

Braune

A Discrete Exterior Calculus of Bundle-Valued Forms

Mathieu Desbrun

GeomeriX Inria/Ecole Polytechnique

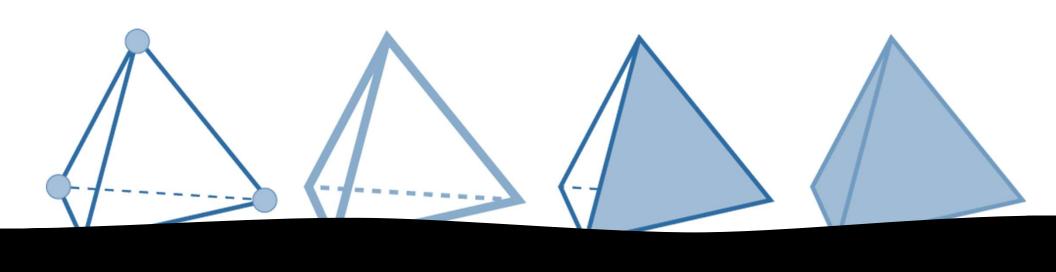
TL;DR Summary

A discrete exterior covariant derivative operator

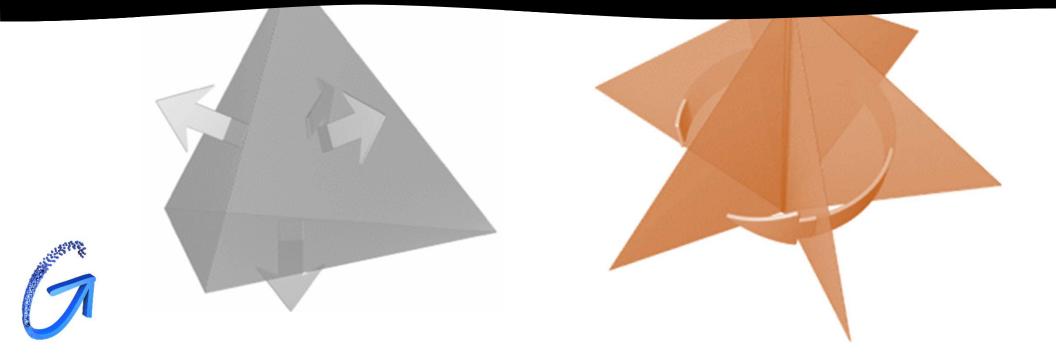
- operating on bundle-valued forms
- structure preserving (i.e., Bianchi identities are tautologies)
- extending DEC quite directly
 - Berwick-Evans, Hirani, Schubel 2021] cracked it!
 - on second thought, too combinatorial to be perfect...

Our contributions:

- Identifying crucial role of frame fields
 - evaluation involves non-commutative composition of //=transport
 - discretization must account for local frame field choice
- Enforcing convergence under refinement
 - Bianchi identities exactly satisfied for any resolution is great...
 - but we need correct evaluations in the limit too
 - must understand how discrete and continuous forms are related



Preamble



Continuum vs. Finitude

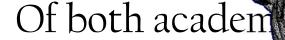
"Discrete" differential geometry

□ finite-dimensional counterpart to tinuous theory

where we leverage differ

geometry as a

- discretiza
 - > pred
- NOT THE
 - > PDI



- education (si
- Hollywood (
- computational

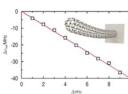
terests

anding

scretization

ation)

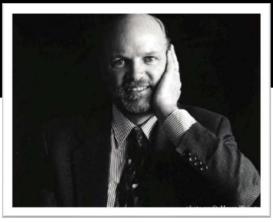
erical methods)

