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Introduction and
Leading
Motivations

-  Need of saving computational resources
= Offline-online coomputational procedures




Physical Parametric Differential Problems: Overview

Parametric Differential Problems are ubiquitous in many field of Natural and Applied
Sciences from naval and nautical engineering, to aeronautical engineering,
bloengineering, as well as industrial engineering.
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Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022) eds. Advanced Reduced Order Methods and Applications in
Computational Fluid Dynamics. Society for Industrial and Applied Mathematics., CSE series.




Leading Motivation: CFD challenges

Growing demand of:
uncertainty , L.
efficient tools /‘/ | ‘ e Quickly emerging field of
A"' A quantification Model Order Reduction
«_* parameterized real-time to efficiently parametrize and
‘- *  formulations computations g accelerate computations

Need of computational collaboration between Full Order Model (FOM)+HPC
and Reduced Order Model (ROM)




Towards real-time computing

Offline stage Online stage
The Full Order Model (FOM) Reduced Order Model (ROM) techniques

Requires super-computers (HPC)
Expensive computational resources
Several degrees of freedom
Extremely time-demanding

Needs a laptop

Small computational resources
Few degrees of freedom

Fast, real-time computing



Technology perspective: computational webserver

Model order reduction for computational web server: to real world applications (ERC PoC ARGOS):

o argos.sissa.it
° atlas.sissa.it
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ARGOS - Computational Webserver

Model order reduction for computational web server: from academic to real world applications

https://argos.sissa.it https://argos-edu.sissa.it

B ' ARGOS Benchmark applications and worked out

prObl.emS for academia and beyond Pressure wic. Time
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e real-time computation
e visualization tool

.. and much more!
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ATLAS - Computational Webserver

Model order reduction for computational web server: from academic to real world applications

https://atlas.sissa.it

A special focus on
cardiovascular applications |
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Digital Twin (DT): integration of emerging fields

A large amount of data Artificial Intelligence can help to store and

(Big data) can be organize data.
collected @ By using black-box models, Al techniques

are able to find fitting functions
It does not require knowledge of the physics
of the problem, even if we do prefer

integrated “Big Models” physics-informed
approaches

The development of High Performance Computing (HPC) and its integration with ROMs
allowed to reach better performances for:
e Dbuilding Digital Twins (DT) of products and processes; '

e Uncertainty Quantification (UQ);
e Data analytics.

A sustainable perspective (reducing energy consumption, recycling computational works)




SISSA mathLab: our current efforts and perspectives

A team developing Advanced Reduced Order Methods for parametric PDES!




SISSA mathLab: our current efforts and perspectives

Face and overcome some limitations of classic Improve capabilities of ROMs for more demanding

parametric ROM also by means of Machine Learning applications in industrial, medical and applied sciences
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CFD as a central topic to enhance broader Carry out important methodological developments

applications in multiphysics and coupled settings with special emphasis on mathematical modelling




SISSA mathLab: our current efforts and perspectives
Open source libraries: mathlab.sissa.it/cse-software

Development of open-source tools based on surrogate modeling:

o ITHACA, In real Time Highly Advanced Computational Applications, as an add-on to
integrate already well established CSE/CFD open-source software

o RBniCS as educational initiative (FEM) for newcomer ROM users (training).

o EzyRB, data-driven model order reduction for parametrized problems

o PyDMD, a Python package designed for Dynamic Mode Decomposition (in collaboration
with University of Texas, CERN, and University of Washington)

o  ARGOS Advanced Reduced order modellinG Online computational web server for
parametric Systems

o  PINA, a deep learning library to solve differential equations




Challenges for ROM
in CFD

Strategic fields of development of
ROMs

Review and limitations of classical - : > =
high-fidelity approaches




Full Order Models: a qualitative comparison

Finite Element
Method (FEM)

Finite Volume
Method (FVM)

Spectral Element
Method (SEM)

Discontinuous
Galerkin (DG)

Complexity

ITTT1]
Moderately complex,
especially in 3D
problems

11T
Less complex,
straightforward

formulation

Very high complexity,

particularly in
implementation

(.
High complexity,
especially in dealing
with interfaces

Computational Conservation
cost
1111 1117
Moderate to high Depends on
cost due to matrix formulation
operations
OTTT] 11711
Moderate cost, Inherently
depends on grid conservative
quality
| NN 1117
Very high cost, Conservative
especially for high
accuracy
High cost due to Naturally
local problem conservative

solving and flux
calculation

Flexibility

111
Very flexible on
complex geometries

1117
Less flexible
compared to FEM

Flexible but requires
high-quality mesh

Very flexible, suitable
for complex
geometries

Accuracy

High accuracy with
higher-order
elements

Moderate accuracy

Very high accuracy
with exponential
convergence

High accuracy with
appropriate
polynomial order



Full Order Models: a qualitative comparison

Finite Element
Method (FEM)

Finite Volume
Method (FVM)
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Method (SEM)

Discontinuous
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formulation
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Motivations for ROM
development
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Strategic fields of development of ROMs in CFD

e Geometric parameterization and shape design
(appendix)

High Reynolds number (turbulence)

Automatic learning developments

Parameter space reduction

Flow control and data assimilation

Bifurcations (loss of uniqueness of the solution)
(appendix)
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Reduced Order
Models (ROMs)

- Equation-based or fully data-
driven

> Machine-learning enhanced
ROMs

> Fast Online Phase
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Reduced Order Model - Accelerating Numerics

Problem: to find the approximation for an unseen (test) parameter p*
Two macro-types of ROM approach:

Non-Intrusive ROM Intrusive ROM
e purely data-driven approach e equation-based approach
up) A (u(p),p) =0
reduce, then approximate L reduce, then evolve
*
ur(ﬂ ) . dr(ur(ﬂ*)7ﬂ*) - 0
e no knowledge of the mathematical e consolidated mathematical theory
model needed

E Hesthaven, J. S., Rozza, G, & Stamm, B. (2016). Certified reduced basis methods for parametrized partial differential equations (Vol. 590, pp. 1-131).

