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Numerical modelling of geometrical nonlinearities

Geometrical nonlinearities: arise from large displacements; occur in aeronautics,
wind energy, musical acoustics, MEMS.
Simulation is crucial: animation, sound synthesis, control and optimization.
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MEMS device (left) and First mode (right) Schiwietz et al., “Shape optimization of
geometrically nonlinear modal coupling coefficients: an application to MEMS gyroscopes”
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Duffing oscillator

Deformed configuration
Undeformed configuration &

The material behavior of the springs is linear elastic (only geometrical nonlinearities)

mg = —2knorq — 2kyerd sin(0),

» § = /L2 + g2 — L is the elongation of the vertical springs;
» sinf =q/vL?+q?



Cubic approximation and canonical Hamiltonian form
Consider a Taylor expansion

([_2+ 2)71/2_1_(772_’_0( 4)
q RERTE a)
Then the Duffing oscillator is obtained
E] = —aq — Bq3a Q= 2khor/rna B = ver/(mLa)-

Canonical Hamiltonian equations (p := §):

The Hamiltonian is given by

11 1
H(q,4) = 54+ §aq2 + Zﬁq“-



Poisson formulation of a Hamiltonian system
A general Hamiltonian system can be written as

x = J(x)VH(z), x € R", J(x)=—J(x)".
Define the Poisson bracket for smooth functions F, G : R” — R as
{F,G}:=(VF) J(x)VG.
Then the system can equivalently be written in Poisson form:

5i={aHY i=1,...n, %={FaH}-

Properties:
» Bilinearity: {aF + bG,H} = a{F,H} + b{G, H},
» Skew-symmetry: {F,G} = —{G, F},
» Jacobi identity: {F,{G,H}} +{G,{H,F}}+{H,{F,G}} =0,

» Energy conservation: % ={H,H} =0.



Energy preservation via Discrete Gradient method

Energy preservation can be achieved using a discrete gradient.
A discrete gradient VH(x,y) : R" x R" — R" is a mapping that satisfies:

1. Discrete chain rule: H(y) — H(x) = VH(x,y)" (y — x),
2. Consistency: VH(x,x) = VH(x).

Examples:
» Mean Value Discrete Gradient

vaH(X,y) = Al VH((]. — 9)X + 9)/) do.

» Gonzales Midpoint Discrete Gradient

Xy HO) = H) - VH(E$) (v~ x)

Vahay) = VH(= I

(y_X)7



Time stepping

Given a discrete gradient VH, the corresponding time-stepping method is

n

xn+1 y (XnJr;nH) ﬁH(X",X’wl).

— X

At

This one-step method preserves H exactly.
Disadvantages

» Computational cost: Implicit methods, Newton solver required. Mean value
gradients require numerical quadrature; midpoint gradients require multiple
function evaluations.

» Order of accuracy: Discrete gradient methods are second-order accurate.
Constructing higher-order energy-preserving schemes is challenging?.

!Eidnes, “Order theory for discrete gradient methods”



Towards a Poisson formulation: energy quadratisation
The Hamiltonian

1 1 1
H:§V2+§Oéq2+16q4) V::q

can be rewritten using the stresses. The strains are given by
e1=q, ©2=¢

The stresses are given by (Legendre transform conjugate variables)

01 = Q€q, 02 = 5€2

The energy is now rewritten as a quadratic form



Poisson structure

Idea: introduce the dynamics of the stress variables. The augmented system reads
q= EIX,
Hx = J(q)x,
where e =[L 0 0] is the first element of the Euclidean canonical basis, and

1 0 -1 —2g
H =Diag [1/a|, J(g)=1|1 0 0
2/3 29 0 0
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A general abstract framework

Geometrically nonlinear mechanical models admit an analogous non-canonical
Hamiltonian form:

8tq =V,
Hatx = j(Q)Xy

with state x = (v, S), H = Diag[p, C]
» q: displacement, v: velocity, S: stress-like variable,
> p: density, C: compliance tensor.

Poisson operator:

0 —£*(Dq)
j(q): [E(Dq) 0 q] .

