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Introduction and 
Leading 
Motivations

➔ Need of saving computational resources
➔ Offline-online  coomputational procedures



Physical Parametric Differential Problems: Overview 

Parametric Differential Problems are ubiquitous in many field of Natural and Applied 
Sciences from naval and nautical engineering,  to aeronautical engineering, 
bioengineering, as well as industrial engineering.

automotive biomedics aeronautics

Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022)  eds. Advanced Reduced Order Methods and Applications in 
Computational Fluid Dynamics. Society for Industrial and Applied Mathematics., CSE series.



Leading Motivation: CFD challenges

Need of computational collaboration between Full Order Model (FOM)+HPC
and Reduced Order Model (ROM)

Growing demand of:

efficient  tools

real-time
computations

parameterized 
formulations

uncertainty 
quantification

Quickly emerging field of
Model Order Reduction

to efficiently parametrize and 
accelerate computations



Towards real-time computing

Offline stage
The Full Order Model (FOM)

● Requires super-computers (HPC)
● Expensive computational resources
● Several degrees of freedom
● Extremely time-demanding

● Needs a laptop
● Small computational resources
● Few degrees of freedom
● Fast, real-time computing

Online stage
Reduced Order Model (ROM) techniques



Technology perspective: computational webserver

Model order reduction for computational web server: to real world applications (ERC PoC ARGOS):
● argos.sissa.it
● atlas.sissa.it

● HPC
● data science
● Digital twin
● SMACT Industry 4.0
● 3D Printing



… and much more!

ARGOS - Computational Webserver

Model order reduction for computational web server: from academic to real world applications

Benchmark applications and worked out 
problems for academia and beyond

https://argos.sissa.it https://argos-edu.sissa.it

● real-time computation
● visualization tool

powered by

POD+Interpolation for 
Navier-Stokes DMD



ATLAS - Computational Webserver

Model order reduction for computational web server: from academic to real world applications

powered by

Aortic model

https://atlas.sissa.it

A special focus on 
cardiovascular applications

Carotid artery Coronary arteries



Digital Twin (DT): integration of emerging fields  

A large amount of data 
(Big data) can be 
collected

Artificial Intelligence can help to store and 
organize data.

● By using black-box models, AI techniques 
are able to find fitting functions

● It does not require knowledge of the physics 
of  the problem, even if we do prefer 
integrated “Big Models” physics-informed 
approaches

The development of High Performance Computing (HPC) and its integration with ROMs

allowed to reach better performances for:

● building Digital Twins (DT) of products and processes;

● Uncertainty Quantification (UQ);

● Data analytics.

A sustainable perspective (reducing energy consumption, recycling computational works)



SISSA mathLab: our current efforts and perspectives
A team developing Advanced Reduced Order Methods for parametric PDEs! 



CFD as a central topic to enhance broader 

applications in multiphysics and coupled settings

SISSA mathLab: our current efforts and perspectives

Face and overcome some limitations of classic 

parametric ROM also by means of Machine Learning

Improve capabilities of ROMs for more demanding 

applications in industrial, medical and applied sciences

Carry out important methodological developments

with special emphasis on mathematical modelling



Development of open-source tools based on surrogate modeling: 

○ ITHACA, In real Time Highly Advanced Computational Applications, as an add-on to 
integrate already well established CSE/CFD open-source software

○ RBniCS as educational initiative (FEM) for newcomer ROM users (training).
○ EzyRB, data-driven model order reduction for parametrized problems
○ PyDMD, a Python package designed for Dynamic Mode Decomposition (in collaboration 

with University of Texas, CERN, and University of Washington)
○ ARGOS Advanced Reduced order modellinG Online computational web server for 

parametric Systems
○ PINA, a deep learning library to solve differential equations

SISSA mathLab: our current efforts and perspectives
Open source libraries: mathlab.sissa.it/cse-software



Challenges for ROM 
in CFD

➔ Strategic fields of development of 
ROMs

➔ Review and limitations of classical 
high-fidelity approaches



Full Order Models: a qualitative comparison

Finite Element 
Method (FEM)

Finite Volume 
Method (FVM)

Spectral Element 
Method (SEM)

Discontinuous 
Galerkin (DG)