Jj Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022) eds. Advanced Reduced Order Methods and Applications in Computational
Fluid Dynamics. Society for Industrial and Applied Mathematics., CSE series.

|

Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., & Miguel Silveira, L. (2020). Model Order Reduction: Volume 1, 2, 3. De Gruyter.



Reduced Order Model - Accelerating Numerics

Recent research goal. integrate data and physics' knowledge

Hybrid ROMs
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Knowledge of the equations and the
Data collection and integration physical model of interest

ﬁ Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022) eds. Advanced Reduced Order Methods and Applications in Computational
Fluid Dynamics. Society for Industrial and Applied Mathematics., CSE series.

E Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A, Rozza, G., & Miguel Silveira, L. (2020). Model Order Reduction: Volume 1, 2, 3. De Gruyter.




Hybrid data-driven
intrusive ROMs for
turbulent flows

= Hybrid approaches for reduced order
models velocity magnitude

2.4e-060.05 0.1 1.6e-01
> How to stabilize and enhance the —
flows?
How to integrate ROMs with machine
learning? D0 ¥,

2 8"
Joint work with: 0.0e+00 11.52253354455556657 758859 1.0e+01
Anna Ivagnes, Giovanni Stabile -




Intrusive ROMs - POD-Galerkin approach

POD principles

N,

i=1

x € RNy

NN, < Ny

Linearity hypothesis

N

u(x,p) ~ Z a(u) @;(x) px, ) ~ Z b(p) x(x)
i=1

e d:dimension
e N, degrees of freedom (several)

: reduced dimensions for velocity and
pressure, chosen a priori

N N
a = (a)" vectors ((pf)i=u1 (Xi),- 2
=1 of coefficients
b=(b)" (parameter- POD modes (space-
=1 d d )
dependent) ependent



Intrusive ROMs - POD-Galerkin approach

The GalerRin approach:
e momentum equation projected (¢. 5_“ +V - (u®u)—V - v (Vu + (vu)T) 4 Vp) —0.
into the velocity modes "ot L2(Q)

continuity equation projected

. (X'is V. u) 2 = 0.
into the pressure modes e

Reduced ODEs system (compact form)

d(tn) — f(a(t”), b(tn)§ IJ'*): dynamical (cheap) system to be
h(a(t™)) = 0. solved at each n-th iteration



Stabilized POD-Galerkin ROMs

Stabilization issues in standard ROMs:

e spurious oscillations

e reduced inf-sup condition not fulfilled

Supremizer enrichment Pressure Poisson Equation

e Enrichment of the velocity POD space with Replacement of the continuity equation with PPE
additional Ny, modes
e atthe FOM level:

e Fulfillment of the inf-sup condition V.ou=0-Ap=-V (V- (u®u))
a= (az)ﬁ‘: N e atthe ROM level (at each time step):
u(@,p) = L ai(p)ei() { a(t") = f(a(t"),b(t"); u*),
hppr (a(t”), b(tn); }.L*) =0.

Stabile, G, & Rozza, G. (2018). Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes
equations. Computers & Fluids, 173, 273-284.



Stabilized ROMs enhanced with data

FOM

(Unsteady RANS)

\

High-fidelity snapshots
(parametrized and time-dependent)

y

Stabilized
POD-Galerkin ROMs

DU EPE

Poor approximations
(especially in convection
dominated or turbulent cases)

-4.0e+01 -30 -25 -20 <15 <10 -5 0 5 10 2.0e+01
-

The additional
offline training can
be performed using
ML or standard
approaches, like
RBF interpolation

Training of extra
data-driven terms

ROMs

Improved approximations

-4.0e+01  -30 -25 -20 -15 -10 -5 0O 5 10 2.0e+01
L

-4.0e+01 <30 25 -20 -15 <10 5 O S5 10 2.0e+01
|

lvagnes, A, Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv

preprint arXiv:2406.04169.




Purely DD-ROMs

Purely data-driven approach PURELY DD-ROM
WHY

Reintroduce the contribution of the neglected modes
in a LES fashion
HOW

The procedure to build the extra-correction terms

{d = f(a', b; I-"*) + Tu ((1, b, uu‘*)a
hppg(a,b; 1) + 7 (a, b, pu*) = 0.

- Choose a reduced dimension r and a bigger dimension d>r

- Select a stabilization C operator .

- Compute the exact correction T = C(P1y- -y Pry Praty -y Pd) —ClP1,. .-, 0r)
~ Create a map for the approximated correction T = 7(a, b, p) =|M(a, b, p; )
- Trainthe map: ming,,||[M(a,b, p; O 1) — 7| 2

lvagnes, A, Stabile, G., Mola, A, lliescu, T., & Rozza, G. (2023). Pressure data-driven variational multiscale reduced order models. Journal of
Computational Physics, 476, 111904.



Physics-based DD-ROMs

Physics-based data-driven approach | PHYSICS-BASED DD-ROM
WHY .

| o fa= f(a,b,g(a,p);p"),
Reintroduce the turbulence modeling in ROMs : hppm'(d,- b,g(a, IJ'*)' u‘*)' —o.
in a RANS fashion A
HOW

Modeling the reduced eddy viscosity
- Choose a reduced dimension for the edd\gv\/iscosity Ny, N
_ Extract the eddy viscosity modes (i(2))iZ1 such that:  ¥¢(®, 1) = 32311 gi(p)ni(e)

- Compute the projected coefficients Qema

- Create a map for the approximated correction 97" = g(a, p) =(G(a, p; 65)
- Train the map: ming, ||G(a, u; Og) — g****|| >

Hijazi, S., Stabile, G, Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational
Physics, 416, 109513.