Here Dgq is a parameter and L designates the formal adjoint of £



Energy and Variational Basis

Skew-adjointness of 7(q) ensures conservation of
1 .
H(v, S) = 5/ JIvIZ+S-CSdQ,  H=o.
Q

This system is derived from the least action principle S = 0 using the Reissner
expression of the deformation energy Vg:

t, t,
S(q,v,S) ;:/f/ q‘pdedt—/fT(v)—l— Vr(q, S)dt,
0 Q 0
1
T(v) =5 [ pllviPas
Vr(q, ) ::/QS-E(q)—;S-(CSdQ,

where § - E denotes the tensor contraction and E is a geometrically non linear strain.
The formulation is local and requires boundary conditions.
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Von Karman beams

Assumptions:
» Out-of-plane deflection comparable to
thickness
P Axial stretching terms negligible vs.
rotation squares

= Quadratic bending—-membrane coupling
term retained



Strain and energies
The axial strain and the (linearized) curvature are given by

_0gx 1 <aqz)2 D%,
fa = Ox 2\ 0x )’ o= ox2 "’

Total strain € = €, + . Consider the kinetic and potential energy
1 L
=3 | pAGE + )ax.
0

L 1 1
_ T N2 T g2
VR —/0 {NEa(arqz) + Mﬁ(qz) 2EAN 2E/M }dX

Euler Lagrange equations
Kinematics Dynamics Constitutive laws

Deqx = Vy, pAdpvy = OxN, (EA) "IN = (0yqx + 1/2(0xq2)?),
0:qy = Vs, pADv, = —02M + 0 (NOxqy),  (EI"*M = 8,qs.



Poisson system

The time derivative of the stress variables gives

Ca 8tN = 8XVX + (8xqz) axvm

Cp OtM = aXXV27

The Poisson system reads

ath = Vx,

6th = Vgz,

PA Vx 0

. |pAl O v | _ |0
Diag clac| d,
Gy M 0

0

0
(8xqz)axo

82

Ox
Ox(00xqz)
0
0

= (EA)il’
= (En~*
0 Vy
_a>2(x Vz
0 N
0 M

For this example, the operator £(0xq;) and its adjoint are given by

5(8xqz) = [a( (axqz)axo

0 92,

1 ) [’*(axqz) = - [ax(

Ox
o xqz)

—H?

XX



Von Karman plate model: Strain and energies

The axial strain and curvature generalize the previous model

1
em = def(qm) + Equ ® V4qz, K = Hess q,.

» The displacement vector g has been split into the membrane displacement
dm = (gx qy)' and the out-of-plane component q;

> def := 1(V + VT) is the symmetric gradient;
> ® is the dyadic product of the two vectors, i.e. a@ b=ab';
Consider the kinetic and Reissner deformation energy

1 rL
T =5 [ ohlllvml+ vl Pax,

L 1 1
VR:/ {N'Em(qquz)+M~l‘C(qz)_2N~(CmN—2M‘(CmM}dX'
0



Poisson Structure

Applying the generalized Hamilton principle and taking the derivative of the membrane
and bending stress tensors N, M

81.'qm:Vm7

atqZ:VZa
ph Vm 0 0 div 0 Vm
. ph g v | | O 0 C(g;) —divdiv Vy
Diag \c 15t | N | = |aef —c*(q,) 0 0 N
G, M 0 Hess 0 0 M

The operator C(q,)(-) acting on symmetric tensors is defined by
C(q;)(N) :=div(N Vq,).

Its adjoint is given by

C(q2)" (") = —sym [V(-) ® V(q.)] .



Von Karman in Airy form: the 2D elasticity complex

The model can be simplified by neglecting the membrane inertia pho;v,, = 0, leading
to
divN = 0.

For a simply connected domain, the 2D elasticity complex is exact

P, — S C© _Ar, coogs v, cogmy

where P; := R + x 1 - R? is the space of first order polynomial. So the membrane
stress field can be represented by an Airy potential

N = Air ¢.
Plugging this expression in the dynamics

div(NVgq;) = Air¢ - Hess g, since div Air = 0.



The adjoint complex

B(f,g) := Airf -Hessg.
The following properties of the bilinear form have been proven
> Symmetry: B(f,g) = B(g, f);
» Self-adjointness: (B(f,g), h)a = (g, B(f, h))q (function f is a parameter).
The expression of the membrane stress still contains the in-plane displacement

2

1
C, Airp = def g, + Equ ® Vaq,.
The idea is to exploit the relation
rotrotdef =0

from the adjoint complex

RM —S ¢* gV —df, coogg rotrot oo

2Bilbao, “A family of conservative finite difference schemes for the dynamical von Karman plate
equations”



Elimination of q,,, v,

Applying rot rot to the inplane
_ 1
rot rot C,, Air p = 5 rotrot(Vg, ® Vq;).
The operator rot rot C,, Air = Air*C,, Air is self-adjoint. A little algebra provides

1 1
(Air* C,,, Air) p = 5 rotrot(Vq, ® Vq,) = —§B(qz, qz)-

Taking the time derivative provides the dynamics of the Airy potential ¢

(Air* C,, Air) Zf = —B(qz, vz).