Complexity Computational 
cost

Conservation Flexibility Accuracy

Moderately complex, 
especially in 3D 

problems

Moderate to high 
cost due to matrix 

operations

Moderate cost, 
depends on grid 

quality

Less complex, 
straightforward 

formulation

Very high complexity, 
particularly in 

implementation

High complexity, 
especially in dealing 

with interfaces

Very high cost, 
especially for high 

accuracy

High cost due to 
local problem 

solving and flux 
calculation

Naturally 
conservative

Conservative

Inherently 
conservative

Depends on 
formulation

Very flexible on 
complex geometries

Less flexible 
compared to FEM

Flexible but requires 
high-quality mesh

Very flexible, suitable 
for complex 
geometries

High accuracy with 
higher-order 

elements

Moderate accuracy

Very high accuracy 
with exponential 

convergence

High accuracy with 
appropriate 

polynomial order
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Flexible but requires 
high-quality mesh

Very flexible, suitable 
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higher-order 

elements

Moderate accuracy

Very high accuracy 
with exponential 

convergence

High accuracy with 
appropriate 

polynomial order

Motivations for ROM 
development



Strategic fields of development of ROMs in CFD

● Geometric parameterization and shape design 
(appendix)

● High Reynolds number (turbulence)
● Automatic learning developments
● Parameter space reduction
● Flow control and data assimilation
● Bifurcations (loss of uniqueness of the solution) 

(appendix)
● Flow instabilities



Reduced Order 
Models (ROMs)

➔ Equation-based or fully data-
driven

➔ Machine-learning enhanced 
ROMs

➔ Fast Online Phase



Reduced Order Model - Accelerating Numerics

Problem: to find the approximation for an unseen (test) parameter
Two macro-types of ROM approach:

Intrusive ROM

● equation-based approach

● consolidated mathematical theory

reduce, then evolve

Non-Intrusive ROM

● purely data-driven approach

● no knowledge of the mathematical 
model needed

reduce, then approximate

Hesthaven, J. S., Rozza, G., & Stamm, B. (2016). Certified reduced basis methods for parametrized partial differential equations (Vol. 590, pp. 1-131). 

Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022)  eds. Advanced Reduced Order Methods and Applications in Computational 
Fluid Dynamics. Society for Industrial and Applied Mathematics., CSE series.

Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., & Miguel Silveira, L. (2020). Model Order Reduction: Volume 1, 2, 3. De Gruyter.



Reduced Order Model - Accelerating Numerics

Recent research goal: integrate data and physics’ knowledge

Hybrid ROMs

Data collection and integration
Knowledge of the equations and the 

physical model of interest

Rozza, Gianluigi, Giovanni Stabile, and Francesco Ballarin (2022)  eds. Advanced Reduced Order Methods and Applications in Computational 
Fluid Dynamics. Society for Industrial and Applied Mathematics., CSE series.

Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., & Miguel Silveira, L. (2020). Model Order Reduction: Volume 1, 2, 3. De Gruyter.



Hybrid data-driven 
intrusive ROMs for 
turbulent flows

➔ Hybrid approaches for reduced order 
models

➔ How to stabilize and enhance the 
flows?

➔ How to integrate ROMs with machine 
learning?

Joint work with:
Anna Ivagnes, Giovanni Stabile



Intrusive ROMs - POD-Galerkin approach

POD principles Linearity hypothesis

● d: dimension
● : degrees of freedom (several)

: reduced dimensions for velocity and  
pressure, chosen a priori

vectors
of coefficients
(parameter-
dependent)

POD modes (space-
dependent)



Intrusive ROMs - POD-Galerkin approach

The Galerkin approach:

● momentum equation projected
into the velocity modes

● continuity equation projected
into the pressure modes

Reduced ODEs system (compact form)

dynamical (cheap) system to be 
solved at each n-th iteration 



● Enrichment of the velocity POD space with 
additional               modes

● Fulfillment of the inf-sup condition

Replacement of the continuity equation with PPE

● at the FOM level:

● at the ROM level (at each time step):

Stabilized POD-Galerkin ROMs

Stabilization issues in standard ROMs:

● spurious oscillations

● reduced inf-sup condition not fulfilled

Pressure Poisson EquationSupremizer enrichment

Stabile, G., & Rozza, G. (2018). Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes 
equations. Computers & Fluids, 173, 273-284.