Machine learning maps

_| BUILDING MAP M | BUILDING MAP (

Investigating different architectures

Simple feed-forward neural network
Ad-hoc HYBRID DD-ROM

N {"‘ = f(a,byg(a,p);p’) + Tu(abpt),
hPPE (ﬂ., b, g(a., u*); ﬂ*) + Tp (a, b7 ”*) = 0-

Mixed online formulation

Purely data-driven training Physics-based data-driven training
(aimed to reintegrate missing modes) (aimed to reintegrate turbulence)

Jj Ivagnes, A, Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv
preprint arXiv:2406.04169.

Jj Ivagnes, A., Stabile, G, Mola, A., lliescu, T., & Rozza, G. (2023). Hybrid data-driven closure strategies for reduced order modeling. Applied
Mathematics and Computation, 448, 127920.



Numerical results

oy : {'é =
. . . p ‘= 0'
Test case: periodic flow past a cylinder
Parameters: time and Reynolds number = (Ui, 0), =0, Vu-n=0
y O A Y I ol q it

Number of modes: 3 for velocity, pressure and eddy viscosity

ERROR ANALYSIS
(for a test parameter and
in time extrapolation)

llefom () — uhom(®)ll (@) s

eel ()= :
lufon ()l 22
o) = IPEon(t) — Prom ()|l 22()
“ - LA A ][
"pFOM( )”L @) 0 1 2 3 4 o 6 0 1 2 3 4
time [s] time [s]
—es— Standard ROM —=— Hybrid DD-ROM (MLP): average and 95% confidence interval
—+— Projection = Hybrid DD-ROM (ad-hoc): average and 95% confidence interval
—e— Hybrid DD-ROM (exact) == Hybrid DD-ROM (LSTM): average and 95% confidence interval
Ivagnes, A, Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv

Jj preprint arXiv:2406.04169.



Graphical results

ANALYSIS OF GLOBAL
PERFORMANCE

e Computation of the
errors’ time integrals

 Graphical velocity fields
at the final instance of
the online ROM
simulation

v Vi = 7.69¢ 5 - Standard ROM
B i =1.15e—4 Velocity
¢ v, =3.33e—4 === Pressure

FOM

Standard Hybrid Hybrid Hybrid —Hybrid Projection
ROM  DD-ROM DD-ROM DD-ROM DD-ROM
(ad-hoc) (MLP) (LSTM) (exact)

0.0e+00 11.52253354455556657758859 1.0e+01
N L R

Time integrals of relative errors

Jj Ivagnes, A, Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv

preprint arXiv:2406.04169.



Turbulence modeling: another approach

Eddy viscosity model: EV-ROM (state-of-the-art)

{ a = f(a’ b, g) -4.8e-07 0.02 0,03 0.04 0.05 006 007 0.08 9.5¢-02
— | c—
c(a,b,2)=0 Example of eddy viscosity field for the

flow past a cylinder
% At the full order level:

ou
ot

ApP=-V-(V-@QW)+V- [v.(y,(Vﬁ+(Vﬁ)T))].

+Y B =P [_ﬁl ++g ’)(VE“VE)T)] ; RANS equations with

eddy viscosity modeling
+»» At the reduced order level:

Nu,
vy~ Z 8i(p) n(x) Reduced eddly viscosity
i=1

Hijazi, S., Stabile, G, Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational
Physics, 416, 109513.




Turbulence modeling: another approach

Eddy viscosity model: EV-ROM (state-of-the-art)

{ a = f(a’ b, g) -4.8e-07 0.02 0,03 0.04 0.05 006 007 0.08 9.5¢-02
— | c—
c(a,b,2)=0 Example of eddy viscosity field for the

flow past a cylinder

< The system is not closed: we have N, + N, equations, but N, + N, + N, unknowns

% A regression map is used to compute the eddy viscosity coefficients

a
G :

Hijazi, S., Stabile, G, Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational
Physics, 416, 109513.




Turbulence modeling: another approach

Eddy viscosity model: EV-ROM (state-of-the-art)

a=f(ab,g)
c(a,b,g)=0

EV-ROM FOM

Pressure field for
a test parameter

-2.6e+01-20 -15 -10 -5 O 5 1.5e+01
I |

«»» Poor reconstruction of the fields of interest

% We need further improvement introducing a closure modeling




Sequential closure modeling

Data-driven ROM: DD-EV- RO M Resolved scales Modeled scales

a=flab,g + 1,
c(ab,g)+ 7, =0

Model the contribution of the neglected scales:
% Choose a reduced dimension r and a bigger dimension d>r

% Select the nonlinear operator €

% Compute the exact correction

Lot = € Pr o r D) — ClPrs..n Py Z i % |
% Train a map for the approximated correction )7 T,

lvagnes, A, Stabile, G., Mola, A, lliescu, T., & Rozza, G. (2023). Pressure data-driven variational multiscale reduced order models. Journal of
Computational Physics, 476, 111904.



Neural operators: the turbulence map

% Mapping modeled through a DeepONet (deep operator network)

? % Specifically designed to learn operators due to the sub-networks structure that separately
handle the different inputs

% Minimize the discrepancy with respect to the projected eddy viscosity
Branch net B

Reduction net R

0p | O -




Neural operators: the closure map

ﬂ % Mapping modeled through a MIONet (multi-input operator network)

“ Minimize the discrepancy with respect to the exact correction

Branch net B,

v

Op1 |

Reduction net R

7((a,g)(n))

v

> Op2

Op1i0p2 Ot |

Oy —

v




Numerical results: the test cases

Unsteady flow past a cylinder with parameters Unsteady channel-driven cavity flow
(v, t) with parameters (v, t)
velocity magnitude - '
00e+00 2 3 4 5 6 7 8 1.0e+01 . ¢
: velocity magnitude
—— 2.4e-060.05 0.1 1.6e-01
—

Steady backward-facing step flow with geometrical parameters (a, h4, h;)

a

9.1e-05 02 03 04 05 06 07 08 09 1 1.2e+00 8Qwa£!