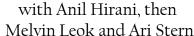


Discrete Exterior Calculus

Foundations: discrete differential forms

- mesh as computational structure
 - chains as proxies for domains

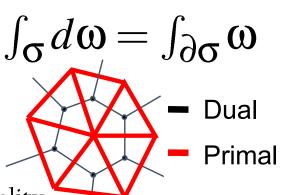




- store k-forms as integrated values over simplices
 - > cochains extends point sampling to "simplex sampling"
- □ basic operators: d (exterior derivative) and \star (Hodge star) through heavy use of adjointness
 - d through Stokes

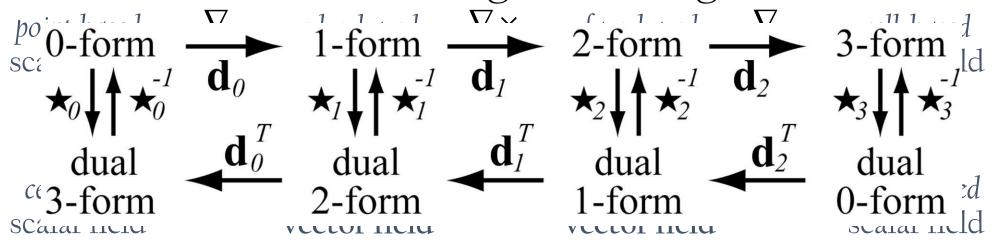
0-simplex

- > *d* is a topological operator, hence exact
- exact link to (co)homology [Munkres]
- simplest Hodge duality via mesh duality
 - exploits (weighted) Delaunay/Voronoi duality



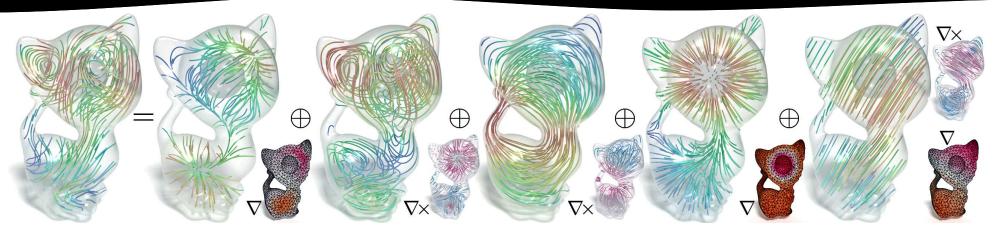
Discrete De Rham Sequence

Discrete calculus through linear algebra:

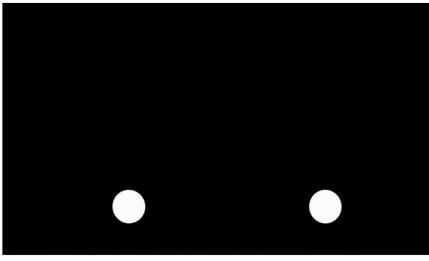


- simple exercise in matrix assembly
- discrete Hodge theory particularly simple
- Whitney basis fcts extending FE picture [Bossavit]
- can be made higher-order or spectral accurate too!
 - subdivision surfaces, isogeometric analysis, etc
 - even for non-flat cell complexes, power duals, etc...

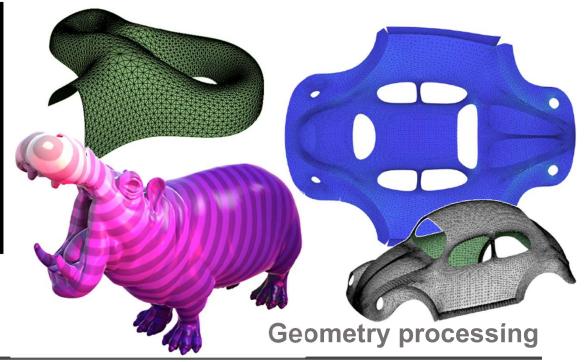
Lots of Applications



Hodge-Morrey-Friedrichs decomposition



Navier-Stokes simulation



Parallel Transport For Grooming

How to des

control

geomet

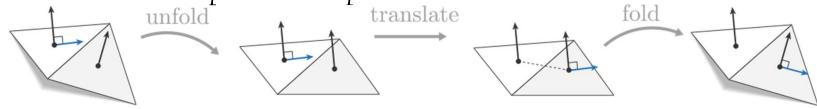
noti

Christoffel symbols! on one-forms ige map

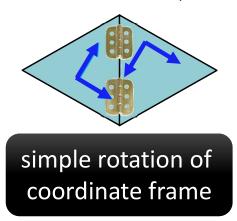
Parallel Transport For Grooming

How to design tangent direction fields?