Poisson formulation of the Airy form

6tqz = Vz,
ph 5 [V 0 B(qz,0) —divdiv| [v,
Diag | Air* C,, Air 2| 9= —B(gz,0) 0 0 @
G, M Hess 0 0 M

A self-adjoint differential operator H takes the place of an algebraic energy matrix
(implicit Hamiltonian system3).
The differential operator and its adjoint read

_B(q27 o)

L(Airgz) = [ Hess

] , L*(Airg;) = — [B(qz,o) - divdiv} .

®Bendimerad-Hohl et al., “Stokes-Lagrange and Stokes-Dirac representations of N-dimensional
port-Hamiltonian systems for modeling and control”
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Canonical Hamiltonian structure for continuum mechanics
Given a solid body B C R3 and an embedding

x=@(X,t)=X+q(X,t) €S C o =R

the dynamics of a deformable body can be written in canonical Hamiltonian form as

(2)=1 o ()

where the Hamiltonian is given by

~112
H(w, F) = , ”721 + pW(F)dX, W hyperelastic potential

The quantity 7 := pv is the material representation linear momentum (and velocity)

V(X,t): X €B = TyxnS



Rate of change strain tensor (cartesian coordinates)

To ensure frame indifference the deformation energy must depend on the right Cauchy
strain tensor or equivalently the Green Lagrange strain

1
E(X): TxB— TxB, E= 5(FTF -1, F=I+Vaq.
The kinetic and potential energies are given by
1 ~12
7= [ rllvlPax.
B
1
VR:/ S.E(q)—=5-CSdQ.
Q 2
Euler Lagrange equations

orq=v,  pdv=div(FS), (CS:%(FTF—I).



Poisson structure

The rate of change of the Green Lagrange strain is given by*
C;S = sym(F'Vv).
Dynamical system®

8t‘q = ,67

p 0] o (V) 0 div(F o)] (v
0 C|ot\S)  |sym(FTVo) 0 S’

The differential operator and its adjoint read

L(Vq) =sym(FTV o),  L*(Vq)=—div(F o).

*Marsden and Hughes, Mathematical foundations of elasticity
®Thoma, Kotyczka, and Egger, “On the velocity-stress formulation for geometrically nonlinear
elastodynamics and its structure-preserving discretization”
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Von Karman beams: Finite element spaces
Denote by E a generic element in an interval mesh Z,.
Velocity (and displacement) space Vj, = CGy x Her:

CG1 = {v, € C([0, L]), vhle € P1},
Her = {v, € C}([0,L]), vale € P3}.

Stress space L, = DG4 x DGy
DGk = {vh|e € Pk, VE € I}
The reason for DG4 comes from the axial resultant dynamics
Co0eN = Oy vy + 0xqz0x Vs
gz, Vz € Her = 0xq,0xv; € CGy,
vy € CG1 = Oxvyx € DGy

Since CG4 + DGy C DGy, choosing a quartic DG space avoids locking.



Weak formulation

Integration by parts of the lines of the linear momentum balance.

0tqz,h = Vz.h,
(x; PAOLVy,n) = —(0xtUx, Np),
(2, pAOtvzh) = —(0xz Oxqz.hy Np) — (Oxxtz, Mh),
(Un, Ca0eNp) = (Y, Oxql DVl + Oxvicp),
(Y, CodeMn) = (¥m, O V).

Integration by parts of the lines of the linear momentum balance.

q; = Vg,
M,a Vi 0 0 -D,, 0
Diag | MeA dv|_|0 0 -L'(a:) -Dg,
Mc,| dt | n Dy, L(qz) 0 0

M, m 0 Dg. 0 0



Nonlinear elasticity: Finite element spaces

Denote with T a generic cell of the computational mesh 7.
Velocity (and displacement) space V, = CG; ® R¥:

CG1 @R = {v, € CO(Q), v4|1 € P @ R},
Stress space £, = DGo ® ngfnf. The second Piola stress dynamics is

Co:S = sym(F'Vv).

Hence S x VvVgq.
Since Vv € DGy, Vg € DGy, it holds S € DGy.



Weak formulation

atqh - Vh?
(¥, pO:eVn)a = —(Fj Vb, Sh)a,
(¥, CO:Sh)a = +(¥, F Vi),

Algebraic system
q=yv,
M, 0|d(vy [0 =-LT(q)] (v
0 Mc|dt\s) |L(q) 0 s/’
The algebraic system can be written more compactly in the following form

q=v,
Hx = J(q)x.