— | e—




Numerical results: the flow past a cylinder

Ui

Field
=

Average gain in the relative error of DD-EV-ROM with respect to the state-of-the-art baseline EV-ROM
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Il Train q Test ff

% Improvement of the
accuracy especially for the
pressure: we introduce a
dedicated pressure closure

% Good predictive
performance in all modal
regimes



Numerical results: the flow past a cylinder

Graphical results for (N, N, N,,) = (10, 24, 30) for a test parameter

Velocity magnitude Pressure Eddy viscosity

0.0e+00 1 152 253 354 455556657758 8599%+00 -2.6e+01-20 -15 -10 5 0 5 1.5e+01 -4.8e-07 0.02 0.03 0.04 0.05 0.06 0.07 0.08 9.5e-02

P st — — o — —

EV-ROM

DD-EV-ROM

FOM
(reference)

l

Improved accuracy and fields' reconstruction in the novel DD-EV-ROM




Numerical results: the channel-driven cavity

Average gain in the relative error of DD-EV-ROM with respect to the state-of-the-art baseline EV-ROM

-0.5

% Improvement of the
accuracy only for the
pressure: we introduce a
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- % Good predictive
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Numerical results: the channel-driven cavity

Graphical results for (N,, N, N,,) = (1,3, 1) for a test parameter

b

EV-ROM DD-EV-ROM

FOM

-1.6e-02 -0.012 -0.01 -0.008-0.006-0.004-0.002 0 0.002 5.0e-03

| ss—

Improved accuracy and pressure reconstruction in the novel DD-EV-ROM




Numerical results. the backward-facing step

Average gain in the relative error of DD-EV-ROM with respect to the state-of-the-art baseline EV-ROM
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Numerical results. the backward-facing step

Graphical results for (N,, N, N,,) = (4,5, 20) for a test parameter

Velocity magnitude Pressure Eddy viscosity

=vrov I I
poevrov Iy M S
rou I P —

(reference)

9.1e-05 0.2 03 04 05 06 07 08 09 1 1.2e+00  7.0e-03 01 015 02 025 03 0.35 4.0e-01 1.0e-05 0.002 0.003 0.004 0.005 0.006 0.007 0.008 1.0e-02
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Improved accuracy and fields’ reconstruction in the novel DD-EV-ROM



Intrusive ROMs for
turbulent and
compressible problems

- How to improve ROMs in
compressible flows

- ROM segregated methods

- FOM-ROM consistency

Joint work with:
Matteo Zancanaro, Giovanni Stabile




Overview of the physical problem of interest

The scope of this work is the resolution of
parametric computational fluid dynamics
problems where an unaffordable computational
cost is required to obtain accurate solutions;

Applications of interest are spread over different
fields and scales: aerospace engineering,
automotive industry, nautical studies or
environmental fields.




The analytical model for compressible flows

What is this problem characterized by?

e Mach number > 0.3
e varying density field
e thermodynamics for energy evolution
e no shocks
e high turbulent fluctuations
The Favre averaged Navier-Stokes Equations The Favre averaging rule
V-(pt1) =0 =
~ p ~ 7
V-[pi® it — Frus — 7 + Pl =0 ¢=?, ¢=0+9
. u-u Co 1 ,,_&ﬂ " _,,]_ - / = "
V[pu(e-l—T)—aEVe CvPrtVe+pu = u=u+u e=¢&+




The Reduced SIMPLE algorithm

Why using a segregated approach at the full order level?

Iterative block solvers Iterative segregated solvers
X A very big matrix has to be stored | It requires 1/4 of the storage needed by block solvers

v The system can be solved without | X Two decoupled equations, to be solved iteratively are
being modified needed

Why using a segregated approach also at the reduced order level?

e consistency between offline and online equations ——» improved accuracy

¢ no saddle point formulation ———» no need for stabilization (e.g. supremizers, etc)



The Reduced SIMPLE algorithm - part 1

Reduced approximated fields: &- =3 adi=¥a, p,=3 " bipi=8b, & =3 cfi=6c¢c

Input: first attempt reduced velocity, pressure and energy coefficients a*, b* and c¢*; modal basis
functions matrices ¥, ¢ and ©

Output: reduced pressure, velocity and energy fields p,, &, &
1. From a*, b*, c*, reconstruct &r*, p*, &: i* = Va*, p* = db*, & =0Oc*;
2: Evaluate the eddy viscosity field v;;

N,
n = 7 3
How to deal with turbulence in ROM? v~ Y gt n®
Introduction of a reduced eddy viscosity field, computed o -
with: velocity .eddy'
» RBF interpolation coefficients viscosity
coefficients

e neural network (our choice)

Jj Hijazi, S., Stabile, G, Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational Physics, 416,
109513.




The Reduced SIMPLE algorithm - part 2

Reduced approximated fields: &, =Y, ath; = ¥a, 5, =312 bigi=®b, & =3 cfi = ¢

3: IMomentum predictor step| assemble momentum equation, project it over );, solve it to obtain new
reduced velocity coefficients a** — reconstruct &**;
4: Energy estimation step: assemble energy equation, project it over 8;, solve it to obtain new reduced
Pressure Poisson Equation (PPE) energy coefficients C.** ~ recoEitrl:EE & —_— 2
s 5: Calculate p and.T fields from p*, &** and &**: s?ate EQI:IatI(?n; )
AP = —p[(a) +2@a_x + (5) ] —46: |Pres§ure correction step:| asseml)le pressure equation, project it over ¢; to get new reduced pressure
coefficients b** — reconstruct p**;
7: if convergence then

8: ﬁr — ﬁ**!ﬁr = _**lér = é**

9: else

10: set =i, pF=p" & =&,
11: end if

Jj Zancanaro, M., Nkana V., Stabile, G., & Rozza, G. Segregated methods for reduced order models, submitted 2024.



