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Welcome!

• Early history of DEC


• Recent years


• New developments


• Near term future


• Longer term future

Setting the stage for next 3 days
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Discrete Hodge star via  
circumcentric duality

Primal exterior derivative dk : Ck(X) → Ck+1(X)
Does not need special treatment near boundary
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1.6. DISCRETE HODGE STAR 15

index dual cell ωε(k)
i . When dimension k is clear from context, we do not explicitly state it. For a

well centered X, it can also be shown easily that the entries of →k are all strictly positive.
Our definition of →k can be interpreted as follows. Suppose ϑ ↑ C

k(X;R) and ε a k-simplex

of X, then the average value of ϑ evaluated on ε is
1

|ε|

∫

ω
ϑ. Likewise for the dual cochain ωϑ ↑

D
n→k(ωX;R), its pairing with ωε has the average value

1

|ωε|

∫

εω
ωϑ. We let these two average

values of the pairing be the same. In words, we require the smooth k-form and its dual (n ↓ k)-
form each paired with the primal k-simplex and its geometric dual respectively have the same
average evaluations are the same. Defining the average to be with respect to the volumes is needed
because a primal simplex and its dual are not required to be geometrically related. We thus have:

1

|ωε|

∫

εω

ωϑ =
1

|ωε|↔ωϑ, ωε↗ =
1

|ε|↔ϑ,ε↗ =
1

|ε|

∫

ω

ϑ.

Choosing the cannonical basis for Ck(X) and Dn→k(ωX) leads to the unique isomorphism between
C

k(X;R) and D
n→k(ωX;R) given by:

↔ωϑ, ωε↗ = |ωε|
|ε| ↔ϑ,ε↗,

as being realized by the diagonal entries of →k. In addition, this ensures that →k is completely
determined by the geometry of X through the primal and dual volumes. Thus →k is a well commis-
sioned discretization since its smooth counterpart is simply determined by the Riemannian metric
on |X|. Given that the volume of a non degenerate k-simplex is obtained given its embedding,
computing →k is straightforward if the dual volume is also easily computable. Fortunately, using
that a (n ↓ k)-dual cell of a well centered X is convex, each dual cell can itself be decomposed
into “elementary” simplices. For example, a convex m-gon admits a tessellation by 2m triangles
around its center. We refer to these as elementary dual simplices. Then obtaining →k follows from
computing volumes of primal and dual simplices, and the latter is obtained by summing the vol-
umes of each of its elementary dual simplices. This conceptualization then readily carries forward
even if X is embedded in R

N with N ↘ n. For example, X may be a simplicial triangulation of a
2-manifold embedded in some higher dimensional space. For such an X, the dual of a vertex is a
piecewise flat polygon with piecewise flat elementary dual simplices.

While a well centered triangulation is ideally suited for the purpose of defining our DEC Hodge
star, it is not usually easy to construct one. On the other hand, computational geometry has near
well perfected relatively robust constructions of Delaunay meshes. The Voronoi region correspond-
ing to a Delaunay mesh is the dual cell complex. However, Delaunay meshes are not generally well
centered. Moreover, only the top dimensional Voronoi regions which are duals of primal vertices
are convex. This poses a minor challenge for setting up →k on such primal-dual Delaunay meshes.
However, there is a rather elegant even if simple fix to this problem and requires the notion of a
consistent sign convention for the volumes of elementary dual simplices. With one in place, we can
demonstrate that elementary dual simplices indeed correctly tessellate any dual in a non degener-
ate Delaunay mesh, and →k built using this continues to have strictly positive diagonal entries for
simplices in the interior of X.

