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Models



Generalization in four-dimensional spacetime

Derivation of the general model; viewpoints:

• Geometric algebra in Minkowski spacetimeR1,d, differential of the general multivector/multiform∗.

• The conservation laws derived from the least action principle†, the action is set up by Hamilton’s

principal function of the form S = 1
2

∫
Ω (dF ∧ ⋆dF ) = 1

2

∫
Ω ⟨dF, dF ⟩ vol.

∗
S. Mönkölä, J. Räbinä, T. Saksa, and T. Rossi. (2+ 1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime. Results in Applied Mathematics, 25,
100528, 2025.

†
L. Kettunen, S. Mönkölä, J. Parkkonen, and T. Rossi. Systematic Imposition of Partial Differential Equations in Boundary Value Problems. In Impact of Scientific Computing on Science
and Society, 25–44, Springer, 2023.



General differential form formulation in 4D

The differentials dx0, dx1, dx2 and dx3 are basis 1-forms and basis k-forms are constructed as wedge

(exterior) products of k basis 1-forms, such that, dxi ∧ dxi = 0 and dxi ∧ dxj = −dxj ∧ dxi.

With differential (multi)forms F̃ and J̃ we can present the wave equations as

∂F̃ = J̃ , ∂ ⋆ F̃ = ⋆J̃,

where

F̃ = f̃1 + f̃2dx
0 + f̃3dx

1 + f̃4dx
2 + f̃5dx

3 + f̃6(dx
0 ∧ dx1) + f̃7(dx

0 ∧ dx2) + f̃8(dx
0 ∧ dx3) + f̃11(dx

2 ∧ dx3) + f̃10(dx
3 ∧ dx1)

+ f̃9(dx
1 ∧ dx2) + f̃14(dx

0 ∧ dx2 ∧ dx3) + f̃13(dx
0 ∧ dx3 ∧ dx1) + f̃12(dx

0 ∧ dx1 ∧ dx2) + f̃15(dx
1 ∧ dx2 ∧ dx3)

+ f̃16(dx
0 ∧ dx1 ∧ dx2 ∧ dx3),

J̃ = b̃1 + b̃2dx
0 + b̃3dx

1 + b̃4dx
2 + b̃5dx

3 + b̃6(dx
0 ∧ dx1) + b̃7(dx

0 ∧ dx2) + b̃8(dx
0 ∧ dx3) + b̃11(dx

2 ∧ dx3) + b̃10(dx
3 ∧ dx1)

+ b̃9(dx
1 ∧ dx2) + b̃14(dx

0 ∧ dx2 ∧ dx3) + b̃13(dx
0 ∧ dx3 ∧ dx1) + b̃12(dx

0 ∧ dx1 ∧ dx2) + b̃15(dx
1 ∧ dx2 ∧ dx3)

+ b̃16(dx
0 ∧ dx1 ∧ dx2 ∧ dx3),

and ∂ = (d + δ) is the differential operator that is the sum of the exterior derivative d and its

coderivative (interior derivative) δ = (−1)k ⋆−1 d⋆, and ⋆ is the Hodge star operator.



Computational grids



Domain Ω as a cell complex

• Consists of differentiable k-cells (k-manifolds with boundary).

Partly structured grids

• Convex polyhedral elements; cubes, prisms, pyramids, octahedra . . .

Orthogonality of the primal and dual mesh elements

• Weighted circumcenters (Voronoi diagram).



Euclidean vs. Minkowski metric (2D grids).2D spatial grids (Euclidean metric).

Each k-cell is associated with a
corresponding dual (n− k)-cell.

3D spatial grids (Euclidean metric).

J. Räbinä L. Kettunen, S. Mönkölä, and T. Rossi. Generalized wave propagation problems and discrete exterior calculus. ESAIM: Mathematical Modelling and Numerical Analysis, 52(3):1195–1218, 2018.

J. Räbinä, S. Mönkölä, and T. Rossi. Efficient Time Integration of Maxwell’s Equations with Generalized Finite Differences. SIAM Journal on Scientific Computing, 37(6), B834–B854, 2015.