Results - ROM with physical parameterization

Test case: flow around a NACA 0012 airfoil where the viscosity is parametrized.

x 1 €[1075,1072], fon = 1.2 x 10~3; * number of epochs for training of the neural
Data of the « Mach = 0.73: network: 2 x 10° epochs;
) ' 4 171, * reduced number of modes:
problem: x Re € 2.92 x [10*,107]; Ny = N, = N, = 20,

* number of offline snapshots: Nog = 50; * reduced number of modes for eddy viscosity:

x activation function of the neural network: N,, = 30.
Tanh ;
1 0 -2 rain
% 10 —e— Velocity % 10 10 \ ';est
g —@— Pressure 8 g 10_3
= —ae— Ener,
w 107° il ¥ 3
o T 10
3z -5 107% | =
=13 | 3
10 o B0 40 0 20 40 0 10,000,000
N, = N, = N, Ny, Epochs

Loss of the neural network used for eddy viscosity

Eigenvalues decay for all the fields of interest coefficients




Results - ROM with physical parametrization

Test case: flow around a NACA 0012 airfoil where the viscosity is parametrized.

FOM-ROM (pressure) FOM-ROM (velocity)

FOM-ROM (energy) FOM-ROM (eddy viscosity)

Jj Zancanaro, M,, Stabile, G., & Rozza, G. Segregated methods for reduced order models, 2023.




@

ROM with geometrical parameterization ara

Accusate RO o i

Ahmed body test case with varying slant angles

Absolute
error FOM-
ROM

UMeaMagzitude Zancanaro, M., Mrosek, M,, Stabile, G, Othmer, C., & Rozza, G. (2021). Hybrid neural network reduced order
006 6.2¢+01 modelling for turbulent flows with geometric parameters. Fluids, 6(8), 296.




@

Qra

ROM with geometrical parameterization

it REAN e Wb

Backstep test case: the step is constructed as a moving boundary so that the slope B can varies

Geometry deformation in backstep channel

1de02
[ouv
IONS
0.0e+00
1.4e-02
[ 001
I 0005
006400

Velocity field FOM-ROM comparison Pressure field FOM-ROM comparison Eddy viscosity field FOM-ROM comparison

Zancanaro, M., Mrosek, M,, Stabile, G, Othmer, C,, & Rozza, G. (2021). Hybrid neural network reduced order modelling for turbulent flows with geometric
parameters, Fluids, 6(8), 296.



Non-Intrusive ROMs
enhanced with
aggregation models

Exploit predictions of different ROMs
Automatically deduce the best model
Associate space-dependent weights
to every ROM in a model mixture

Joint work with:
Anna lvagnes, Niccolo Tonicello,
Paola Cinnella (Sorbonne University)

POD-RBF
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Non-intrusive ROM

ROM approximate the high dimensional solution manifold by dimensionality reduction and perform

interpolation to find the prediction for unseen parameters.

u(p*) =2 uROM(ﬂ*) ~ ll(l.l*)
T
(= .
i X Back-mapping
: X
. | !
Reduction : st
1
' s(pr) =1 interpolation| regression
° _._!-.-l-‘..,.
— .—"."7”{'_.
s(py) . . i
Approximation



Leading motivation for mixed-ROMs

Individual reduction approaches are not always
accurate:

up™) ="?

o the POD as a linear reduction is inaccurate
in advection-dominated problems (high
Reynolds parameter) and nearby
discontinuities (i.e. shocks)

Reduction

e the AE (AutoEncoder) as a nonlinear
approach is more accurate close to shocks
but inaccurate in smooth regions

s(u*) =7




Leading motivation for mixed-ROMs

s(u*) =17 interpolation| regression

e L2t
LY T e
-J‘-"r & .
J“
3

2

s(p1) . . ~
Approximation

Individual approximation techniques are not always accurate:

e the RBF (Radial Basis Function Interpolation) is characterized by smooth interpolants, but is
sensitive to the basis function chosen;

e the GPR (Gaussian Process Regression) is characterized by automated hyperparameter tuning
but it is sensitive to noisy data,

e the ANN (Artificial Neural Network) can capture complex relationships in data but it is expensive
and hard to train.



Leading motivation for mixed-ROMs

ll(ﬂ*) = UROM(]J*) ~ u(u*)
P
ol
| X Back-mapping
Reduction | X
. Pl s(u,)
i )
’ s(u*) =7 interpolation| regression
-"J'('.‘. RN
e
s(p1) i i 25
Approximation

N | '
(s )- Build a database of ROMs, combined in a mixed-ROM, whose prediction is the convex
‘W combination of the individual ROMs in the database.

]j‘ de Zordo-Banliat, M., Dergham, G., Merle, X., & Cinnella, P. (2024). Space-dependent turbulence model aggregation using machine learning. Journal of
Computational Physics, 497, 112628.

]j Cherroud, S., Merle, X, Cinnella, P., & Gloerfelt, X. (2023). Space-dependent aggregation of data-driven turbulence models. arXiv preprint arXiv:2306.16996.



Pipeline of aggregation-ROMs

1. Run the FOM and build a database

2.

