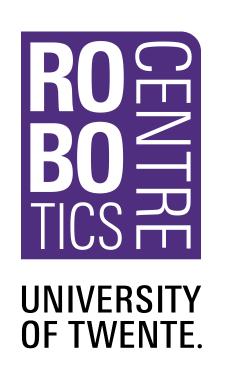
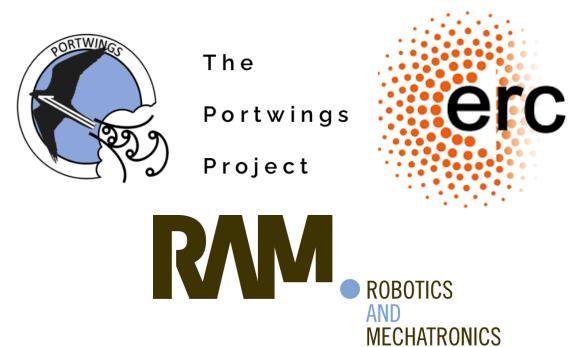
The magic of Exterior Calculus bridging Fundamental Physics to real Computations

Stefano Stramigioli IEEE Fellow

Member of the Royal Holland Society of Science and Humanities (KHMW)





UNIVERSITY OF TWENTE.

Robotics And Mechatronics Lab, The Netherlands

Motivation

- In Physics Symmetries (conserved quantities) are at the very fundament of the description of nature and Gauge Fields are at the core of the description of interaction
- Energy Is the Mathematical Embodiment of the invariance of physical laws (more later)
- Energy is at the core of the description of any Interaction
- Mathematics is the most powerful tool Engineers have