Summary

Discretization

Time integration



Recall on symplectic integrators

Consider the ODE
q=yv,
Mv = f(q).

Stérmer Verlet preserves symmetry by staggering

qn+% - qn_%
=v
At ny
Vptl — Vn
M At - f( n+%)

This leads to angular momentum preservation.
Consider the generic ODE x = g(x). Implicit midpoint update:

Xp+1 — Xp _ <Xn+1 + Xn)
N

If system is linear and Hamiltonian then energy is preserved.



Best of both worlds

Idea Combine Stérmer—Verlet (leapfrog) and implicit midpoint.

qn+;A_tqné = Vn>
Xn+1 — Xp o Xn+1 + Xn
H= =)™

Features:

> Energy preservation, since H = %XTHX and the implicit midpont preserves
quadratic invariants;

» Angular momentum preservation. Since the integration of displacement and
velocity is performed on a staggered grid;

> Static condensation of the stress, since it is discretized by a discontinuous
space;

» Linearly implicit scheme



Connection with the Scalar Auxiliary Variable (SAV) approach

» Introduced for gradient flows®, extended to Hamiltonian dynamics’;

» Efficient and energy-stable scheme for systems with diagonal M.
Separable Hamiltonian system (velocity formulation):

q=v, Mv=-V,V, V>0
Introduce scalar variable &:
V=36 VeV =¢Vet, €= (Ved)'v
Time integration of Bilbao, Ducceschi, and Zama equivalent to the proposed one:

q=v,

Hx = J(q)x, x=[v"¢", H = Ix"Hx

®Shen, Xu, and Yang, “The scalar auxiliary variable (SAV) approach for gradient flows”
"Bilbao, Ducceschi, and Zama, “Explicit exactly energy-conserving methods for Hamiltonian
systems”



Comparison with the energy-momentum preserving scheme of Simo®

The idea applies to generic constitutive laws.
Mechanical system:

q=yv,
My = —L"(q)o(a)

Strain energy (geometric nonlinearity only):
Viaer = 3€' We, e = G(q),

Stress is obtained by derivation o = WG(q).
Modified midpoint: use average stress

G(an+1) + G(an)
2

Ony1/2 = W

8Simo and Tarnow, “The discrete energy-momentum method. Conserving algorithms for
nonlinear elastodynamics”
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Duffing oscillator: convergence rates
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Figure: Convergence rate for the Duffing oscillator




Duffing Oscillator: energy preservation and efficiency

Error energy
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Figure: Energy error for Duffing
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beam: vibration staring from first bending mode
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Figure: Comparison between linear and nonlinear case at x = L/4 for the von-K



Von Karman beam: Convergence rates
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Figure: Convergence of gy, gz, Vi, v, over [0, T1 bend/10]



Von Karman beam: Convergence rates
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Figure: Convergence of gy, gz, Vx, v, over [0, T1 bend/10]



Von Karman beam: energy preservation and computational time

Mean of energy difference
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Nonlinear elasticity: screenshots
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Nonlinear elasticity: screenshots
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Nonlinear elasticity: convergence rates
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Convergence rate for g, v in geometrically nonlinear elasticity



Nonlinear elasticity: energy preservation and computational time
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Conclusions and outlook

Method Accuracy Stability Efficiency
Discrete Gradient X
Linear Implicit

Leapfrog X

Comparison of time integration methods for geometrically nonlinear mechanics

» General framework: recast geometrically nonlinear problems into a non-canonical
Hamiltonian formulation

» Extendable to rods, shells, solids
» Mixed FEM with discontinuous stress = static condensation

» Time integration: Stérmer—Verlet + implicit midpoint = exact
energy-momentum conservation without nonlinear solves

» Outlook: improved linear algebra solvers, FEM—-FDM coupling for efficiency
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Different representations leads to qualitative different systems

Geometrically exact beams®, all variables are represented in the body attached frame
(convective representation):

pA "4 i

0 0 9 0]/V
CpJ w|l |o o o af|w
Diag | 1Ol v [=F 1o, 0 0 ol | W
C, M 0 9. 0 0] \M

n My]x [Mw]x [+elx [Klx| | W

[Klx [T+ eilx 0 o ||n

0 [K]x 0 o | \m

No dependence on the displacement in J but rather on the dual state

Hoex = T (x)x.

®Hodges, “Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted
Anisotropic Beams”
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