Wrapfig of 1.1 left. Remove stuff outside the figure and the text. Use
this to talk about the geometric k n-k duality. Say something vague about
boundary duals
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Early history of DEC
A personal view

2002 Computation

Δ u = ⋆ d ⋆ u

cotan formula 
computation with  
Mathieu Desbrun

2003 Thesis

Discrete 
Exterior  
Calculus

2003 Workshop

Bossavit 
Forman 
Harrison 
Nicolaides 
… 
Caltech groups

Discrete Geometry  
and Mechanics

Advisor: Jerry Marsden
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Meanwhile …
Finite element exterior calculus (FEEC)
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Finite element exterior calculus is an approach to the design and understand-
ing of finite element discretizations for a wide variety of systems of partial
di!erential equations. This approach brings to bear tools from di!erential
geometry, algebraic topology, and homological algebra to develop discretiza-
tions which are compatible with the geometric, topological, and algebraic
structures which underlie well-posedness of the PDE problem being solved.
In the finite element exterior calculus, many finite element spaces are re-
vealed as spaces of piecewise polynomial di!erential forms. These connect
to each other in discrete subcomplexes of elliptic di!erential complexes, and
are also related to the continuous elliptic complex through projections which
commute with the complex di!erential. Applications are made to the finite
element discretization of a variety of problems, including the Hodge Lapla-
cian, Maxwell’s equations, the equations of elasticity, and elliptic eigenvalue
problems, and also to preconditioners.
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Recent years

• Darcy flow + Delaunay Hodge star


• Navier-Stokes + Discrete wedge product


• …


• Spacetime formulation + Minkowski dual (Jyväskylä)

Applications - Theory feedback loop
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Darcy flow + Delaunay Hodge star
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Fig. 2. Examples of sign rule application in 2d. The dotmarks the circumcenter and
green and red are used to denote positive and negative volumes respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

otherwise, it is negative. Of the two contributions to the dual of
edge ab, we focus on the simplex formed from the circumcenter of
ab, the circumcenter of abc and the circumcenter of abcd. The sign
s1 is determined as it was for the dual of edge ab in triangle abc.
The sign s2 is+1 if vertex d and the circumcenter of abcd are in the
samehalf space relative to abc. Thus for the dual of edge ab, the sign
of the volume is s = s1 s2, and both s1 and s2 can be either positive
or negative. As a final example, consider the simplex formed from
vertex a, the circumcenter of ac , the circumcenter of abc , and the
circumcenter of abcd. This simplex contributes to the dual of vertex
a. Signs s1 and s2 are the same as they were for the dual of vertex a
in triangle abc. Sign s3 is →1 if triangle abc separates vertex d from
the circumcenter of tetrahedron abcd. The sign of this elementary
volume then is s = s1 s2 s3.

The significance of the sign rule defined above is that it orients
the elementary dual simplices in a particular way with respect
to the dual orientation for a completely well-centered simplex.
Consider two n-dimensional simplices ω and ωw which have
the same orientation but such that ωw is well-centered. We are
given a bijection between the vertices of these two simplices
such that the resulting simplicial map is orientation preserving.
This vertex map induces a bijection between faces of the two
simplices and between their elementary duals. Let ε and εw be
two corresponding p-dimensional faces in the two simplices and
consider their duals ϑ ε and ϑ εw . If we consider two corresponding
elementary duals in ϑ ε and ϑ εw we can affinely map these such
that the first vertex (the circumcenter of ε or εw) is mapped
to the origin and the others are mapped to +1 or →1 along a
coordinate axis. For the elementary dual in ϑ εw we always choose
+1 for all n → p coordinate axes. For ϑ ε we choose +1 if the sign
along that direction of the elementary dual is positive according to
the sign rule described above and →1 otherwise. It is clear (and
is easy to show using determinants) that the orientation of the
corresponding elementary duals will be same if an even number
of →1 directions are used for the elementary dual in ϑ ε and the
orientations will be opposite otherwise. Thus we have shown the
following result.

Theorem 1. With ω , ωw , ε , and εw as above, the orientation of ϑ ε is
same as that of ϑ εw if an even number of →1 signs appear according
to sign rule and is opposite otherwise.

If the orientation of ϑ ε is same as ϑ εw we will assign a positive
volume to ϑ ε and otherwise a negative volume.