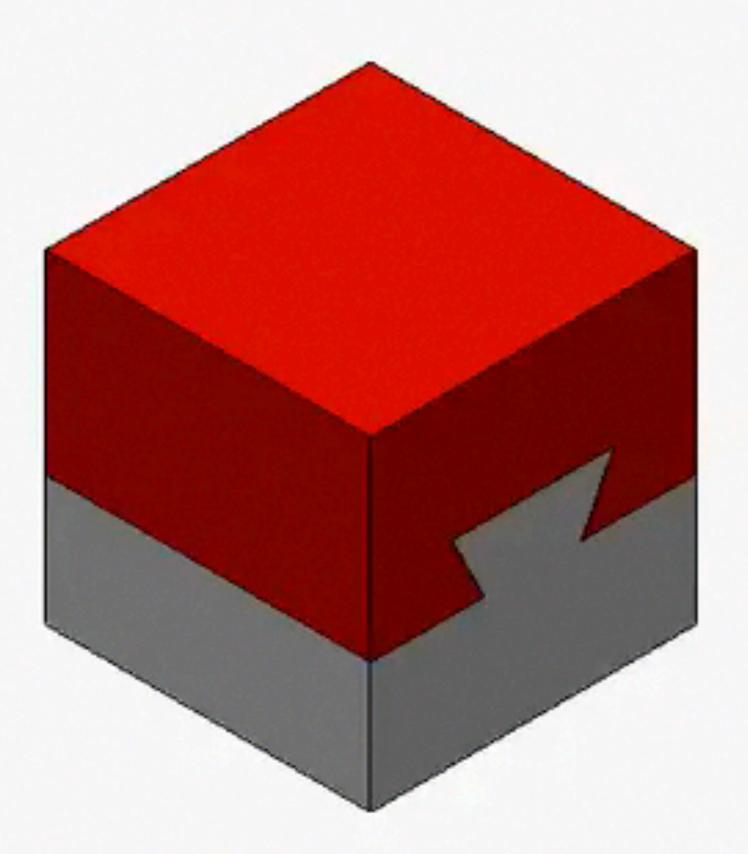
and yet,

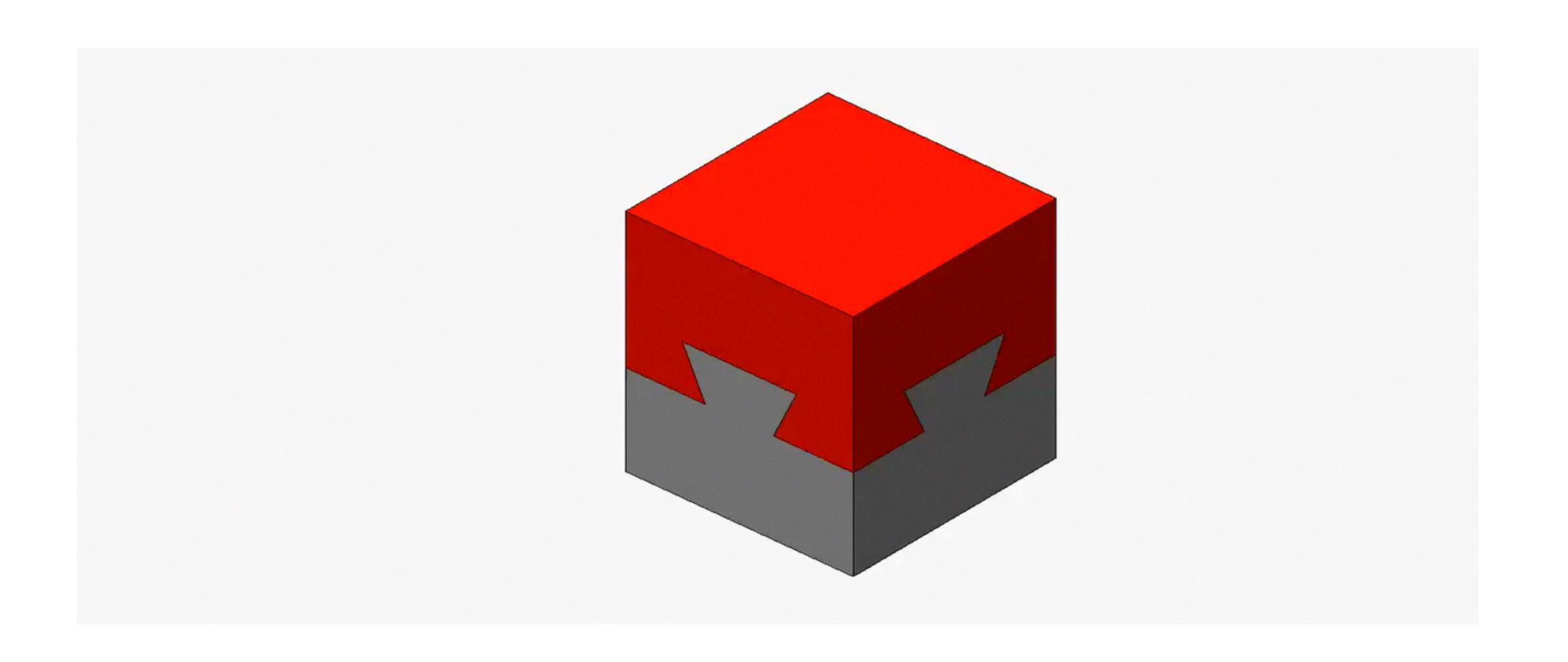
most of the time energy is ignored in the modelling and/or control of physical systems and physics and mathematics is not taken seriously.

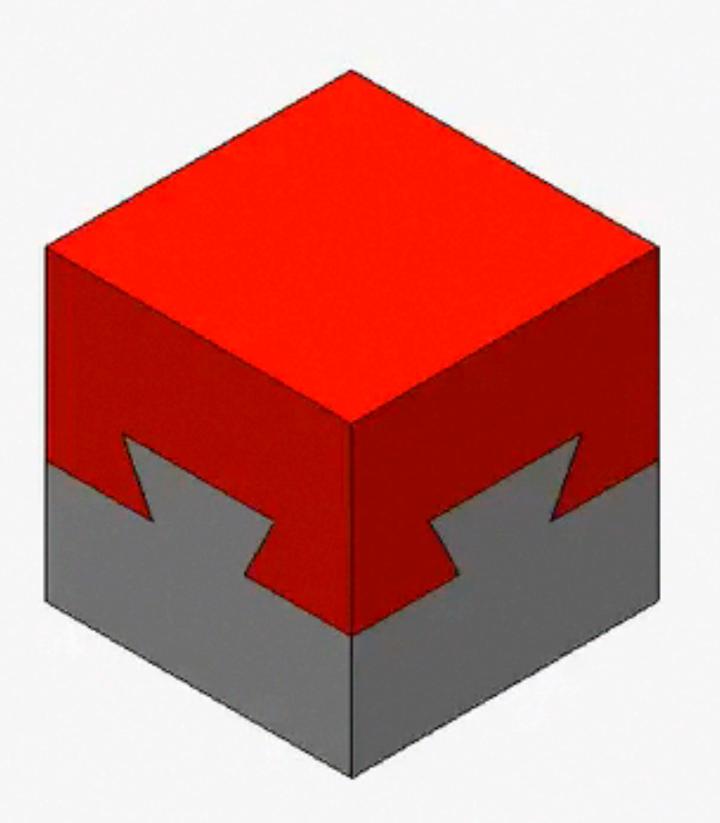
Goal: Give you an idea of why you may want to look into port-based concepts

