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TL;DR Summary

A discrete exterior covariant derivative operator
O operating on bundle-valued forms

O structure preserving (i.e., Bianchi identities are tautologies)
0 extending DEC quite directly

- cracked it!

» on second thought, too combinatorial to be perfect...

Our contributions:

O Identifying crucial role of frame fields
» evaluation involves non-commutative composition of //=transport
» discretization must account for local frame field choice

2 Enforcing convergence under refinement

» Bianchi identities exactly satistied for any resolution is great...
> but we need correct evaluations in the limit too
»> must understand how discrete and continuous forms are related







Continuum vs. Finitude

“Discrete” differential geometry
0 finite-dimensional counterpgrt
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Discrete Exterior Calculus

Foundations: discrete differential forms

O mesh as computational structure

= chains as proxies for domains with Anil Hirani, then
y, A < Melvin Leok and Ari Stern
® // /

- store k-forms as integrated values over simplices
» cochains extends point sampling to “simplex sampling”
0 basic operators: d (exterior derivative) and * (Hodge star)

through heavy use of adjointness
d through Stokes fG d® = fao ®

» d1is atopological operator, hence exact

= Dyal

exact link to (co)homology

simplest Hodge duality via mesh duality = Primal
» exploits (weighted) Delaunay/Voronoi duality




Discrete De Rham Sequence

Discrete calcuf us through linear algebra

1 1 111.,1

foO form —> 1-form —> 2-form —> 3-form Id
SR IO

dual 'do dual » d, dual p d; dual
“3_-form 2-form 1-form 0-form

SCaiar Liviu VUULLUL LIuLiUu VUULLUL LIULIU oLalal L1 \Jd

0 simple exercise in matrix assembly
0 discrete Hodge theory particularly simple
0 Whitney basis fcts extending FE picture

0 can be made higher-order or spectral accurate too!
subdivision surfaces, isogeometric analysis, etc
even for non-flat cell complexes, power duals, etc...




Lots of Applications

Navier-Stokes simulation

Geometry processing




Parallel Transport For Grooming

How to des|
2 control

0 geomet
noti

/’ “Christoffel symbols!

on one-forms
\ge map
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Parallel Transport For Grooming

How to design tangent direction fields?
O control smoothness, singularities w/o Christoffel symbols!

O geometry to the rescue: use of connection one-forms
notion of parallel transport on a mesh?

L/,\\ L

code for it? just store an angle per edge once frames chosen
discrete Levi-Civita (metric) connection, & discrete holonomy




Discrete Trivial Connection

We can encode adjustment to Levi-Civita...
0 one rotation angle per edge crossing

0 forcing zero holonomy on (almost) all discrefRN (1407
= contractible (V) & noncontractible (2g) cycles

O except for a few chosen singularities
= to enforce Poincaré-Hopf theorem

Now, path-independent transport!
O creating discrete vector field on surt /7

(//




Growing Hair with a Linear Solve

Resulting trivial connection
(no other singularities present)
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Now Used in Animation Studios...




Back. toe DEC far BV-Forms

Wik
\.\ ‘\ L\
.\ . ~

-————d

v)
’ -1"/
a
'




Continuous Notions At A Glance

Connection on a vector bundlen:E—->M : V=d+ w
0 w:local connection 1-form (depends on frame field! Vo = fow), )
0 parallel transport along curve between fibers: R;: E. ) — E- (o)
0 winduces V¥4 on endomorphism bundle End(E) — M

Covariant exterior derivative
da=da+wAha YaeQ¥(M, E)
0 curvature 2-form: QY = dVw € Q*(M,End(FE))

Bianchi identities t
0 algebraic Bianchi identity: dVdVa =0V Aa
unlike d, not nilpotent in general o
O differential Bianchi identity: 4% QY =0

;/‘ + more generally, ¢V dV" 3 =[QY A B] VB € QF(M,End(E))




Integration of Bundie-valued Forms

With a connection, curve integrals defined thru pullback

f()f— ffy a—/ Rty (Y(1)) dt € E ),

0 parallel transport everything back to initial point of curve

Extension to a k-form over a retractable region S easy too
O define homeomorphism ¢ from S to unit k-dim ball B
0 given evaluation point v, define 7y, , as ™" (@(p)—p(v))
0 then defineR)¥* e Hom(E,, E,) as // transport along 7, ,,

Z/a:/Rv"’o”a ck,
S

S
O note: the homeomorphism can be defined through a strong

deformation retraction to point v, ¢, : [0, 1]xS — S




Discrete Setup (Abstractly First)

Let a simplicial complex M be an orientable manifold

Discrete Vector Bundle (of rank r)?
0 acollection of vector spaces {E, } with v, €V (i.e., a vector
space per vertex) and dim(E,, ).