Divide the database into training, validation and test database

Testcase 1

_—~

p_—

0.0

-0.5

Two pressure snapshots

—— Re=1eb
—— Re = 5¢e5
Re = 1e6

0.0 0.2 0.4 0.6 0.8

z/fe

Pressure coefficient

1.0

Reynolds number
varies in interval
[1e5, 1€6]

20

-20

—40

1.5

—=0.5

-1.0

Test case 2

150000

125000

100000

75000

50000

Two pressure snapshots

g -

— a=5
a = 10°

00 02 04 06 08 10

z/c

Pressure coefficient

Angle of attack
varies in interval
[0, 10] degrees

140000

120000

100000

80000

60000

More
challenging test
case: the shock
position varies a

lot!




Pipeline of aggregation-ROMs

Training ROMs

3. Compute different ROMs in the training database

Setof ROMs: M = {M|,M,, ...,MnM} o Miis anon-intrusive ROM
@)
9 “0m) is the prediction of M;

o 'l isthe setof parameters (spatial/physical)
Fields approximated with ROM:

o 1D pressure/wall shear stress on airfoil
o 2D pressure/velocity magnitude around airfoil

ROMs considered in . :

o POD-RBF o AE-RBF | Inthe case of 2D fields AE
o POD-GPR e AE-GPR | isreplaced with PODAE to
o POD-ANN e AE-ANN gain computational time




Pipeline of aggregation-ROMs

The model mixture

4. Compute the weights associated to ROMs in the validation database

g
Prediction of the aggregation model: () = Z w6V (n)

i=1

How to compute the weights?

ROM FOM
prediction  Snapshot

: 1 (5(0(%‘) - a)z =N\ Snapshots in
VM;: wlny = %, 8i(ng) = exp (_E pe> (6d)i£1 validation set
—1 8\
j=19°]



Pipeline of aggregation-ROMs

Testing the method
5. Predict the weights in the test database UQ analysis
DATA (from validation set) . UNKNOWN (in test set) C005|der the prediction as a random
Regression (RF) variable
@MY, VM, &%) VM,

Expected value:

E[8(n)] = 8™ () = 3" wims®(n)
6. Test the method for unseen configurations i=1

N, Variance:
Smived) () — Z wn*) 8D (n*) Var[d(n)] = Z win) (6P(n) — E[6(m)1)?




Results of aggregation model

Relative errors for 1D airfoil pressure

B POD-RBF BN POD-ANN @4 AE-GPR
s POD-GPR w@a  AE-RBF @## AE-ANN
, Errors for airfoil pressure (evaluation set)

B Mixed-ROM (2 best models)
B Mixed-ROM (models with RBF)
Errors for airfoil pressure (test set)

3x 10~ x 1072
2% 102 2 x 102 e Latent dimensions: 3 and 10
Test case 1 10-2 - e Improvement of accuracy in:
bt o o validation set
3 modes 10 modes 3 modes 10 modes (guarantee_d Qy
Errors for airfoil pressure (evaluation set) Errors for airfoil pressure (test set) mathematical law)
5 5 109 ? 4 %1073 o test set (depends onthe
-3 .
f i regression model)
Test case 2 g 2 x 1073
10-3 ﬁ
/ 1073

3 modes

10 modes

10 modes

Jj Ivagnes, A, Tonicello N., Cinnella P., and Rozza G., Enhancing non-intrusive Reduced Order Models with space-dependent aggregation methods, Acta Mechanica, 2024.



Results of aggregation model

Results for a test parameter (test case 2)

Variance (3 modes) Variance (10 modes

1.0

1.0
10- 107
The weights are higher for the AE nearby the e _— o 10-¢
shock position and nearby the wake, where the e
nonlinear reduction is more accurate 0.0 o | Koo 00 10-9
—0,5 - u 10712 —p5 - o . 10-12
—0.5 0.0 0.5 1.0 1.5 2.0 —-05 0.0 0.5 1.0 1.5 2.0
id POD-RBF Vol 10 PODAE-RBF 166
075 0.75 The variance gives information on
0.51 - 0.5 i e  consensus among ROMs in space
00 : 00 : e  deviation of mixed-ROMs with respect to
' 025 0.25 individual models
~0.5—— . 5 0.00-05— ; 5 0.0

Weights spatial distribution (3 modes)

Ivagnes, A, Tonicello N., Cinnella P., and Rozza G., Enhancing non-intrusive Reduced Order Models with space-dependent aggregation methods, accepted in Acta
Mechanica, 2024.




Conclusions

We saw different techniques to enhance the results obtained in both intrusive and
non-intrusive ROM frameworks;

The accuracy is improved both with machine
learning techniques (e.g. eddy viscosity
coefficients) and stabilized humerical
algorithms introducing consistency FOM-
ROM.

All techniques used in non-intrusive ROMs
may have bottlenecks and can be improved
by automatically detect the approach with
the best performance (e.g. aggregation
method)




Shape optimization
in naval engineering

= Exploiting ROM in a shape
optimization pipeline

- How to improve the efficiency in naval
engineering applications?

Joint work with:
Anna Ivagnes, Nicola Demo




Motivation for naval design optimization

Goal.
optimize the design of a specific
element of the ship to improve the
performance

Propellers Hulls e

e Avoid cavitation phenomena °

Optimization for different purposes

Ensure comfort in yachts o Increase efficiency

Reduce vibrations

= MICAD JCETENA

FINCANTIERI
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The propeller test case

The test case: open-water tests

e Homogeneous inflow (velocity Va)

e Uniform and undisturbed flow conditions

Wall and propeller
The model: incompressible Navier-Stokes Equations {50
{"-“: —V-@®u)+ Vv (Vu+(Vuy) - Vp

ot
V.u=0 /

Inlet

{u =(0,V,,0)

Outlet

e  Finite-Volume e Turbulence model: k-w SST Vp-n=0 — {f e
discretization e  Mesh rotation: Moving A ./
e  RANS approach Reference Frame (MRF)

A slice of the mesh

Every simulation takes 24-48 hours on
our cluster in parallel on 55 cores

Unfeasible for optimization



A shape optimization pipeline using ROMs

A full pipeline exploiting non-intrusive reduced order models

Mesh

deformation FOM
A I

Existing ',:" CFD <«— Validation
object

(blade, ...) User- Deformed Optimal

defined objects

Object
object

(blade, ...)