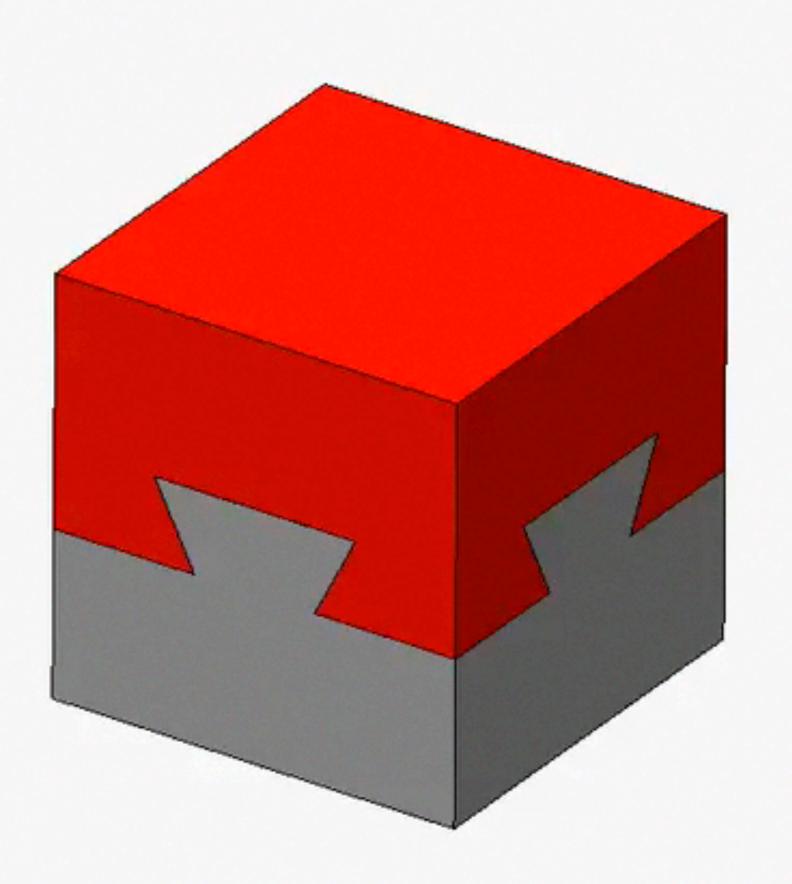
A `Tutorial like' way talk

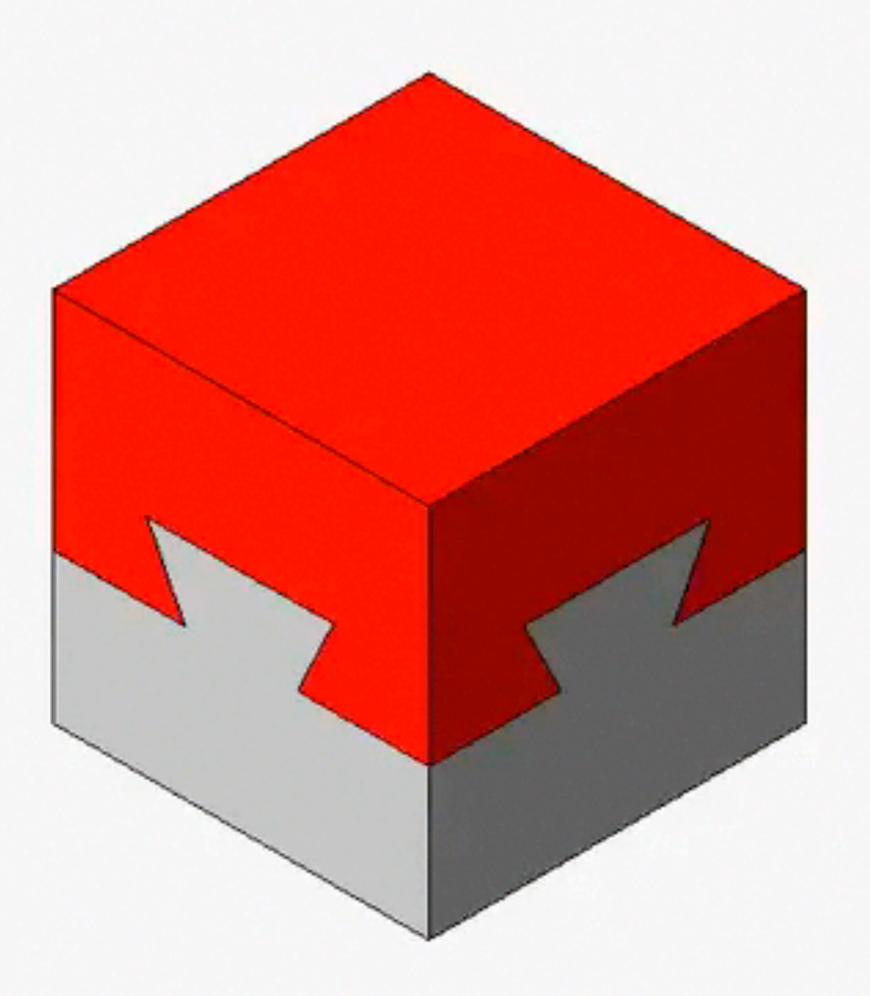
A game about paradigm shifts





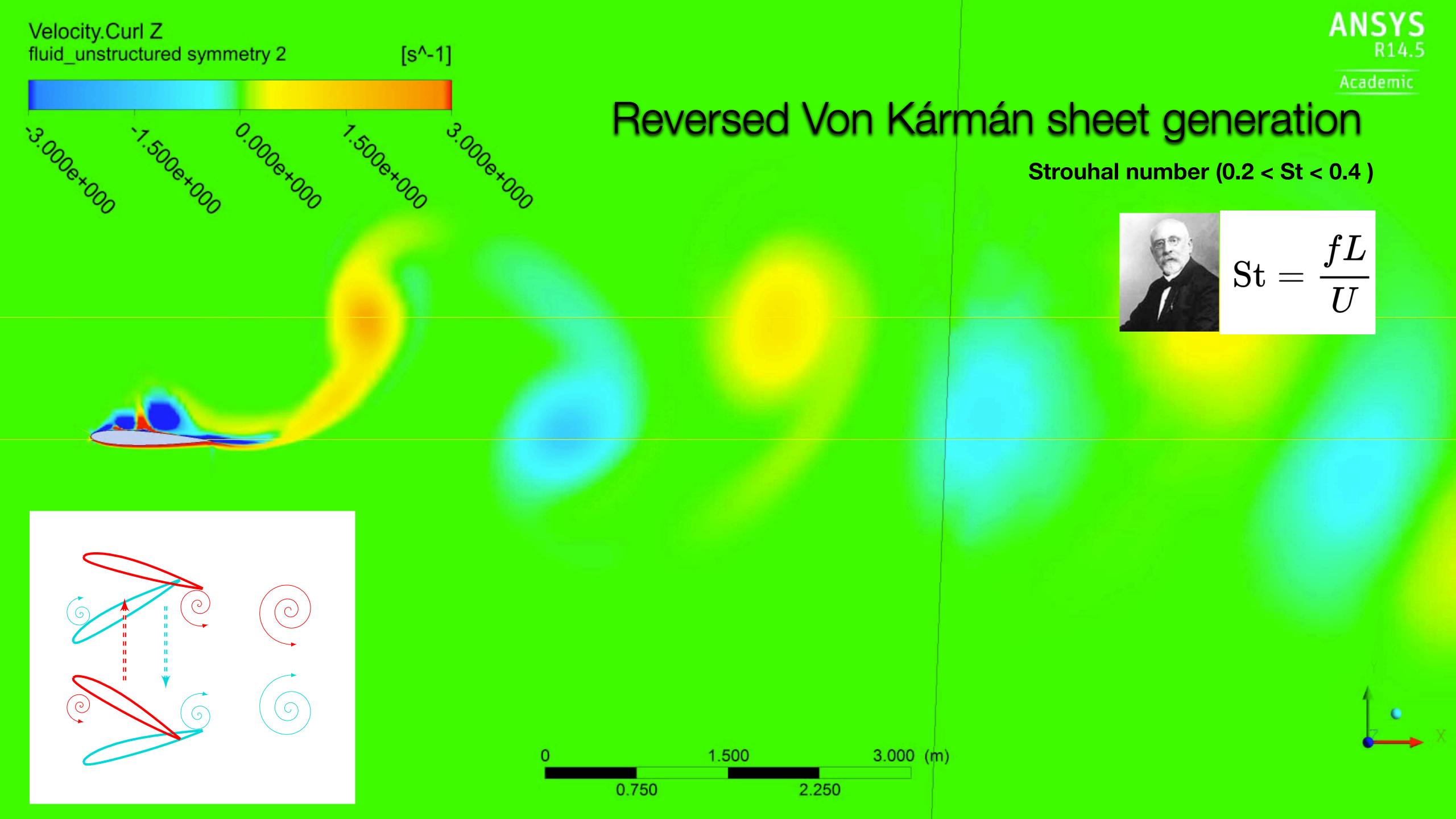