Section of Discrete Frame Bundle?

0 acollection of frames {F, } with v; €V defining an
“arbitrary” choice of frame for each vector space E,,.

Discrete connection V ?

0 acollection of maps R;;: (E,, ) = (Ey, ), one
for each oriented edge e of M with R;; o R;; =1d,,

0 paralle] transport maps, "encoded as matrices R, given {F, },

0 connection I-torm w,, ,,, = Ry v, — Id
approx. of path-ordered matrix exponential




Discrete Bundle-valued Forms |

Abstract definition, given an evaluation fiber...

Definition (Discrete (1,0)-tensor-valued /—form). A discrete vector-valued /—form
o on M is a collection of maps which, for each /—simplex ¢ and one of its ver-
tices v, returns a vector in E,, 1.e.,

a:oceMveoc V(M) — a(o,v) € E,, (1)
such that if & is the simplex o with reversed orientation, one has a(a,v) =

—a(o,v) for all veo.

0 assume for now that a discrete bundle-valued £-form is
defined through its values on all simplex-vertex pairs

a eventually, will be one vector in E, per £-simplex a la DEC




Discrete Bundle-valued Forms i

For discrete endomorphism/valued £-tforms?

Definition (Discrete (1,1)—tensor-valued ¢—form). A discrete (1 1)—tensor-
valued /—form 3 on M is a collec lorrofanaps Wthh for each /—simpteX o and
two of its vertices (w, the input Mr and v, the output (o evaluat’&on
fiber), returns a homomorphism betweer’E, and E,,, i.e., N

B: O’EMEUEU’IUEO’*—)BO‘U?U)EHOI’H(EW,E) (1)

such that if & is the simplex ¢ with reversed orientation, one has B(a,v,w) =
—B(o,v,w) for all v,wea.

O for now, assume that this type of £-form is defined
through its values on all simplex-vertex-vertex triplets

0O wait a bit to get a better understanding of this cut fiber...




Integration a la DEC?

~psion of DEC?

ANNOYING TERM
N MANY ASPECTS...

Could the bundle-valued case be an ¢

/dva:/da—l—/w/\a:/ Q
5 S S oS

O can leverage choice of frame field to bound this term!

O pick a frame field that makes @ zero somewherein S
will make the integration mostly about Stokes!
more precisely, O(h*?) for an £ form on an (£+1)-simplex

There is hope that a discrete bundle-valued exterior calculus
can be built out of discrete forms, where the integrals of
their smooth counterparts are evaluated using a

parallel-propagated frame field.




Parallel-Propagated Frame

Definition (Continuous Parallel-Propagated Frame)

For a vector bunddle m™: E— M with connection V, let s=
region for which there exists a diffeornorphism to an €— simy
with v; — w; Vi. Let f be a local, arbitrary frame field o
s. For any given corner veE{vg,...,ve}, we also define a
retraction p, : [0,1] x s — s derived from a canonical retrac
o of the simplex o through the aforementioned diffeomorphi
paths are radially joining the vertex w assoctated to point v,

/

eo: 0,1 xo — o
(t,p) — tw~+ (1 —1t)p.
Moreover, for any point p € o, we denote by RYV"(p): E, — E, the V—induced
parallel transport map from B, to B, along the path induced by the retraction

Py and RV : R"” — R" the matriz field representing RY"(.) expressed in f.
Frame field {fY "} over s is parallel-propagated frame field from v if

RYY(p)fr7(p) = fa(v), forallpe S, foralla=1,...,r.

i.e., frame f,(v) at v has been parallel-transported throughout s via V. Further-
more, we call RY" the gauge field of the PPF from v & M.




Parallel-Propagated Fram

We can now define integration of a for] Jaa s faaas
. / “ / Res f R (0)(a™) = [ A
s S S N :L :L 5 =
S  © ¢

Note that after gauge transtormation, b|
W = RV (w — (RY)"'dRY")(RY") ! vanishes at vertex v

PPF “follows” the bundle along radial lines emanating from v
so ||w¥"|| = O(h) if Qis bounded, 4 being the diameter of s

Consequently, one has
/(dv&)v,fu :/ aV,v _I_O(h£—|—2)
S ds

exterior covariant derivative of o over simplex approximated
by PPE-based integrals of a over the boundary faces of s




Discrete Exterior Covariant Derivative

Now discrete version of dV of makes sense:
oY a([vo,..., ves1]; vo)
= Ro,1 a([v1, ..., vet1],v1)

0+1 - 5
+ 20 (1) a(lvo, - i, s V4] v0)
O just boundary terms; opposite face needs //-transport to v,

0 this sided operator converges under refinement (4 — 0)
it & evaluated in ppf....

