with S = { z

‖z‖X
: z ∈ (K − K) \ {0}}.

Ln(K)X = min
Xn

Lip(K ,Xn)X ⇐⇒ dn(S)X = min
Xn

d(S ,Xn)X

Close to optimal spaces can be obtained by greedy algorithms.
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Optimal spaces guided by Lipschitz stability (average setting)

In the average setting, possible relaxation by considering the average width d (2)(S , π)X ,
with π the push-forward measure on S of ρ⊗ ρ through the map
(u, v) 7→ (u − v)/‖u − v‖X .

Instead of
dn(S) = inf

dim(Xn)=n
sup
z∈S
‖z − PXnz‖X

we consider

d (2)(S , π)X = inf
dim(Xn)=n

∫
S

‖z − PXnz‖
2
Xdπ(z)

that is an eigenvalue problem.

In practice, we introduce estimators from finitely many samples in K .
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Optimal spaces guided by Lipschitz stability

Previous notions may not be well defined for sets K that are not smooth n-dimensional
manifolds described by global chart.

This requires to consider relaxations ẽηn (K)X that balance Lipschitz stability and
approximation error, or n-dimensional approximations of the set K .

The design of practical strategies using samples from K is a challenging problem.
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Conclusions

Nonlinear manifold approximation method with linear encoder and nonlinear decoder
based on compositional polynomial networks, with control of error and stability [1].

Optimal spaces/encoders based on Lipschitz stability of decoders.

Some challenging problems related to online approximation with nonlinear manifolds:
optimization and sampling/discretization.

Reference
[1] A. Bensalah, A. Nouy, and J. Soffo. Nonlinear manifold approximation using
compositional polynomial networks. arXiv e-prints arXiv:2502.05088, Feb. 2025.
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References I

R. DeVore, G. Petrova, and P. Wojtaszczyk.

Greedy algorithms for reduced bases in Banach spaces.
Constructive Approximation, 37(3):455–466, 2013.

J. Barnett and C. Farhat.

Quadratic approximation manifold for mitigating the kolmogorov barrier in nonlinear projection-based
model order reduction.
Journal of Computational Physics, 464:111348, Sept. 2022.

J. Barnett, C. Farhat, and Y. Maday.

Neural-network-augmented projection-based model order reduction for mitigating the Kolmogorov barrier
to reducibility.
J. Comput. Phys., 492:112420, Nov. 2023.

R. Geelen, S. Wright, and K. Willcox.

Operator inference for non-intrusive model reduction with quadratic manifolds.
Computer Methods in Applied Mechanics and Engineering, 403:115717, Jan. 2023.

P. Schwerdtner and B. Peherstorfer.

Greedy construction of quadratic manifolds for nonlinear dimensionality reduction and nonlinear model
reduction, 2024.

R. Geelen, L. Balzano, S. Wright, and K. Willcox.

Learning physics-based reduced-order models from data using nonlinear manifolds.
Chaos, 34(3):033122, Mar. 2024.

Anthony Nouy Centrale Nantes, Nantes Université 33
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