Discrete exterior calculus∗

∗
M. Desbrun, A. N. Hirani, J. E. Marsden. Discrete exterior calculus for variational problems in computer vision and graphics. In 42nd IEEE International Conference on Decision and
Control, vol. 5, 4902–4907, 2003.



Spacetime discretization

M. Desbrun, E. Kanso, Y. Tong. Discrete differential forms for computational
modeling. In Discrete differential geometry, Birkhäuser Basel, 287–324, 2008.

• Extension of the exterior calculus to discrete spaces
– generalization of the FDTD.

• Vectors of degrees of freedom associated with
primal and dual grid components.

• Variables can be associated with nodes (0-forms),
edges (1-forms), faces (2-forms), volumes (3-forms),
hypervolumes (4-forms).

• Discrete k-form corresponding to a differential form αk is uk =
∫
Ck
αk =


∫
Ck1

αk
...∫

Cknp
αk

, where

Cki is the ith k-cell and np is the number of k-cell.

• Exterior derivative d (generalization of grad, div, curl) and the corresponding codifferential δ.

– Incidence matrix dk operates discrete differential k-forms uk and represents the neighboring relations and
relative orientations.It is exact because the Stokes theorem holds exactly; dkuk = dk

∫
Ck

αk =
∫
Ck+1

dαk.

• The Hodge operator ⋆ maps a differential k-form to a differential (n− k)-form.

– The discrete Hodge operator ⋆k is a matrix mapping between the primal and dual mesh (diagonal if the
dual elements are orthogonal to the primal elements).



Discrete k-forms, incidence matrices dk, and the corresponding co-operators δk (include discrete

Hodge operators) with spatial (subscript s) and temporal (subscript t) components.

Generalized model in four dimensions without external forces

δ0s
1

∆t2
d0t

d0s δ1s
1

∆t2
d1t

d0t −δ0s

d1s δ2s
1

∆t2
d2t

d1t −d0s −δ1s

d2s
1

∆t2
d3t

d2t −d1s −δ2s
d3t −d2s





u0s
u1s
u1t
u2s
u2t
u3s
u3t
u4t


= 0. (1)

Leads to a leapfrog style timestepping.



Computational tools
PyDEC a

Comparison DEC vs. FEEC b

Exact controllability method
for time-harmonic problems

a
https://github.com/hirani/pydec

b
https://doi.org/10.1016/j.cam.2024.116154

Developed at the University of Jyväskylä:

Core library (C++)a

CPU parallelism (OpenMP, MPI)
Mesh generator (space, spacetime)
Classical & quantum mechanics

a
https://sites.google.com/jyu.fi/gfd/
https://github.com/juolrabi/gfd

GPU acceleration (CUDA) a

Quantum models:
Gross–Pitaevskii, BEC,

knots, skyrmions, Alice rings

a
https://github.com/markus-kivioja/GpuDecGpe

On-going implementation (Rust)a

Nanoscale thermal transport
Plasmas (Maxwell–Vlasov)

a
https://codeberg.org/molentum/dexterior

Higher-order DECa

Whitney/cubical forms
Sparse non-diagonal Hodge

a
https://github.com/higher-order-dec

https://github.com/hirani/pydec
https://doi.org/10.1016/j.cam.2024.116154
https://sites.google.com/jyu.fi/gfd/
https://github.com/juolrabi/gfd
https://github.com/markus-kivioja/GpuDecGpe
 https://codeberg.org/molentum/dexterior
https://github.com/higher-order-dec


Application areas



Photonic crystals

2D nanoscale electromagnetics with leap-frog time-stepping

• 15× 7 periodic cells with the rods in the middle row removed,

• a narrow width modified Gaussian pulse source,

• photonic band gap at frequency 0.4.

ar

ε = 8.9

µ = 1

r = 0.2

a = 1

hmax = 1/32

hmin ≈ 0.4hmax

Pulses centered around frequencies 0.4 (left) and 0.5 (right) in a photonic crystal array

S. Mönkölä, and J. Räty. Discrete exterior calculus for photonic crystal waveguides. International Journal for Numerical Methods in Engineering, 124(5),
1035–1054, 2023.