Fig. 3. For a Delaunay pair the ordering of the circumcenters is the same as that of
the top dimensional simplices. See Lemma 2.

3. Signed dual of a Delaunay triangulation

We first consider the codimension 1 case in the most general
setting of a simplicial complex of arbitrary dimension n embedded
in dimension N ↑ n. After that we consider cases other than
codimension 1 but in more restricted settings. For these latter
cases we restrict ourselves to the physically most useful cases of
triangle meshes embedded in two or three dimensions (n = 2 and
N = 2 or 3) and tetrahedralmeshes embedded in three dimensions
(n = N = 3). We conjecture that these results can be extended to
the more general setting of arbitrary n and N ↑ n but those cases
are not as important for physical applications and we leave those
for future work. For the general codimension 1 case we first prove
the following basic fact about circumcenter ordering for Delaunay
pairs.

Lemma 2 (Circumcenter Order). Let ε be an (n → 1)-dimensional
simplex in Rn. Let L and R be points such that ϖ = L ↓ ε and
ϱ = R ↓ ε form a non-degenerate Delaunay pair of n-dimensional
simplices with circumcenters cϖ and cϱ , respectively. Then, cϖ and cϱ
have the same relative ordering with respect to ε as L and R.

Proof. Consider the collection of (n → 1)-dimensional spheres
containing the vertices of ε . Since ϖ and ϱ are a non-degenerate
Delaunay pair, their circumspheres are empty and belong to this
collection. It is then easy to see that cϖ and cϱ will be in the same
order as ϖ and ϱ. See Fig. 3. !

The above lemma can now be used to show easily that the
codimension 1 duals always have positive net length. This is the
content of the next result.

Theorem 3 (Codimension 1). Let ε be a codimension 1 shared face
of two n-dimensional simplices embedded in RN , N ↑ n forming a
Delaunay pair. Then the signed length ϑ ε is positive.

Proof. When N = n, the results directly follows from Lemma 2
since the circumcenters are in the correct order. For N > n,
we can isometrically embed the simplices in Rn in which case,
the circumcenters are again in the correct order and the result
follows. !

In the N > n case, the signs of the elementary dual edges
of ϑ ε are assigned in the affine spaces of the corresponding n-
dimensional simplices. For example, consider a pair of triangles
embedded in R3 and meeting at a shared edge at an angle other
thanς . In this case, the signed length of the dual edge of the shared
edge is determined as the sum of the two elementary dual edges
which aremeasured in the planes of the two triangles individually.
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Fig. 4. Elementary dual simplices of a vertex in a pair of triangles sharing an edge.
The cases shown correspond to various positions of the circumcenters of the shared
edge and the two triangles.

3.1. Dual of a vertex in triangle mesh surface

Nowwe show that the area of the dual of an internal vertex in a
pairwise Delaunay triangle mesh is always positive. We prove this
below by showing that the net dual area corresponding to a pair of
triangles is positive.

Theorem 4. Let ω be an internal vertex in a pairwise Delaunay
triangle mesh embedded in RN , N = 2, 3. Then the signed area of
ε ω is a positive.

Proof. ε ω is the Voronoi cell of vertex ω in the pairwise Delaunay
mesh. Consider a pair of triangles sharing a common edge incident
to ω and if they are embedded in R3, isometrically project to
R2 (i.e., treat the shared edge as a hinge, and flatten the pair).
The circumcenters of these two triangles are in correct order by
Lemma 2 and there are three possible cases as shown in Fig. 4.
Thus the net area of the two elementary dual simplices is positive
when the signs are assigned using the rule described in Section 2.
Summing over all edges containing ω yields the full ε ω as a positive
area. !

3.2. Dual of an edge in tetrahedral mesh

Theorem 5. Let ω be an internal edge in a tetrahedral Delaunay
triangulation embedded in R3. Then ε ω is a simple, planar, convex
polygon whose signed area is positive.