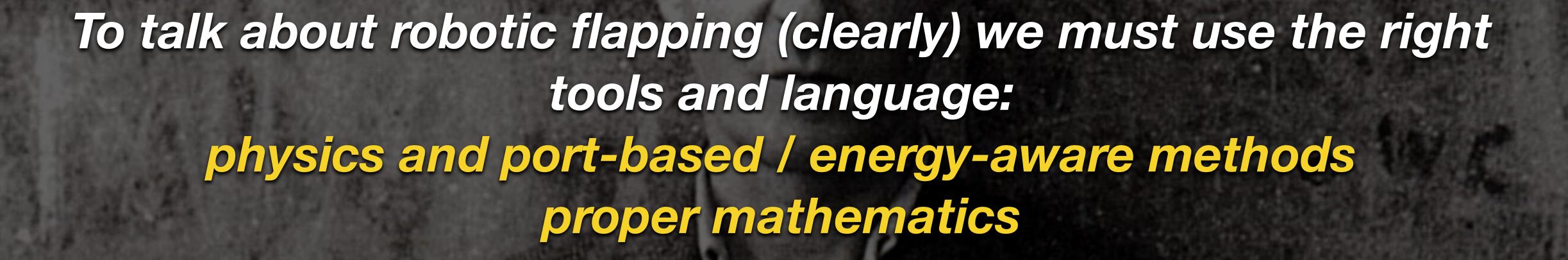
Break your patterns: think out of the box (or aquarium :-))





Why and how does it "really" work?

Only understanding that we can systematically improve it