- control smoothness, singularities w/o Christoffel symbols!
- geometry to the rescue: use of connection one-forms
 - notion of parallel transport on a mesh?



- code for it? just store an angle per edge once frames chosen
- discrete Levi-Civita (metric) connection, & discrete holonomy



Discrete Trivial Connection

We can encode adjustment to Levi-Civita...

one rotation angle per edge crossing

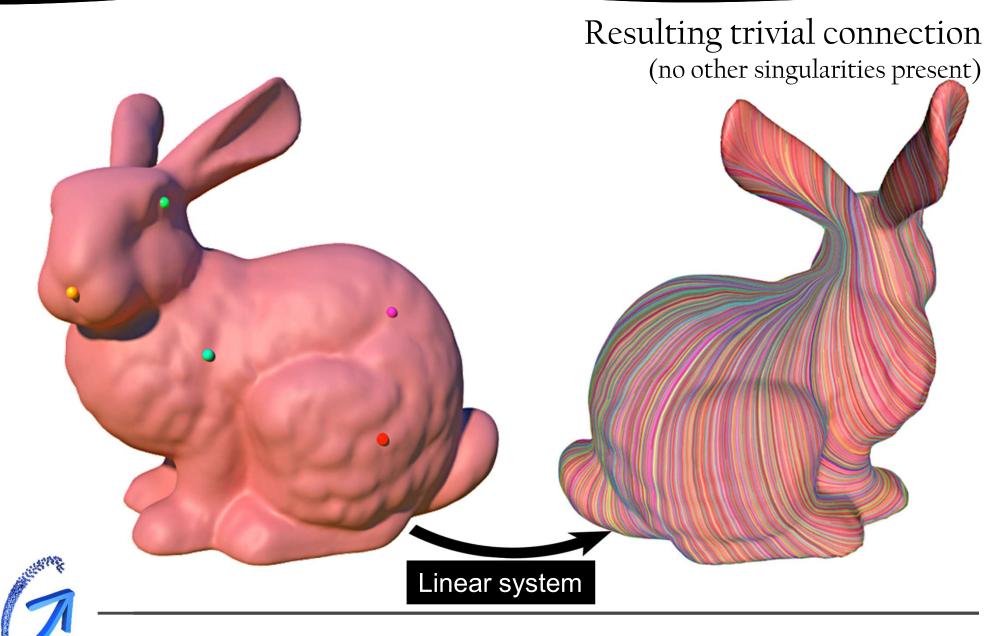
to cancel holonomy of Levi-Civita connect

- forcing zero holonomy on (almost) all discrete
 - contractible (V) & noncontractible (2g) cycles
- except for a few chosen singularities
 - to enforce Poincaré-Hopf theorem

Now, path-independent transport!

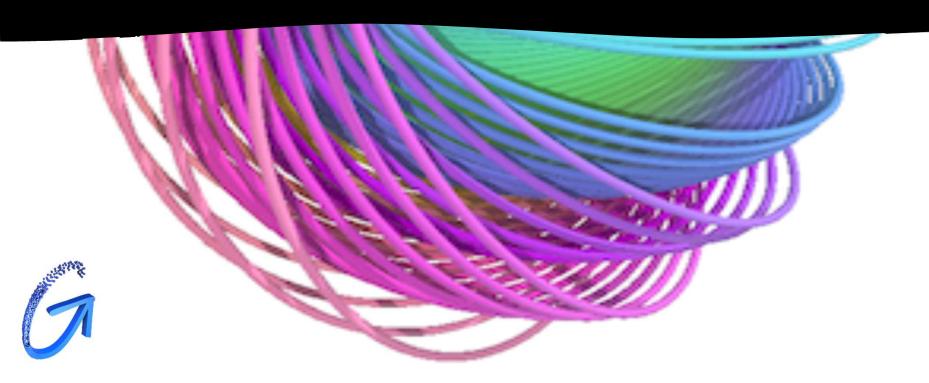
creating discrete vector field on surf

Growing Hair with a Linear Solve



Now Used in Animation Studios...