Proof. ε ω of an internal edge ω in a Delaunay triangulation may
or may not intersect ω . The vertices of ε ω are circumcenters of
tetrahedra incident to ω and the boundary edges of ε ω are dual
edges of triangles incident to ω . Note that ε ω is the interface
between the Voronoi cells corresponding to the two vertices of ω
and thus is a bounding face of both Voronoi cells. Since the Voronoi
cell of a vertex is a convex polyhedron [8], ε ω is simple, planar and
convex.

Suppose ω intersects ε ω . Then the tetrahedra incident to ω and
the edges of ε ω have to be in a configuration shown in left part

Fig. 5. An internal edge ω of a tetrahedral mesh may or may not intersect ε ω . The
views here are along ω which appears as a point. The short lines are half-planes of
the triangles incident to ω . The tetrahedra are labeled a, b, etc. Each boundary edge
of ε ω corresponds to the triangle indicated by the coloring. The half planes could
potentially be a reflection about ω but that is impossible in a Delaunay mesh due to
Lemma 2.

Fig. 6. Representative elementary dual simplices of ε ω when it intersects ω (left
side) and does not intersect ω (right side) corresponding to the two cases shown in
Fig. 5.

of Fig. 5. A configuration in which the triangles incident to ω are
reflected about ω is impossible due to Lemma 2.

Now, to see that the signed area of ε ω is positive, consider two
elementary dual simplices of ε ω incident to a shared face ϑ of
two tetrahedra in the fan of tetrahedra incident to ω . These two
elementary dual simplices can be in one of the two configurations
as shown in Fig. 6. In both cases, cω is the circumcenter of the
edge ω , cϑ is the circumcenter of the shared face ϑ , and cϖ and cϱ
are the circumcenters of the two tetrahedra. Also, in both cases,
using the sign rule of Section 2 the sum of the signed areas of the
elementary dual simplices is positive, and hence, the signed area
of ε ω composed of these elementary dual simplices is positive.

Next consider the case in which ω does not intersect ε ω as
shown in right part of Fig. 5. A boundary edge of ε ω is called near
side if it is visible from the midpoint of ω , otherwise, it is called a
far side edge. Fig. 6 shows the net dual simplices of a near side and
far side boundary edge of ε ω . By the sign rule of Section 2, far side
elementary dual simplices have a net positive signed area while
near side elementary dual simplices have a net negative signed
area. The negative areas of the near side dual simplices are covered
by the positive areas of the far side dual simplices. Thus, the sum
of all these elementary dual simplices which is the signed area of
ε ω is positive. !

3.3. Dual of a vertex in tetrahedral mesh

Theorem 6. Let ω be an internal vertex of a tetrahedra Delaunay
mesh embedded in R3. Then the volume of ε ω is positive.

Proof. ε ω of a vertex ω in a Delaunay tetrahedral mesh is a convex
polyhedron that is the Voronoi dual cell of ω [8] and thus ω is
inside ε ω . The faces of ε ω are duals of edges incident to ω . By

H., Kalyanaraman, VandeZee, Delaunay Hodge Star,  
Computer-Aided Design (2013)

H., Nakshatrala, Chaudhry, Numerical method for  
Darcy flow derived using Discrete Exterior Calculus. 
Int. J. Comp. Meth. Eng. Sci. Mech. (2015)
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Navier-Stokes + Discrete wedge product

(a) (b)

(c) (d)

Figure 8: The vorticity contour plot for 6 vortices on a spherical surface at latitude ✓ = 0.4

at time: (a) T=0.0 and (b) T=36.0. (c) The relative solution change ( ||U(t)�U(0)||
||U(0)|| ) versus

the simulation time. (d) The vorticity strength along a circle at latitude ✓ = 0.4.
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Figure 8: The vorticity contour plot for 6 vortices on a spherical surface at latitude ✓ = 0.4

at time: (a) T=0.0 and (b) T=36.0. (c) The relative solution change ( ||U(t)�U(0)||
||U(0)|| ) versus

the simulation time. (d) The vorticity strength along a circle at latitude ✓ = 0.4.
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ℒuu♭ −
1
2

diuu♭ = iudu♭ +
1
2

diuu♭

iXα = ± ⋆ (⋆α ∧ X♭)