Double slit experiment

https://sites.google.com/jyu.fi/gfd/applications/quantum-mechanics

https://sites.google.com/jyu.fi/gfd/applications/quantum-mechanics


Training a convolutional neural network with electromagnetic simulations

• Simulated light propagation.

– Time-harmonic source term.

– Number of elements per wavelength 100–150.

– Time integration until steady state is reached (asymptotic approach).
– The solution is integrated to obtain reflectance for given frequency.

• An inverse model based on convolutional neural networks analyzing thin-film layer thicknesses

from hyperspectral images (400–1000 nm wavelength range).

– Training: 72000 DEC simulations for each film material.

A-L. Erkkilä, J. Räbinä, I. Pölönen, T. Sajavaara, E. Alakoski, and T. Tuovinen. Using wave propagation simulations and convolutional neural networks to
retrieve thin film thickness from hyperspectral images. In Computational Sciences and Artificial Intelligence in Industry, 261–275, Springer, 2021.



Exact controllability approach for time-harmonic problems † ‡

• Accelerates the convergence of the asymptotic approach by
minimizing the problem related energy (controlled time integration).

– A variation of the asymptotic approach with periodic constraints:
the residual of the algorithm defines at each iteration how far the
solution is from a periodic one and accelerates the convergence rate
by giving an impulse to the system.

– Energy for electromagnetic scattering problem is of the form
E(E,H) = 1

2

(
ET ⋆ϵ E +HT ⋆µ H

)
.

– The time-harmonic solution can be found by minimizing
E(E − E0, H −H0), where the initial conditions E0 and H0

are also the control variables.

†M. O. Bristeau, R. Glowinski, and J. Périaux. Controllability methods for the computation of time-periodic solutions; application to scattering. Journal of
Computational Physics, 147(2), 265–292, 1998.

‡S. Mönkölä, J. Räbinä, and T. Rossi. Time-harmonic electromagnetics with exact controllability and discrete exterior calculus. Comptes Rendus. Mécanique,
351(S1), 647–665, 2023.



Exact controllability: examples of acoustics
• For the same level of accuracy, DEC provides a lower computational cost than FEEC. §
• Efficient for scattering problems with non-convex objects. ¶

§T. Saksa. Comparison of finite element and discrete exterior calculus in computation of time-harmonic wave propagation with controllability. Journal of
Computational and Applied Mathematics, 457, 116154, 2025.

¶M. Myyrä. Discrete Exterior Calculus and Controlled Time Integration for Time-Harmonic Acoustics. Submitted manuscript.
M. Myyrä. Discrete exterior calculus and exact controllability for time-harmonic acoustic wave simulation. MSc Thesis, University of Jyväskylä, 2023.



CPU parallelization (MPI)

Meteor radar reflections in 3D
(EM scattering from plasmatic obstacles)

J. Räbinä, S. Mönkölä, T. Rossi, J. Markkanen, M. Gritsevich, and K. Muinonen. Controlled time integration for the numerical simulation of meteor radar
reflections. Journal of Quantitative Spectroscopy and Radiative Transfer, 178, 295–305, 2016.



DEC based controlled time integration was found to be more efficient than the volume integral

equation (VIE) method and its performance is not sensitive to the level of discretization and the

values of the material parameters.



GPU parallelization

The Gross–Pitaevskii equation

−∂tℏ ⋆ΨR −
ℏ

2m
dqI = U1ΨI + σU1dqI,

ℏ
2m

⋆ d ⋆ qR − ∂tℏ ⋆ΨI = −U8ΨR + σU8 ⋆ d ⋆ qR,

is a non-linear Schrödinger equation that models atomic Bose–Einstein condensates at ultra low tem-

perature (σ = 0: original parabolic equation, σ > 0: hyperbolic equation).