Back to DEC for BV-Forms



Continuous Notions At A Glance

Connection on a vector bundle $\pi: E \to M: \nabla = d + \omega$

- \square ω : local connection 1-form (depends on frame field! $\nabla f_a = f_b \omega_a^b$)
- \square parallel transport along curve between fibers: $\mathcal{R}_t \colon E_{\gamma(t)} \to E_{\gamma(0)}$
- \square π induces $\nabla^{\operatorname{End}}$ on endomorphism bundle $\operatorname{End}(E) \to M$

Covariant exterior derivative

$$d^{\nabla}\alpha = d\alpha + \omega \wedge \alpha \quad \forall \alpha \in \Omega^k(M, E)$$

 \square curvature 2-form: $\Omega^{\nabla} = d^{\nabla}\omega \in \Omega^2(M, \operatorname{End}(E))$

Bianchi identities

- lacktriangleq algebraic Bianchi identity: $d^{\nabla}d^{\nabla}\alpha = \Omega^{\nabla}\wedge\alpha$
 - unlike *d*, not nilpotent in general
- lacksquare differential Bianchi identity: $d^{
 abla^{\mathrm{End}}}\Omega^{
 abla}=0$
 - more generally, $d^{\nabla^{\operatorname{End}}} d^{\nabla^{\operatorname{End}}} \beta = [\Omega^{\nabla} \wedge \beta] \quad \forall \beta \in \Omega^k(M, \operatorname{End}(E))$

Integration of Bundle-valued Forms

With a connection, curve integrals defined thru pullback

$$\int_{\gamma}^{\nabla} \alpha = \int_{0.11}^{\sqrt{2}} \gamma^* \alpha = \int_{0}^{1} \mathcal{R}_{\gamma,t} \alpha_{\gamma(t)} \left(\dot{\gamma}(t) \right) dt \in E_{\gamma(0)},$$

parallel transport everything back to initial point of curve

Extension to a k-form over a retractable region S easy too

- $lue{}$ define homeomorphism φ from S to unit k-dim ball B
- \square given evaluation point v, define $\gamma_{v,p}$ as $\varphi^{-1}(\varphi(p) \varphi(v))$
- \square then define $\mathcal{R}_p^{\nabla,\varphi_v} \in \text{Hom}(E_p,E_v)$ as // transport along $\gamma_{v,p}$

$$\int_{\varphi_v}^{\nabla} \int_{S} \alpha = \int_{S} \mathcal{R}^{\nabla, \varphi_v} \alpha \in E_v$$

□ *note*: the homeomorphism can be defined through a strong deformation retraction to point v, φ_v : [0, 1]×S → S

Discrete Setup (Abstractly First)

Let a simplicial complex M be an orientable manifold

Discrete Vector Bundle (of rank r)?

a collection of vector spaces $\{\mathbf{E}_{v_i}\}$ with $v_i \in V$ (i.e., a vector space per vertex) and $\dim(\mathbf{E}_{v_i})$ = \mathbf{r} .

Section of Discrete Frame Bundle?

a collection of frames $\{\mathbf{F}_{v_i}\}$ with $v_i \in V$ defining an "arbitrary" choice of frame for each vector space \mathbf{E}_{v_i} .

Discrete connection ∇ ?