Mohamed, H., Samtaney, Discrete exterior calculus discretization of  
incompressible Navier-Stokes equations on simplicial meshes,  
J. Comp. Phys. (2016)

• Averaging property


• Wilson cochain product 
Schubel, H., Berwick-Evans, Averaging property of wedge product and 
naturality in discrete exterior calculus, Adv. Comp. Math. (2024)

H., Discrete Exterior calculus, (2003)
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Recent developments
Software, Convergence, ML, Double forms, Vector bundles

1. Software 
 - Decapodes (Fairbanks) 
 - Sandia software (Eldred) 
 - Jyväskylä (Mönkölä, Kettunen, …)


2. Hodge-Laplace convergence 
 - Guzmán and Potu 
 - Zhu, Christiansen, Hu, H.


3. ML and exterior calculus 
 - Trask


4. Double forms 
 - Arnold, Hu, Čap, Kupferman, Leder, … 
 - Gawlik, Berchenko-Kogan


7. Bundle valued DEC 
- Eldred et al. 
- Berwick-Evans, Schubel, H. 
- Braune, Tong, Gay-Balmaz, Desbrun 
- Christiansen, Hu


8. Bundles in continuum mechanics 
- Stramigioli, Brugnoli, … 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Near term future

• Discretization of bundle-valued forms


• Relationship with geometric mechanics


• Double forms and general tensors in the cochain world
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Longer term future …
Quantum systems

• Many quantum systems are approachable from discrete vector bundle view


• Some are inherently discrete


• Some are discretizations of continuum
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Longer term future …
Quantum error correction

Woottonjames (Wikipedia)

Kitaev toric code

5

A. Hyperbolic quantum codes

Quantum codes with a finite encoding rate k/n ! R > 0 for
n ! 1 naturally arise from manifolds of negative curvature,
called hyperbolic manifolds. The reason for this lies in the
Gauß–Bonnet–Chern theorem which relates the geometry of
a manifold to its topology [37]. More concretely, it shows
that for hyperbolic manifolds of even dimension D = 2i the
dimension of the homology group Hi grows linearly with the
total volume of the manifold. Hence, the associated quantum
code has a linear encoding rate. Therefore, any code derived
from such a manifold (cf. Sec. II B 3) will have a constant
encoding rate.

Compare this to the L ⇥ L toric code where the logical
operators of minimum weight correspond to 1-dimensional
submanifolds (circles). The number of these is two, regardless
of L. The same is true for higher dimensions, e.g. one can
define a four-dimensional toric code [27] where the logical
operators of minimum weight correspond to six 2-dimensional
tori.

1. Hyperbolic Surface Codes

Hyperbolic surface codes are the closest relatives of the toric
code. They are defined in exactly the same way as the toric
code, except that the tessellations are derived from hyperbolic
geometry.

If we consider a closed surface with a hyperbolic metric then
the Gauß–Bonnet–Chern theorem [37] mentioned above can
be used to derive an exact formula for the number of encoded
logical qubits. In particular, for regular tessellations based on
regular polygons with r sides and s polygons meeting at each
edge one can show that the number of logical qubits is given
by k = (1� 2/r � 2/s)n+ 2. Note that the stabilizer check
weight is r for Z-checks and s for X-checks, so that there is a
trade-off between check-weight and encoding rate. Hyperbolic
surface codes exist with check-weights five and four for X-
checks and Z-checks or vice versa [38, 39]. Hyperbolic surface
codes and their properties were discussed in [40–42]. A general
construction as well as a planar version were introduced in [38].
In [23] the authors utilize hyperbolic surface codes to obtain
results in percolation theory.