Stabilized ROMs enhanced with data

FOM
(Unsteady RANS)

POD Training of extra
data-driven terms

High-fidelity snapshots 
(parametrized and time-dependent)

Poor approximations
(especially in convection 

dominated or turbulent cases) Improved approximations

Stabilized
POD-Galerkin ROMs

Hybrid Data-Driven 
ROMs

Offline

Online

Ivagnes, A., Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv 
preprint arXiv:2406.04169.

The  additional 
offline training can 

be performed using 
ML or standard 

approaches, like 
RBF interpolation



Purely DD-ROMs

Purely data-driven approach

WHY

Reintroduce the contribution of the neglected modes

in a LES fashion

HOW

The procedure to build the extra-correction terms

- Choose a reduced dimension r and a bigger dimension d>r

- Select a stabilization      operator 

- Compute the exact correction

- Create a map for the approximated correction

- Train the map:

Ivagnes, A., Stabile, G., Mola, A., Iliescu, T., & Rozza, G. (2023). Pressure data-driven variational multiscale reduced order models. Journal of 
Computational Physics, 476, 111904.



Physics-based DD-ROMs

Physics-based data-driven approach

WHY

Reintroduce the turbulence modeling in ROMs

in a RANS fashion

HOW

Modeling the reduced eddy viscosity

- Choose a reduced dimension for the eddy viscosity 

- Extract the eddy viscosity modes                       such that: 

- Compute the projected coefficients

- Create a map for the approximated correction

- Train the map:

Hijazi, S., Stabile, G., Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational 
Physics, 416, 109513.



Machine learning maps

Purely data-driven training
(aimed to reintegrate missing modes)

Physics-based data-driven training
(aimed to reintegrate turbulence)

Mixed online formulation

Ivagnes, A., Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv 
preprint arXiv:2406.04169.

Ivagnes, A., Stabile, G., Mola, A., Iliescu, T., & Rozza, G. (2023). Hybrid data-driven closure strategies for reduced order modeling. Applied 
Mathematics and Computation, 448, 127920.



Numerical results

Test case: periodic flow past a cylinder
Parameters: time and Reynolds number

Number of modes: 3 for velocity, pressure and eddy viscosity

(for a test parameter and 
in time extrapolation)

Ivagnes, A., Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv 
preprint arXiv:2406.04169.



Graphical results

Ivagnes, A., Stabile, G., & Rozza, G. (2024). Parametric Intrusive Reduced Order Models enhanced with Machine Learning Correction Terms. arXiv 
preprint arXiv:2406.04169.



Turbulence modeling: another approach

Eddy viscosity model: EV-ROM (state-of-the-art)

Hijazi, S., Stabile, G., Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational 
Physics, 416, 109513.

 At the full order level:

 At the reduced order level:

RANS equations with 
eddy viscosity modeling 

Reduced eddy viscosity

Example of eddy viscosity field for the
flow past a cylinder



Turbulence modeling: another approach

Eddy viscosity model: EV-ROM (state-of-the-art)

Hijazi, S., Stabile, G., Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational 
Physics, 416, 109513.

 The system is not closed: we have                    equations, but                              unknowns

 A regression map is used to compute the eddy viscosity coefficients

Example of eddy viscosity field for the
flow past a cylinder



Turbulence modeling: another approach

Eddy viscosity model: EV-ROM (state-of-the-art)

 Poor reconstruction of the fields of interest

We need further improvement introducing a closure modeling



Sequential closure modeling

Data-driven ROM: DD-EV-ROM

Model the contribution of the neglected scales:

 Choose a reduced dimension r and a bigger dimension d>r

 Select the nonlinear operator 

 Compute the exact correction

 Train a map for the approximated correction

Ivagnes, A., Stabile, G., Mola, A., Iliescu, T., & Rozza, G. (2023). Pressure data-driven variational multiscale reduced order models. Journal of 
Computational Physics, 476, 111904.