- a collection of maps $\mathcal{R}_{ij}: (\mathbf{E}_{v_j}, \langle \cdot, \cdot \rangle_{v_j}) \to (\mathbf{E}_{v_i}, \langle \cdot, \cdot \rangle_{v_i})$, one for each oriented edge e_{ij} of M, with $\mathcal{R}_{ij} \circ \mathcal{R}_{ji} = \mathbf{Id}_{v_i}$
- \square parallel transport maps, encoded as matrices R_{ij} given $\{\mathbf{F}_{v_i}\}_i$
- $lue{}$ connection l-form $\omega_{v_0v_1} = R_{v_0v_1} \mathrm{Id}$
 - approx. of path-ordered matrix exponential

Discrete Bundle-valued Forms I

Abstract definition, given an evaluation fiber...

Definition (Discrete (1,0)-tensor-valued ℓ -form). A discrete vector-valued ℓ -form $\boldsymbol{\alpha}$ on M is a collection of maps which, for each ℓ -simplex σ and one of its vertices v, returns a vector in \mathbf{E}_v , i.e.,

$$\alpha \colon \sigma \in \mathcal{M}^{\ell}, v \in \sigma \subset \mathcal{V}(M) \mapsto \alpha(\sigma, v) \in \mathbf{E}_{v},$$
 (1)

such that if $\bar{\sigma}$ is the simplex σ with reversed orientation, one has $\alpha(\bar{\sigma}, v) = -\alpha(\sigma, v)$ for all $v \in \sigma$.

- assume for now that a discrete bundle-valued *l*-form is defined through its values on all simplex-vertex pairs
- \square eventually, will be one vector in \mathbf{E}_v per ℓ -simplex à la DEC

Discrete Bundle-valued Forms II

For discrete endomorphism-valued ℓ-forms?

Definition (Discrete (1,1)-tensor-valued ℓ -form). A discrete (1,1)-tensor-valued ℓ -form β on M is a collection of maps which, for each ℓ -simplex σ and two of its vertices (w, the input (or cut) fiber, and v, the output (or evaluation) fiber), returns a homomorphism between \mathbf{E}_v and \mathbf{E}_w , i.e.,

$$\beta \colon \sigma \in \mathcal{M}^{\ell}, v \in \sigma, w \in \sigma \mapsto \beta(\sigma, v, w) \in \text{Hom}(\mathbf{E}_w, \mathbf{E}_v),$$
 (1)

such that if $\bar{\sigma}$ is the simplex σ with reversed orientation, one has $\beta(\bar{\sigma}, v, w) = -\beta(\sigma, v, w)$ for all $v, w \in \sigma$.

- of for now, assume that this type of ℓ -form is defined through its values on all simplex-vertex-vertex triplets
- wait a bit to get a better understanding of this cut fiber...

Integration à la DEC?

Could the bundle-valued case be an extension of DEC?

$$\int_S d^\nabla \alpha = \int_S d\alpha + \int_S \omega \wedge \alpha = \int_{\partial S} \alpha + \int_S \omega \wedge \alpha. \quad \text{in many aspects...}$$

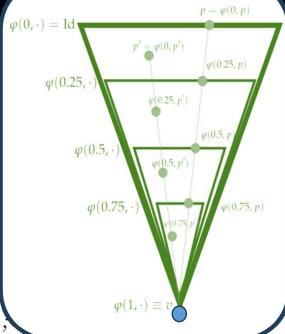
- can leverage choice of frame field to bound this term!
- \square pick a frame field that makes ω zero somewhere in S
 - will make the integration mostly about Stokes!
 - more precisely, $\mathcal{O}(h^{\ell+2})$ for an ℓ form on an $(\ell+1)$ -simplex

There is hope that a discrete bundle-valued exterior calculus can be built out of discrete forms, where the integrals of their smooth counterparts are evaluated using a parallel-propagated frame field.