Geometrical Parameters ROM

Optimization
parametrization P

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.




Geometric parametrization: two alternatives

Deformation through geometrical features (used for propellers)

o  Select geometrical features

(chord length, rake, e N - ‘ ‘ ‘
thickness, .. N iyl

'Y Deform the blades by —00055 %0 TR 0.03 0.4
modifying the parameters Example of section deformation

Library used
Example of blade/propeller deformation

Deformation through Free Form Deformation (used for hulls)

(> M Strategy:
| 2 enclose the object
e :

in a cube, deform
the cube, then back-
map

o 0¢
O 0 ¢




Mesh deformation

Problem: deform the mesh preserving the number of degrees of freedom in all simulations




Mesh deformation

Solution: RBF interpolation technique, using as control points the boundaries

A look at the
undeformed
and deformed
control points:
blades (right),
all boundaries
(below).

Different deformed mesh slices
(above);

an example of mesh deformation
on the propeller surface (right).

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.



Non-intrusive ROM performance

Two alternative ROM approaches in optimization

Pressure

-
Standard ROM \ §:e+01
e fields evaluated at all blades points . ‘ . , ( pu Ils
'

e needs to deform all blades points to

1 B_¢é :
compute the efficiency '&' ". & - ’ I °§0
R

5-6 minutes for each efficiency evaluation -1.8¢+01

Speed-up: ~ 102 Wall shear stress

5.0e-01
0.45
Fast ROM .“ “‘ I 035
e fields evaluated at quadrature points 03
o efficiency computed via quadrature . ' o35
formulas ‘ ‘ I o1

8.1e-04

10-15 seconds for each efficiency evaluation '
Speed-up: ~ 105 FOM Standard ROM Fast ROM

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.



Optimization algorithm: results

The genetic algorithm: an evolution-inspired algorithm

Po:)“ljlt;ison Selection — Crossover — Mutation
i | e | EE==]
El— =] Individual Fitness I;l
S parameter ROM — efficiency -
P — p blade(s) ) Eﬁ
I [ Irsart ] m Are stopping
! NO criteria
M u satisfied?
Standard ROM Fast ROM
Unconstrained optimization +5.13% +3.24%
Constrained optimization +0.81% +0.80 %

(physicallgeometrical constraints)

Optimal blades
(standard ROM)

Why genetic?

Not stuck in local minima
Not influenced on initial guess
Many fitness evaluations

[] Original blade

= Optimal blade
(uﬁconstrained)

Optimal blade
= (constrained)

Optimal blades
(fast ROM)

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.




Conclusions

We saw different techniques to enhance the results obtained in both intrusive and
non-intrusive ROM frameworks;

The accuracy is improved both with machine
learning techniques (e.g. eddy viscosity
coefficients) and stabilized humerical
algorithms introducing consistency FOM-
ROM.

All techniques used in non-intrusive ROMs
may have bottlenecks and can be improved
by automatically detect the approach with
the best performance (e.g. aggregation
method)




Driving bifurcating
flows via optimal
control problems

- Non-unique flow behavior
- Control to a desired state

Joint work with: o2
Federico Pichi, Maria Strazzullo,
Francesco Ballarin

Bifurcation diagram

sym(u(15.5, w)

o N & o @
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Bifurcating models in CFD i

BIFURCATION

Issue: Navier-Stokes model exhibits co-existing admissible states for relatively small Re
e.g. Coanda Effect, Fluid-Dynamic Pinball, Triangular Cavity

Velocity field
Velocity field 0.0e+00 0.5 1.0e+00
00e+00 02 04 06 0.8 1.0e+00 - | i

— e

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction’,
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361-1400. https://doi.org/10.1051/m2an/2022044
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Bifurcation diagram for the Coanda effect e

BIFURCATION

The flow exhibits a wall-hugging phenomena for viscosity values g < u* = 0.96

Deterministic bifurcation diagram
3 4
2 | /

1: o

™
s 0 ﬂ*"__
1 [
-2 MITRAL VALVE
REGURGITATION
=3

050 075 1.00 1.25 150 1.75 2.00
u

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction’,
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361-1400. https://doi.org/10.1051/m2an/2022044
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Steering the bifurcating behavior ot

BIFURCATION

Goal: Obtain a laminar flow towards the end of the channel via Optimal Control Problem
Given € P, yg € Yobs(Qops), f € Y*, find state-control pair (y,u) € Y x U(2,)

2 - Do .
GE@memlly .Yd”yobs EIIUIIU subject to G(y;pn) — C(u) — f =0,

= C € L(U,Y*) control operator, and G(y; p) state operator,
= a € (0,1] penalization parameter (the greater is «, the lower is the control),

p, PDE(p) Cost Optimal
Control Functional Solution

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction’,
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361-1400. https://doi.org/10.1051/m2an/2022044




Neumann boundary control - weak action

BIFURCATION

[ al Slight effect on the bifurcating
: nature of the uncontrolled equation
out

I}

1
5

I_obs

Controlled vs Uncontrolled Velocity
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Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction’,
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361-1400. https://doi.org/10.1051/m2an/2022044




Distributed control - strong action

Xn(ph)

["wall

Symmetric Velocity
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Asymmemc Velocity
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The uncontrolled solution is heavily

affected by acting on the forcing term
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Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction’,

ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361-1400. https.//doi.org/10.1051/m2an/2022044

BIFURCATION
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Further implications and extensions