Neural operators: the turbulence map

Mapping modeled through a DeepONet (deep operator network)
 Specifically designed to learn operators due to the sub-networks structure that separately 

handle the different inputs

Minimize the discrepancy with respect to the projected eddy viscosity



Neural operators: the closure map

Mapping modeled through a MIONet (multi-input operator network)

Minimize the discrepancy with respect to the exact correction



Numerical results: the test cases

Unsteady flow past a cylinder with parameters 
(𝝂, 𝒕)

Unsteady channel-driven cavity flow
with parameters (𝝂, 𝒕)

Steady backward-facing step flow with geometrical parameters (𝜶, 𝒉𝟏, 𝒉𝟐)

𝛼



Numerical results: the flow past a cylinder

Average gain in the relative error of DD-EV-ROM with respect to the state-of-the-art baseline EV-ROM

 Improvement of the 
accuracy especially for the 
pressure: we introduce a 
dedicated pressure closure 

 Good predictive 
performance in all modal 
regimes

different modes combinations



Numerical results: the flow past a cylinder

EV-ROM

DD-EV-ROM

FOM
(reference)

Velocity magnitude Pressure Eddy viscosity

Improved accuracy and fields’ reconstruction in the novel DD-EV-ROM

Graphical results for 𝑵𝒖,𝑵𝒑,𝑵𝝂𝒕 = 𝟏𝟎, 𝟐𝟒, 𝟑𝟎 for a test parameter



Numerical results: the channel-driven cavity

Average gain in the relative error of DD-EV-ROM with respect to the state-of-the-art baseline EV-ROM

 Improvement of the 
accuracy only for the 
pressure: we introduce a 
dedicated pressure closure 

 Good predictive 
performance in all modal 
regimes

different modes combinations



Improved accuracy and pressure reconstruction in the novel DD-EV-ROM

Graphical results for 𝑵𝒖,𝑵𝒑,𝑵𝝂𝒕 = (𝟏, 𝟑, 𝟏) for a test parameter

Numerical results: the channel-driven cavity

EV-ROM

FOM

DD-EV-ROM



Numerical results: the backward-facing step

Average gain in the relative error of DD-EV-ROM with respect to the state-of-the-art baseline EV-ROM

 Improvement of the 
accuracy especially for the 
pressure and eddy viscosity 
fields

 Good predictive 
performance in all modal 
regimes

different modes combinations



Improved accuracy and fields’ reconstruction in the novel DD-EV-ROM

Graphical results for 𝑵𝒖,𝑵𝒑,𝑵𝝂𝒕 = 𝟒, 𝟓, 𝟐𝟎 for a test parameter

Numerical results: the backward-facing step

Velocity magnitude Pressure Eddy viscosity

EV-ROM

DD-EV-ROM

FOM
(reference)



Intrusive ROMs for 
turbulent and 
compressible problems

➔ How to improve ROMs in 
compressible flows

➔ ROM segregated methods
➔ FOM-ROM consistency

Joint work with:
Matteo Zancanaro, Giovanni Stabile



Overview of the physical problem of interest

● The scope of this work is the resolution of 
parametric computational fluid dynamics 
problems where an unaffordable computational 
cost is required to obtain accurate solutions;

● Applications of interest are spread over different 
fields and scales: aerospace engineering, 
automotive industry, nautical studies or 
environmental fields.



The analytical model for compressible flows 

The Favre averaging ruleThe Favre averaged Navier–Stokes Equations

What is this problem characterized by?

● Mach number > 0.3
● varying density field
● thermodynamics for energy evolution
● no shocks
● high turbulent fluctuations



The Reduced SIMPLE algorithm 

Why using a segregated approach also at the reduced order level?

● consistency between offline and online equations

● no saddle point formulation

improved accuracy

no need for stabilization (e.g. supremizers, etc)

Why using a segregated approach at the full order level?



The Reduced SIMPLE algorithm - part 1

Reduced approximated fields:

How to deal with turbulence in ROM?

Introduction of a reduced eddy viscosity field, computed 
with:

● RBF interpolation

● neural network (our choice)

velocity 
coefficients

eddy 
viscosity 

coefficients

Hijazi, S., Stabile, G., Mola, A., & Rozza, G. (2020). Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational Physics, 416, 
109513.



The Reduced SIMPLE algorithm - part 2

Reduced approximated fields:

Pressure Poisson Equation (PPE)

. . . 

Zancanaro, M., Nkana V., Stabile, G., & Rozza, G. Segregated methods for reduced order models, submitted 2024.



Results - ROM with physical parameterization

Test case: flow around a NACA 0012 airfoil where the viscosity is parametrized.

Data of the 
problem:

Eigenvalues decay for all the fields of interest
Loss of the neural network used for eddy viscosity 

coefficients



Test case: flow around a NACA 0012 airfoil where the viscosity is parametrized.