Parallel-Propagated Frame

Definition (Continuous Parallel-Propagated Frame)

For a vector bunddle $\pi: E \to M$ with connection ∇ , let s = region for which there exists a diffeomorphism to an ℓ -simp with $v_i \mapsto w_i \, \forall i$. Let f be a local, arbitrary frame field of s. For any given corner $v \in \{v_0, \ldots, v_\ell\}$, we also define a (retraction $\varphi_v : [0, 1] \times s \to s$ derived from a canonical retract σ of the simplex σ through the aforementioned diffeomorphism paths are radially joining the vertex w associated to point v



$$\varphi_w^{\sigma} \colon [0,1] \times \sigma \to \sigma$$

$$(t,p) \mapsto t \, w + (1-t) \, p.$$

Moreover, for any point $p \in \sigma$, we denote by $\mathcal{R}^{\nabla,v}(p) \colon \mathbf{E}_p \to \mathbf{E}_v$ the ∇ -induced parallel transport map from \mathbf{E}_v to \mathbf{E}_p along the path induced by the retraction φ_v and $R^{\nabla,v} \colon \mathbb{R}^r \to \mathbb{R}^r$ the matrix field representing $\mathcal{R}^{\nabla,v}(.)$ expressed in f. Frame field $\{f_a^{\nabla,v}\}$ over s is **parallel-propagated frame field** from v if

$$\mathcal{R}^{\nabla,v}(p)f_a^{\nabla,v}(p)=f_a(v), \quad \text{for all } p \in S, \text{ for all } a=1,\ldots,r.$$

i.e., frame $f_a(v)$ at v has been parallel-transported throughout s via ∇ . Furthermore, we call $R^{\nabla,v}$ the gauge field of the PPF from $v \in M$.

Parallel-Propagated Fram

We can now define integration of a for

$$\omega^{\nabla,v} = R^{\nabla,v}(\omega - (R^{\nabla,v})^{-1}dR^{\nabla,v})(R^{\nabla,v})^{-1}$$
 vanishes at vertex v

- \square PPF "follows" the bundle along radial lines emanating from v
- □ so $\|ω^{\nabla,v}\| = \mathcal{O}(h)$ if Ω is bounded, *h* being the diameter of *s*

Consequently, one has

$$\int_{s} (d^{\nabla} \alpha)^{\nabla, v} = \int_{\partial s} \alpha^{\nabla, v} + \mathcal{O}(h^{\ell+2})$$

exterior covariant derivative of α over simplex approximated by PPF-based integrals of α over the boundary faces of s

Now discrete version of d^{∇} of [BHS2021] makes sense:

$$\mathfrak{d}^{\nabla} \alpha([v_0, ..., v_{\ell+1}], v_0)
\coloneqq \mathcal{R}_{0,1} \ \alpha([v_1, ..., v_{\ell+1}], v_1)
+ \sum_{i=1}^{\ell+1} (-1)^i \alpha([v_0, ..., \hat{v}_i, ..., v_{\ell+1}], v_0)$$

- $lue{}$ just boundary terms; opposite face needs //-transport to v_0
- \Box this sided operator converges under refinement $(h \to 0)$
 - if α evaluated in ppf....
- □ but $\mathfrak{d}^{\nabla} \circ \mathfrak{d}^{\nabla}$ doesn't; ouch, Bianchi ids not meaningful...

Same comments for endomorphism-valued variant

$$\mathfrak{d}^{\nabla} \boldsymbol{\beta}(\sigma, v_0, v_{\ell+1}) \coloneqq \mathcal{R}_{01} \boldsymbol{\beta}(\sigma_{v_0}, v_1, v_{\ell+1})$$

$$\sigma_{v} = [v_{0}, \dots, \hat{v}, \dots, v_{\ell+1}] + \sum_{i=1}^{\ell} (-1)^{i} \beta(\sigma_{v_{i}}, v_{0}, v_{\ell+1}) + (-1)^{\ell+1} \beta(\sigma_{v_{\ell+1}}, v_{0}, v_{\ell}) \mathcal{R}_{\ell, \ell+1}$$

Idea: *sided* derivatives not as good as *centered* ones...
Averaging sided estimates can gain an order of accuracy!