Dynamics of vortex splitting

– The performance of the GPU implementation on one GPU corresponds to the performance

of the CPU implementation executed on at least 60 CPU cores.

https://github.com/markus-kivioja/GpuDecGpe

M. Kivioja, S. Mönkölä, and T. Rossi. GPU-accelerated time integration of Gross-Pitaevskii equation with discrete exterior calculus. Computer Physics
Communications, 278, 108427, 2022.
J. Räbinä, P. Kuopanportti, M. Kivoja, M. Möttönen, and T. Rossi. Three-dimensional splitting dynamics of giant vortices in Bose–Einstein condensates. Physical
Review A 98 023624, 2018.

https://github.com/markus-kivioja/GpuDecGpe


Alice ring

– Topological defect in a spinor Bose–Einstein condensate.

Alice ring breaking off at a single point. Coexistence of two Alice rings.

M. Kivioja, R. Zamora-Zamora, A. Blinova, S. Mönkölä, T. Rossi, and M. Möttönen. Evolution and decay of an Alice ring in a spinor Bose-Einstein condensate.
Physical Review Research, 5(2), 023104, 2023.



Relativistic hyperbolic Gross–Pitaevskii equation

accuracy

stability (σ = 0,1.5,2,2.5,3)

M. Kivioja, S. Mönkölä, and T. Rossi. Hyperbolic spinor Gross-Pitaevskii equation for improved numerical stability, Manuscript in preparation.



Spacetime simulations

• All the metric properties, including the spacetime properties, are capsulated in the discrete Hodge

operator.

• In spacetime, the mesh and spacetime stepping need to be constructed such that the causal

relationships between events are preserved.

If the numerical domain of dependence (blue) is larger than
the physical domain of dependence (red), the system is stable
(”c∆t < ∆x”). Spacetime stepping in (1+1)-dimensional primal (blue) and dual (red)

grids.



(1+1)D

Uniform mesh, moving cavity (http://urly.fi/yNi).

Continuous mesh refinement and stability test.
T. Rossi, J. Räbinä, S. Mönkölä, S. Kiiskinen, J. Lohi, and L. Kettunen. Systematisation of systems solving physics boundary value problems. In Numerical Mathematics and Advanced
Applications ENUMATH 2019, 35–51, Springer, 2021.

http://urly.fi/yNi


(1+1)D

∂xEt − ∂tBx = 0 in [0, π]2,

∂xBx − ∂tEt = 0 in [0, π]2,
Bx(x,0) = sin(x),

Bx(0, t) = 0,

Bx(π, t) = 0,
Et(x,0) = 0,

Et(0, t) = sin(t),

Et(π, t) = sin(−t).

Uniform spacetime mesh Continuous refinement

Maximum errors with respect to the number of edges.

J. Räty and S. Mönkölä. Local time-stepping for discrete exterior calculus on spacetime mesh with refinements. Journal of Computational Physics, 529, 113839, 2025.



(2+1)D

Mesh refinement in the center of the disc, stability test.

Spacetime grid twisted around the time axis (https://urly.fi/1oxH).

T. Rossi, J. Räbinä, S. Mönkölä, S. Kiiskinen, J. Lohi, and L. Kettunen. Systematisation of systems solving physics boundary value problems. In Numerical Mathematics and Advanced
Applications ENUMATH 2019, 35–51, Springer, 2021.
S. Mönkölä, J. Räbinä, T. Saksa, and T. Rossi. (2+1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime. Results in Applied Mathematics, 25,
100528, 2025.

https://urly.fi/1oxH


Synchronous time-stepping, constant time instants. Asynchronous time-stepping, varying time instants.

Stability factor β w.r.t rotation speed angle θ for several spatial mesh refinements with the largest stable timestep.

∆t < ∆x/β

• The stability condition for asynchronous time-stepping is less strict than the stability condition for synchronous
time-stepping.