FOM-ROM (energy) FOM-ROM (eddy viscosity)

FOM-ROM (velocity)FOM-ROM (pressure)

Results - ROM with physical parametrization

Zancanaro, M., Stabile, G., & Rozza, G. Segregated methods for reduced order models, 2023.



Isogeometric view of the Ahmed body and side 
views for minimum and maximum slant angles

ROM with geometrical parameterization

Ahmed body test case with varying slant angles

FOM

ROM

Absolute 
error FOM-

ROM

Zancanaro, M., Mrosek, M., Stabile, G., Othmer, C., & Rozza, G. (2021). Hybrid neural network reduced order 
modelling for turbulent flows with geometric parameters. Fluids, 6(8), 296.



ROM with geometrical parameterization

Backstep test case: the step is constructed as a moving boundary so that the slope β can varies

Zancanaro, M., Mrosek, M., Stabile, G., Othmer, C., & Rozza, G. (2021). Hybrid neural network reduced order modelling for turbulent flows with geometric 
parameters. Fluids, 6(8), 296.

Geometry deformation in backstep channel

FOM

ROM

Error

Velocity field FOM-ROM comparison Pressure field FOM-ROM comparison Eddy viscosity field FOM-ROM comparison



Non-Intrusive ROMs
enhanced with
aggregation models

➔ Exploit predictions of different ROMs
➔ Automatically deduce the best model
➔ Associate space-dependent weights 

to every ROM in a model mixture

Joint work with:
Anna Ivagnes, Niccoló Tonicello,

Paola Cinnella (Sorbonne University)



Non-intrusive ROM

ROM approximate the high dimensional solution manifold by dimensionality reduction and perform 
interpolation to find the prediction for unseen parameters.



Leading motivation for mixed-ROMs

Individual reduction approaches are not always 
accurate:

● the POD as a linear reduction is inaccurate 
in advection-dominated problems (high 
Reynolds parameter) and nearby 
discontinuities (i.e. shocks)

● the AE (AutoEncoder) as a nonlinear
approach is more accurate close to shocks 
but inaccurate in smooth regions



Leading motivation for mixed-ROMs

Individual approximation techniques are not always accurate:

● the RBF (Radial Basis Function Interpolation) is characterized by smooth interpolants, but is 
sensitive to the basis function chosen;

● the GPR (Gaussian Process Regression) is characterized by automated hyperparameter tuning
but it is sensitive to noisy data;

● the ANN (Artificial Neural Network) can capture complex relationships in data but it is expensive 
and hard to train.



Leading motivation for mixed-ROMs

Build a database of ROMs, combined in a mixed-ROM, whose prediction is the convex 
combination of the individual ROMs in the database.

Cherroud, S., Merle, X., Cinnella, P., & Gloerfelt, X. (2023). Space-dependent aggregation of data-driven turbulence models. arXiv preprint arXiv:2306.16996.

de Zordo-Banliat, M., Dergham, G., Merle, X., & Cinnella, P. (2024). Space-dependent turbulence model aggregation using machine learning. Journal of 
Computational Physics, 497, 112628.



Pipeline of aggregation-ROMs

1. Run the FOM and build a database

2. Divide the database into training, validation and test database

Test case 1 Test case 2

Two pressure snapshots Two pressure snapshots

Pressure coefficient Pressure coefficient

Reynolds number 
varies in interval

[1e5, 1e6]

Angle of attack 
varies in interval
[0, 10] degrees

More 
challenging test 
case: the shock 
position varies a 

lot!



● is a non-intrusive ROM

● is the prediction of       

● is the set of parameters (spatial/physical)

Pipeline of aggregation-ROMs

3. Compute different ROMs in the training database

Set of ROMs:

ROMs considered in       :
● POD-RBF
● POD-GPR
● POD-ANN

● AE-RBF
● AE-GPR
● AE-ANN

Fields approximated with ROM:
● 1D pressure/wall shear stress on airfoil
● 2D pressure/velocity magnitude around airfoil

In the case of 2D fields AE
is replaced with PODAE to 
gain computational time

Training ROMs



4. Compute the weights associated to ROMs in the validation database

Pipeline of aggregation-ROMs

Prediction of the aggregation model:

How to compute the weights?