0 but 9V 00V doesn’t; ouch, Bianchi ids not meaningful...

Same comments for endomorphism-valued variant
DVB(U Vo, ’U£+1) Rm@(%o, U1, ’U£+1)
- Oy — [l’()....,[‘ ..... U{‘Jr'l] _|_ Z“L ]_( ) (O.U7,7U07U€+1)
+ (—1)5—'_1/8(0-’034_1 y V0 Uﬁ)Rf,f—i—l




Discrete Exterior Covariant Derivative

Idea: sided derivatives not as good as centered ones...
Averaging sided estimates can gain an order of accuracy!

Averaging operator simple with a connection:

Alt ( )([UO,.. ¢l, v0)
€_|_1)1 Z Sgn 'Uo,'UT(O)a([UT(O)a"'7UT(€)]JUT(O))

TESP+1
Similarly for its endomorphism-valued variant

Altvﬁ([v()a 5 & & 9”6’]7 Vo, Uﬁ)
1+sgn(T
— ﬁ Z ( - 5 ( )Rvo,%(o)/@([”'r(())v e 7UT(E)]va(O)ﬂUT(f))RUT(E)aW

TESe+1

sgn(7)—1
_|_ = (2) R’UD,’UT(O)Q([{UT(O)7 0t 7UT(€)]7 UT(O)? UT(E))RUT(E),”U,,—(g_l)R’UT(g_l),Ug) *

0 note that we can prove: AltYQY([abc], a, c) = QV ([abc], a, ¢)




Discrete Exterior Covariant Derivative

So we propose a new discrete operator
V
dV = AltVoV

0 still satisfies all Bianchi identities at a discrete level

2 both converge to their continuous counterparts
= clear link to continuous case and dY o dV converges

Analysis of the error for the (1,1)-tensor valued discrete covariant exterior derivative

0 —ady O
B=lady 0 dz| < QYR3 End(TR?))
0 —dz 0

0 —dx Ndy ydxrANdz
End
AV = dxAdy 0 w2dy ANdz | .

—ydrAdz —z%dyAdz 0

001 010
= w=| 000) zdz+|-100]| (ydx+dz)
20 271 272 273 -4 =S ;;‘:weztc, 2-8 29 2-10 p-11 -2 -1 _1 () “ “ “ “'




Discrete Exterior Covariant Derivative

So we propose a new discrete operator
V
dV = AltVoV

0 still satisfies all Bianchi identities at a discrete level

2 both converge to their continuous counterparts
clear link to continuous case and dY odV converges

0 algebraic Biranchi identity now reads
dvdva(0'7 UO) — (g+3)!1(g+2)! Z QV (fa Vo, wm,ﬁ) a(li, wm,f‘l)
(m,r)EK

= QY A afs,v),

wedge product a la cup product




Revisiting Curvature

—

In the continuous case, 2V = dw + w A w

O=RwR '—dRR'.

Qv —RQVR_l—dJJ+cDAcD

but in the PPF, &( ) ) —@(ep)w(e,) =0 in C\ w,so

[r=fsanes =] o] 5

mismatch at w is integral of curvature 2-form

In a PPE, we now get {

extension of holonomy /

%/wv




Revisiting Curvature

[ E—

n the continuous case, 2V = dw + w A w

_ V= “1—dRR .
In a PPE, we now get {Lﬁ il il

QV—RQVR—
2 butin the PPF, & ) ) — w(ep) w(/ﬁ %

- wrana- | o

mismatch at w is integral of curvature 2-

Ueva

extension of holonomy

For triangle abc, QV(o,a,c)=Ra,Rye — Roe € Hom(E,,E,)
0 note indeed thatitis d¥Yw since w,, = R, — Id
0 shown to converge too in O(h?)

0O advantage? can be summed!
matching evaluation and cut fibers implies matching retractions




Conclusions

Computation-ready exterior covariant derivatives
O structure preserving via discrete Bianchi identities
O converging to smooth equivalents in PPF
0 for simplicial meshes for now - but extends to cell complexes

Did not talk about a few detalils...

0 numerical tests require care
= importance of path-ordered matrix exp, integrals thru quadratures,...

O in practice, we recommend using centroid-ppt, btw

Now what?

O except for Yang-Mills theory and relativity, is it useful?

O revisiting elasticity and/or fluids, maybe?

0 global structure of bundles satistying Chern’s characteristics?




QUESTIONS?
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