Averaging operator simple with a connection:

$$\operatorname{Alt}^{\nabla}(\boldsymbol{\alpha})([v_0,...,v_{\ell}],v_0) \\ \coloneqq \frac{1}{(\ell+1)!} \sum_{\tau \in S_{\ell+1}} \operatorname{sgn}(\tau) \mathcal{R}_{v_0,v_{\tau(0)}} \boldsymbol{\alpha}([v_{\tau(0)},...,v_{\tau(\ell)}],v_{\tau(0)})$$

Similarly for its endomorphism-valued variant

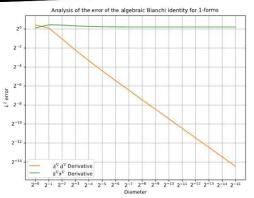
Alt
$$\nabla \beta([v_0, \dots, v_{\ell}], v_0, v_{\ell})$$

$$= \frac{1}{(\ell+1)!} \sum_{\tau \in S_{\ell+1}} \left(\frac{1+\operatorname{sgn}(\tau)}{2} \mathcal{R}_{v_0, v_{\tau(0)}} \beta([v_{\tau(0)}, \dots, v_{\tau(\ell)}], v_{\tau(0)}, v_{\tau(\ell)}) \mathcal{R}_{v_{\tau(\ell)}, v_{\ell}} + \frac{\operatorname{sgn}(\tau)-1}{2} \mathcal{R}_{v_0, v_{\tau(0)}} \beta([v_{\tau(0)}, \dots, v_{\tau(\ell)}], v_{\tau(0)}, v_{\tau(\ell)}) \mathcal{R}_{v_{\tau(\ell)}, v_{\tau(\ell-1)}} \mathcal{R}_{v_{\tau(\ell-1)}, v_{\ell}} \right).$$

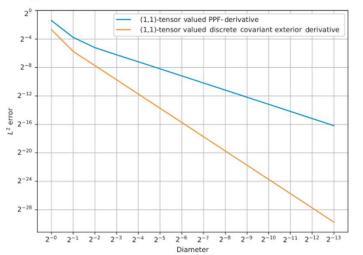
 \square note that we can prove: $\mathrm{Alt}^{\nabla}\Omega^{\nabla}([abc],a,c)=\Omega^{\nabla}([abc],a,c)$

So we propose a new discrete operator

$$d^{oldsymbol{
abla}}\coloneqq\operatorname{Alt}^{oldsymbol{
abla}}\mathfrak{d}^{oldsymbol{
abla}}$$



- still satisfies all Bianchi identities at a discrete level
- both converge to their continuous counterparts
 - clear link to continuous case and $d^{\nabla} \circ d^{\nabla}$ converges



$$\beta = \begin{pmatrix} 0 & -xdy & 0 \\ xdy & 0 & dz \\ 0 & -dz & 0 \end{pmatrix} \in \Omega^1(\mathbb{R}^3, \operatorname{End}(T\mathbb{R}^3))$$

$$d^{\nabla^{\text{End}}}\beta = \begin{pmatrix} 0 & -dx \wedge dy & y \, dx \wedge dz \\ dx \wedge dy & 0 & x^2 dy \wedge dz \\ -y \, dx \wedge dz & -x^2 \, dy \wedge dz & 0 \end{pmatrix}.$$

$$\omega = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \ x \ dz + \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ (y \ dx + dz)$$

So we propose a new discrete operator

$$d^{\mathbf{\nabla}} \coloneqq \operatorname{Alt}^{\mathbf{\nabla}} \mathfrak{d}^{\mathbf{\nabla}}$$

- still satisfies all Bianchi identities at a discrete level
- both converge to their continuous counterparts
 - clear link to continuous case and $d^{\nabla} \circ d^{\nabla}$ converges
- algebraic Biranchi identity now reads