The model mixture



Pipeline of aggregation-ROMs

5. Predict the weights in the test database

6. Test the method for unseen configurations

UQ analysis

Testing the method

Consider the prediction as a random 
variable

Expected value:

Variance:



Results of aggregation model

Test case 1

Test case 2

Relative errors for 1D airfoil pressure

● Latent dimensions: 3 and 10
● Improvement of accuracy in:

○ validation set
(guaranteed by 
mathematical law)

○ test set (depends on the 
regression model)

Ivagnes, A., Tonicello N., Cinnella P., and Rozza G., Enhancing non-intrusive Reduced Order Models with space-dependent aggregation methods, Acta Mechanica, 2024.



Results of aggregation model

Results  for a test parameter (test case 2)

Weights spatial distribution (3 modes)

The variance gives information on
● consensus among ROMs in space
● deviation of mixed-ROMs with respect to 

individual models

Ivagnes, A., Tonicello N., Cinnella P., and Rozza G., Enhancing non-intrusive Reduced Order Models with space-dependent aggregation methods, accepted in Acta 
Mechanica, 2024.

The weights are higher for the AE nearby the 
shock position and nearby the wake, where the 

nonlinear reduction is more accurate



Conclusions

➔ We saw different techniques to enhance the results obtained in both intrusive and 
non-intrusive ROM frameworks;

➔ The accuracy is improved both with machine 
learning techniques (e.g. eddy viscosity 
coefficients) and stabilized numerical 
algorithms introducing consistency FOM-
ROM.

➔ All techniques used in non-intrusive ROMs 
may have bottlenecks and can be improved 
by automatically detect the approach with 
the best performance (e.g. aggregation 
method)



Shape optimization 
in naval engineering

➔ Exploiting ROM in a shape 
optimization pipeline

➔ How to improve the efficiency in naval 
engineering applications?

Joint work with:
Anna Ivagnes, Nicola Demo



Optimization for different purposes

Motivation for naval design optimization

Goal:
optimize the design of a specific 

element of the ship to improve the 
performance

● Ensure comfort in yachts
● Avoid cavitation phenomena

● Increase efficiency
● Reduce vibrations

Propellers Hulls



The propeller test case

The test case: open-water tests

● Homogeneous inflow (velocity V  )

● Uniform and undisturbed flow conditions

a

The model: incompressible Navier-Stokes Equations

A slice of the mesh

● Turbulence model: к-ω SST
● Mesh rotation: Moving 

Reference Frame (MRF)

● Finite-Volume
discretization

● RANS approach

Every simulation takes 24-48 hours on 
our cluster in parallel on 55 cores

Unfeasible for optimization



A shape optimization pipeline using ROMs

A full pipeline exploiting non-intrusive reduced order models

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order 
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.



Geometric parametrization: two alternatives

Deformation through geometrical features (used for propellers)

Deformation through Free Form Deformation (used for hulls)

● Select geometrical features
(chord length, rake, 
thickness, …)

● Deform the blades by 
modifying the parameters Library used

Example of blade/propeller deformation

Example of section deformation

Strategy: 
enclose the object 
in a cube, deform 
the cube, then back-
map



Mesh deformation

Problem: deform the mesh preserving the number of degrees of freedom in all simulations



Mesh deformation

Solution: RBF interpolation technique, using as control points the boundaries

A look at the 
undeformed 
and deformed 
control points:
blades (right),
all boundaries 
(below).

Different deformed mesh slices 
(above);
an example of mesh deformation 
on the propeller surface (right).

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order 
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.



Non-intrusive ROM performance

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order 
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.

Standard ROM
● fields evaluated at all blades points
● needs to deform all blades points to 

compute the efficiency

Fast ROM
● fields evaluated at quadrature points
● efficiency computed via quadrature 

formulas

Two alternative ROM approaches in optimization

5-6 minutes for each efficiency evaluation
Speed-up: ~ 10    

10-15 seconds for each efficiency evaluation
Speed-up: ~ 10   5

2



Optimization algorithm: results

Ivagnes, Anna, Nicola Demo, and Gianluigi Rozza (2024). "A shape optimization pipeline for marine propellers by means of reduced order 
modeling techniques." International Journal for Numerical Methods in Engineering 125.7.

The genetic algorithm: an evolution-inspired algorithm Why genetic?