BIFURCATION

1. Influencing the position of the bifurcation point via the penalization parameter a
2. Exploit ML-enhanced ROMs for the detection of the bifurcating curve

3. Stochastic perturbation to approximate unknown states via Polynomial Chaos
4. Interaction with buckling of elastic structures in the FSI scenario

: : r .
Bifurcation diagram I
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1. [Pichi 2022] 'Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction’, M2AN

2. [Pichi 20231 'An artificial neural network approach to bifurcating phenomena in computational fluid dynamics', Computers & Fluids

3. [Pichi 2024] ‘A graph convolutional autoencoder approach to model order reduction for parametrized PDEs', Journal of Computational Physics

4. [Pintore 2021] 'Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method', Advances in Computational Mathematics
5. [Gonnella 2024] ‘A stochastic perturbation approach to nonlinear bifurcating problems'. arXiv 2402.16803

6. [Khamlich 2022] ‘Model order reduction for bifurcating phenomena in fluid-structure interaction problems’, International Journal for Numerical Methods in Fluids




Generative models

for shape
deformation

Constrained generative models
Free Form Deformation strategy
Quantify model uncertainty

Joint work with:
Guglielmo Padula, Francesco Romor,
Giovanni Stabile

Sufficient summary plot

-2 -1 0 1 2
Active variable W]p




Examples:

Free Form Deformation

!

&)
Possibility of
violation ] Add to

of constraint database
of interest
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Volume,
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Constrained Free Form Deformation

Constraint by Optimization
o lterative solution
o Universally applicable
o Satisfied within certain bounds
o Slow
Examples:

o  Genetic Algorithms (GA)
o Gradient Descent
o Free Form Deformation + GA

Constraint by Design
o One shot solution

o Problem dependent
o s satisfied within numerical errors
o Fast

Examples:

o Least Squares
o Constrained Free Form
Deformation

But still high number of parameters > Curse of Dimensionality

References:
Hanmann, G. Bonneau PG, Barbier S., Elber G., Hagen H. (2012). Volume Preserving FFD for Programmable Graphics Hardware. The Visual.

1

Computer.




#Shape parametrization #Active Subspaces
#POD-Galerkin

Combined Parameter and model Reduction
with Marco Tezzele and Francesco Ballarin




Active subspaces property

In many cases the dimension of the parametrised problem is only artificially high
> Active subspaces property identifies a set of important directions in the space of all inputs

fis a scalar function that takes as arguments the

f: R™ — R x € R™ parameters x
C is the uncentered covariance matrix of the
T T
C=E[VxfVxf']= /(VXf)(VXf) p dx gradients of f, symmetric, positive semidefinite
T E is the expected value and rho a probability
C =WAW density function

> We define the active subspace to be the range of the first n eigenvectors of W

W=[W; Wy]eM™m A= [Al

As

» With the basis identified, we can map forward to the active subspace. So y is the active
variable and z the inactive one. The surrogate model g is used to approximate f

y = W'lrx e R" 7 = ng e RMm™" f(x) = Q(errx) =g(y)
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Active subspaces - A quadratic example
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Local Active Subspaces

Local active subspaces exploits locality by finding clusters for better function variability.
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Local Active Subspaces

Local active subspaces exploits locality by finding clusters for better function variability.
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Generative Models - Quantify Model Uncertainty

- Generative modelling learns probability distributions on the data.
= A priori uncertainty quantifications can be done with probability distributions.
- Learning distribution of computational domains.

z ~ p(z) Generative Network

random noise

Computational
domains



Constrained Generative Models

We adopt generative models for sampling new geometries.

The geometries are parametrized using the reduced latent space

- alternative to Active Subspaces, with the advantage of having
the same parameterization for every function of interest.

The advantages with respect to Constrained Free Form Deformation are:

- lower parameter dimension
- the generation of the new meshes is significantly faster.

Constrained Generative Models and Active subspaces can be combined.

References:
1 Padula G., Romor F., Stabile G., Rozza G. (2024). Generative models for the deformation of industrial shapes with linear geometric constraints:
Model order and parameter space reductions. Computer Methods in Applied Mechanics and Engineering.



ROM Building Workflow

Decoder One vectorial snapshot

Decy : RE 5 RM Upcp € RMxr

>

N | o | -
UPCA (Dec¢ (Encw (X))) =%
sampling mesh generation: MOR: snapshots PODI: design of
from cGMs RBF interpolation collection response surfaces

7 Z Z 22
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Workflow: Constrained Generative Models

Autoencoder
Decg : RRE — RM Upca € RM*7
Z ~N(0,Ir) Variational Autoencoder
A

K li"enforcing (X)

Adversarial Autoencoder
Upca (Dec¢(Enc¢ (X))) =X

/AN

sampling Boundary Equilibrium
from cGMs Generative Adversarial
. Network
References:
1.

Daly, G., Fieldsend E., Tabor G. (2022) Variation Autoencoder without the Variation. arXiv.
Kingma D.P., Welling M. (2014). Auto-Encoding Variational Bayes. ICLR 2014.
Makhzani A., Shlens G, Jaitly N., Goodfellow I, Frey B. (2016) Adversarial Autoencoders.. ICLR 2016.

2.
3.
4.  Berthelot D., Schumm T., Metz L. (2022). BEGAN: Boundary Equilibrium Generative Adversarial Networks. arXiv.




Test Case: DTCHull

Tested on InterFoam
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Applying cGM and ROM to Industrial Naval Hull

Velocity magnitude
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Summary of the methods

Inference = Approximation + Parameter Reduction

/ N\

o Neural networks o Variational Autoencoders

o Radial Basis functions o Boundary Equilibrium Generative
o Gaussian Process Regression Adversarial Networks

o PODI-GPR o Adversarial Autoencoder

o PODI-NN o Autoencoders

o PODI-RBF