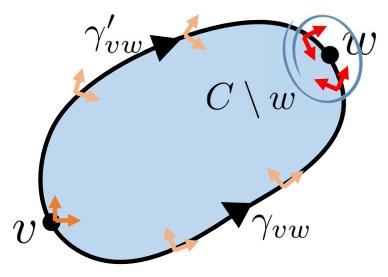
$$d^{\nabla}d^{\nabla}\alpha(\sigma, v_0) = \frac{1}{(\ell+3)!(\ell+2)!} \sum_{(m,\kappa)\in K} \mathbf{\Omega}^{\nabla}(f, v_0, w_{m,\kappa}) \ \boldsymbol{\alpha}(\kappa, w_{m,\kappa})$$
$$=: \mathbf{\Omega}^{\nabla} \wedge \boldsymbol{\alpha}(s, v_0),$$

wedge product à la cup product

Revisiting Curvature

In the continuous case, $\Omega^{\nabla} = d\omega + \omega \wedge \omega$ In a PPF, we now get $\begin{cases} \tilde{\omega} = R\omega R^{-1} - dRR^{-1}.\\ \tilde{\Omega}^{\nabla} = R\Omega^{\nabla}R^{-1} = d\tilde{\omega} + \tilde{\omega} \wedge \tilde{\omega}. \end{cases}$

- but in the PPF, $\tilde{\omega}(e_{\rho})\tilde{\omega}(e_{\theta}) \tilde{\omega}(e_{\theta})\tilde{\omega}(e_{\rho}) = 0$ in $C \setminus w$, so $\int_{C} \widetilde{\Omega}^{\nabla} = \int_{C} d\tilde{\omega} + \tilde{\omega} \wedge \tilde{\omega} = \int_{\partial C} \tilde{\omega} = \int_{\gamma_{vw}} \tilde{\omega} \int_{\gamma'_{vw}} \tilde{\omega}.$
 - mismatch at w is integral of curvature 2-form
 - extension of holonomy

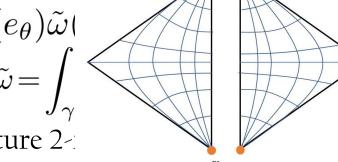


Revisiting Curvature

In the continuous case,
$$\Omega^{\nabla} = d\omega + \omega \wedge \omega$$

In a PPF, we now get
$$\begin{cases} \widetilde{\omega} = R\omega R^{-1} - dRR^{-1} \\ \widetilde{\Omega}^{\nabla} = R\Omega^{\nabla}R^{-1} \end{cases}$$

but in the PPF, $\tilde{\omega}(e_{\rho})\tilde{\omega}(e_{\theta}) - \tilde{\omega}(e_{\theta})\tilde{\omega}(e_{\theta})$ $\int_{C} \tilde{\Omega}^{\nabla} = \int_{C} d\tilde{\omega} + \tilde{\omega} \wedge \tilde{\omega} = \int_{\partial C} \tilde{\omega} = \int_{\tilde{\omega}} \tilde{\omega}$



- mismatch at w is integral of curvature 2-
- extension of holonomy

For triangle abc, $\Omega^{\nabla}(\sigma, a, \underline{c}) = R_{ab}R_{bc} - R_{ac} \in \text{Hom}(\mathbf{E}_c, \mathbf{E}_a)$

- lacksquare note indeed that it is $d^{\nabla}\omega$ since $\omega_{ab}=R_{ab}-\mathrm{Id}$
- shown to converge too in $O(h^4)$
- advantage? can be summed!
 - matching evaluation and cut fibers implies matching retractions

Conclusions

Computation-ready exterior covariant derivatives

- structure preserving via discrete Bianchi identities
- converging to smooth equivalents in PPF
- for simplicial meshes for now but extends to cell complexes

Did not talk about a few details...

- numerical tests require care
 - importance of path-ordered matrix exp, integrals thru quadratures,...
- □ in practice, we recommend using centroid-ppf, btw

Now what?

- except for Yang-Mills theory and relativity, is it useful?
- revisiting elasticity and/or fluids, maybe?
- global structure of bundles satisfying Chern's characteristics?

QUESTIONS?