● Not stuck in local minima
● Not influenced on initial guess
● Many fitness evaluations

Optimal blades
(standard ROM)

Optimal blades
(fast ROM)



Conclusions

➔ We saw different techniques to enhance the results obtained in both intrusive and 
non-intrusive ROM frameworks;

➔ The accuracy is improved both with machine 
learning techniques (e.g. eddy viscosity 
coefficients) and stabilized numerical 
algorithms introducing consistency FOM-
ROM.

➔ All techniques used in non-intrusive ROMs 
may have bottlenecks and can be improved 
by automatically detect the approach with 
the best performance (e.g. aggregation 
method)



Driving bifurcating 
flows via optimal 
control problems

➔ Non-unique flow behavior
➔ Control to a desired state

Joint work with:
Federico Pichi, Maria Strazzullo, 

Francesco Ballarin



Bifurcating models in CFD

Issue: Navier-Stokes model exhibits co-existing admissible states for relatively small Re
e.g. Coanda Effect, Fluid-Dynamic Pinball, Triangular Cavity

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction’, 
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361–1400. https://doi.org/10.1051/m2an/2022044



Bifurcation diagram for the Coanda effect

The flow exhibits a wall-hugging phenomena for viscosity values μ ≤ μ* ≈ 0.96 

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction’, 
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361–1400. https://doi.org/10.1051/m2an/2022044



Steering the bifurcating behavior

Goal: Obtain a laminar flow towards the end of the channel via Optimal Control Problem

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction’, 
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361–1400. https://doi.org/10.1051/m2an/2022044



Neumann boundary control - weak action

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction’, 
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361–1400. https://doi.org/10.1051/m2an/2022044

Slight effect on the bifurcating 
nature of the uncontrolled equation

μ  = 0.5



Distributed control - strong action

Pichi, F. et al. (2022) ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction’, 
ESAIM: Mathematical Modelling and Numerical Analysis, 56(4), pp. 1361–1400. https://doi.org/10.1051/m2an/2022044

The uncontrolled solution is heavily 
affected by acting on the forcing term

μ  = 2.0



Further implications and extensions

1. [Pichi 2022] ‘Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction’, M2AN
2. [Pichi 2023] ‘An artificial neural network approach to bifurcating phenomena in computational fluid dynamics’, Computers & Fluids
3. [Pichi 2024] ‘A graph convolutional autoencoder approach to model order reduction for parametrized PDEs’, Journal of Computational Physics
4. [Pintore 2021] ‘Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method’, Advances in Computational Mathematics
5. [Gonnella 2024] ‘A stochastic perturbation approach to nonlinear bifurcating problems’. arXiv 2402.16803
6. [Khamlich 2022] ‘Model order reduction for bifurcating phenomena in fluid-structure interaction problems’, International Journal for Numerical Methods in Fluids

1. Influencing the position of the bifurcation point via the penalization parameter ɑ
2. Exploit ML-enhanced ROMs for the detection of the bifurcating curve
3. Stochastic perturbation to approximate unknown states via Polynomial Chaos
4. Interaction with buckling of elastic structures in the FSI scenario 



Generative models 
for shape 
deformation

➔ Constrained generative models
➔ Free Form Deformation strategy
➔ Quantify model uncertainty

Joint work with:
Guglielmo Padula, Francesco Romor, 

Giovanni Stabile



Free Form Deformation

Deform

Add to 
database
e

Repeat N times
High number 
of parameters

Possibility of 
violation

of constraint 
of interest 

Examples:

Volume,
Barycenter…



Constrained Free Form Deformation

Constraint by Optimization
○ Iterative solution
○ Universally applicable
○ Satisfied within certain bounds
○ Slow

Examples:
○ Genetic Algorithms (GA)
○ Gradient Descent
○ Free Form Deformation + GA

Constraint by Design
○ One shot solution
○ Problem dependent 
○ Is satisfied within numerical errors
○ Fast

Examples:
○ Least Squares
○ Constrained Free Form 

Deformation

References:
1. Hanmann, G. Bonneau PG., Barbier S., Elber G., Hagen H. (2012). Volume Preserving FFD for Programmable Graphics Hardware. The Visual. 

Computer.