• Constructing asynchronous time-stepping requires more computing time.
• Not a significant difference in CPU time requirements with the largest stable timesteps.



(3+1)D

field component dt-1 1

t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

Shrinking domain (https://urly.fi/1oWx).

T. Rossi, J. Räbinä, S. Mönkölä, S. Kiiskinen, J. Lohi, and L. Kettunen. Systematisation of systems solving physics boundary value problems. In Numerical Mathematics and Advanced
Applications ENUMATH 2019, 35–51, Springer, 2021.

https://urly.fi/1oWx


Higher-order methods

• Require higher-order discrete Hodge operators. These are obtained using higher-order interpolants
when the mesh is suitably created (start with an initial mesh and form a refinement containing
certain“small cells”).

• Systematic approaches exist for simplicial and cubical meshes

– ”small simplices”of Rapetti and Bossavit∥,

– ”small cubes”of Lohi ∗∗.

• Discrete differential forms (cochains) interpolated on the refined meshing higher-order finite ele-
ment differential forms (Whitney forms or cubical forms).

∥Following the idea of mapping simplices to their so called homothetic images presented in F. Rapetti and A. Bossavit, Whitney forms of higher degree. SIAM
J. Numer. Anal. 47 (3) 2369–2386, 2009.

∗∗L. Kettunen, J. Lohi, J. Räbinä, S. Mönkölä, and T. Rossi. Generalized finite difference schemes with higher order Whitney forms. ESAIM: Mathematical
Modelling and Numerical Analysis, 55(4), 2021.
J. Lohi. New degrees of freedom for differential forms on cubical meshes. Advances in Computational Mathematics, 49(3), 42, 2023.
J. Lohi. Higher order approximations in discrete exterior calculus. PhD thesis, University of Jyväskylä, 2023.
https://github.com/higher-order-dec/code

https://github.com/higher-order-dec/code


(1+1)D

The second order formulation d ⋆ du = f .

Δt

Δx

t

x

The type of the triangles used in the space-

time mesh in domain [0,2]× [0,200]. p
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The results on triangular and square meshes with kth order approximations



(2+1)D

The type of the cubes used in the space-

time mesh in [0,2]× [0,2]× [0,100]. 0.6 0.3 0.15 0.075 0.0375
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The results on cubical meshes with kth order approximations.



On-going/future work

A new implementation in the Rust programming language by Mikael Myyrä††

• Application areas:

– nanoscale thermal transport in solids at very low frequencies,

– magnetically confined plasmas in space/astrophysics (Maxwell-Vlasov equation).

Proof engineering in the interactive theorem prover Coq by Sampsa Kiiskinen ‡‡

• Machine proofs for numerical mathematics.

††
https://molentum.me/notes/dexterior/, https://codeberg.org/molentum/dexterior

‡‡S. Kiiskinen. Curiously Empty Intersection of Proof Engineering and Computational Sciences. In Impact of Scientific Computing on Science and Society, 45–73,
Springer, 2023.A-L. Erkkilä, J. Räbinä, I. Pölönen, T. Sajavaara, E. Alakoski, and T. Tuovinen. Using wave propagation simulations and convolutional neural
networks to retrieve thin film thickness from hyperspectral images. In Computational Sciences and Artificial Intelligence in Industry, 261–275, Springer, 2021.

https://molentum.me/notes/dexterior/
https://codeberg.org/molentum/dexterior


Summary

• DEC has been successfully used in several disciplines, from classical to quantum mechanics.

– Enables grid structures suitable for complex geometries.

– Efficient time evolution by construction with diagonal discrete Hodge operator.

– Higher-order methods improve accuracy at the expense of increased computational cost.

– Exact controllability method provides a framework for solving time-harmonic problems.

· Harmonic Hodge correction increases accuracy.

• General differential form model in spacetime

– DEC is a natural discretization tool,

– covers relativistic hyperbolic boundary value problems by nature,

– parabolic and elliptic problems are simplifications,

– space and time-stepping can be separated,

– translates to various Clifford algebras.