The distance of hyperbolic surface codes is logarithmic
which suffices to prove that a threshold under minimum-weight
decoding exists [43]. Many decoders that apply to the surface
code can be used directly for hyperbolic surface codes, such
as minimum-weight perfect matching [38] and the union-find
decoder [44]. However, this means that error suppression on
the logical qubits for physical error rates below the threshold
scales only polynomially with the system size. Nevertheless,
numerical simulations show that hyperbolic surface codes offer
a reduction of physical qubits in the phenomenological noise
model [38, 39] and gate-based noise model [45]. Based on
the symmetry of hyperbolic surface codes it is possible to find
optimal measurement schedules of the check operators [45]
and they are currently the only finite-rate quantum codes for
which such schedules are known.

FIG. 4. A hyperbolic surface of genus 3 tessellated by heptagons. It
gives rise to a code with parameters n = 84, k = 6, dX = 4, dZ = 8.
The colors have no intrinsic meaning and are only included to guide
the eye. A weight-four X-operator goes through the following four
faces on the right: magenta (top), violet, green (middle), yellow
(below) and back to the same magenta face (periodic boundary). A
weight-eight Z-operator runs along the left-hand side of these faces.

In [45] Higgott–Breuckmann show that hyperbolic surface
codes can be turned into subsystem codes with weight-3 checks.
There also exist hyperbolic versions of color codes [42, 46, 47]
which could simplify the implementation of logical gates.

2. Higher-Dimensional Hyperbolic Codes

Lubotzky–Guth showed that codes derived from hyperbolic
manifolds of dimension larger than two give quantum codes
with distance scaling as d 2 ⇥(n↵) for some ↵ > 0 [48]. In
fact, they constructed families of 4D hyperbolic quantum codes
such that ↵ > 0.1. For arithmetic 4D hyperbolic manifolds the
authors establish an upper bound of ↵ < 0.3. However, it is an
open problem whether these bounds hold for quantum codes
derived from general 4D hyperbolic manifolds.

Hastings has proposed an efficient local decoding strategy
for 4D hyperbolic codes [49]. However, despite having a
distance scaling like n↵, Hasting’s decoder is only shown to
correct errors up to size log(n).

The description of the codes by Lubotzky–Guth [48] is im-
plicit. Londe–Leverrier [50] consider a tessellation of 4D
hyperbolic space by hypercubes giving rise to a family of
codes with asymptotic encoding rate R � 17/360. A construc-
tion based on a self-dual tessellation by 120-cells was given
by Breuckmann–Londe [51] giving an asymptotic encoding
rate R � 13/72. Furthermore, they show how topological
coverings can be used to reduce the size of these codes and
perform simulations of the codes using a belief-propagation
decoder which indicates that it has intrinsic robustness against
measurement errors, see Sec. VI C.

B. Freedman–Meyer–Luo codes

Hyperbolic geometry was used in earlier work by Freedman–
Meyer–Luo [52] to construct a family of quantum codes with
parameters [[n, 2,⌦( 4

p
log(n)

p
n)]] [53]. These codes held

the record for distance scaling for around 20 years until the
record was broken in 2020 by several works discussed in
Sec. IV. The arguments used in [52] are quite involved and
beyond the scope of this Perspective. However, we sketch the

Breuckmann, Eberhardt, Quantum LDPC codes (2021) 

ExtendabilityGauge invariance

 valued bundleℤ2
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Longer term future …
Quantum field theory

• Yang-Mills action  .  Find connection  whose curvature  makes action stationary


• Quantum observable:  
    - Fix a loop 
    - Integral over all connections mod gauge 

    - Integrand holonomy with weighting 
    - Classical solutions have large weight


• Lattice gauge theory is well established 


• How about simplicial gauge theory?


• Discrete Hodge star for endomorphism and vector bundle valued forms

∫ F ∧ ⋆F ∇ F

exp( − ∫ F ∧ ⋆F )
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Thank you! 
 

Let’s get started with the workshop
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