But still high number of parameters                     Curse of Dimensionality



#Shape parametrization #Active Subspaces
#POD-Galerkin

Combined Parameter and model Reduction
with Marco Tezzele and Francesco Ballarin



Active subspaces property

f is a scalar function that takes as arguments the 
parameters x

C is the uncentered covariance matrix of the 
gradients of f, symmetric, positive semidefinite

E is the expected value and rho a probability 
density function

In many cases the dimension of the parametrised problem is only artificially high

‣Active subspaces property identifies a set of important directions in the space of all inputs

‣ We define the active subspace to be the range of the first n eigenvectors of W

‣ With the basis identified, we can map forward to the active subspace. So y is the active 
variable and z the inactive one. The surrogate model g is used to approximate f

References:
1. Constantine. “Active subspaces: Emerging ideas for dimension reduction in parameter studies.” SIAM, 2015.



Active subspaces - A quadratic example

References:
1. M. Tezzele, F. Ballarin and G. Rozza “Combined parameter and model reduction of cardiovascular problems by means of active subspaces and 

POD-Galerkin methods”. SEMA-SIMAI Springer Series 2018

2. M. Tezzele, F. Salmoiraghi, A. Mola, G. Rozza. “Dimension reduction in heterogeneous parametric spaces with application to naval engineering 
shape design problems”. AMSES 2018



Local Active Subspaces

Local active subspaces exploits locality by finding clusters for better function variability. 

References:
1. Romor, F., Tezzele M., Mrosek M., Othmer  C., Rozza G. (2023). Multi-fidelity data fusion through parameter space reduction with

applications to automotive engineering. International Journal for Numerical Methods in Engineering.
2. Rozza G., Stabile G., Ballarin F. (2022). Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics.



Local Active Subspaces

Local active subspaces exploits locality by finding clusters for better function variability. 

References:
1. Romor, F., Tezzele M., Mrosek M., Othmer  C., Rozza G. (2023). Multi-fidelity data fusion through parameter space reduction with

applications to automotive engineering. International Journal for Numerical Methods in Engineering.
2. Rozza G., Stabile G., Ballarin F. (2022). Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics.



Generative Models - Quantify Model Uncertainty

➔ Generative modelling learns probability distributions on the data.
➔ A priori uncertainty quantifications can be done with probability distributions.
➔ Learning distribution of computational domains.

Generative Network
random noise

Computational 
domains



The advantages with respect to Constrained Free Form Deformation are:

Constrained Generative Models

We adopt generative models for sampling new geometries. 

➔ lower parameter dimension
➔ the generation of the new meshes is significantly faster.

The geometries are parametrized using the reduced latent space 

References:
1. Padula G., Romor F., Stabile G., Rozza G. (2024). Generative models for the deformation of industrial shapes with linear geometric constraints: 

Model order and parameter space reductions. Computer Methods in Applied Mechanics and Engineering.

➔ alternative to Active Subspaces, with the advantage of having 
the same parameterization for every function of interest.

Constrained Generative Models and Active subspaces can be combined.



ROM Building Workflow

One vectorial snapshot Decoder



Workflow: Constrained Generative Models

Autoencoder

Variational Autoencoder

Adversarial Autoencoder

Boundary Equilibrium
Generative Adversarial
Network

References:
1. Daly, G., Fieldsend E., Tabor G. (2022) Variation Autoencoder without the Variation. arXiv.
2. Kingma D.P., Welling M. (2014). Auto-Encoding Variational Bayes. ICLR 2014.
3. Makhzani A., Shlens G., Jaitly N., Goodfellow I., Frey B. (2016) Adversarial Autoencoders.. ICLR 2016.
4. Berthelot D., Schumm T., Metz L. (2022). BEGAN: Boundary Equilibrium Generative Adversarial Networks. arXiv.



Tested on InterFoam

➔ Quantity preserved: Volume
➔ Speedup over Constrained FFD: 360x
➔ Speedup model order reduction: 432000x
➔ Reduced parameter space: 64 (CFFD) vs 10 (CGM) 

vs 1 (CGM+AS)

Test Case: DTCHull



Applying cGM and ROM to Industrial Naval Hull

Generative Models
for parameter 
reduction decrease 
the reconstruction 
error for all ROMs



Summary of the methods

○ Neural networks
○ Radial Basis functions
○ Gaussian Process Regression
○ PODI-GPR
○ PODI-NN
○ PODI-RBF

○ Variational Autoencoders
○ Boundary Equilibrium Generative 

Adversarial Networks
○ Adversarial Autoencoder
○ Autoencoders

Inference = Approximation + Parameter Reduction