What we cannot speak about (clearly) we must pass over in silence."
(Ludwig Wittgenstein 1889-1951)

Technē

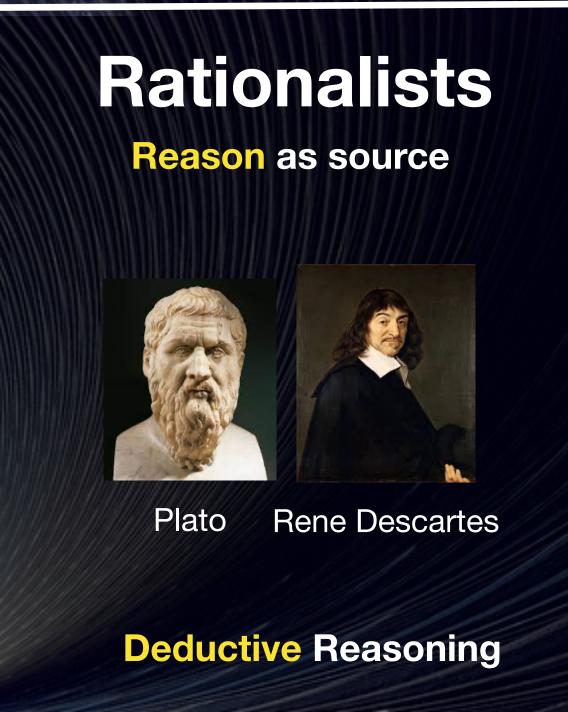
(Useful/Engineering)

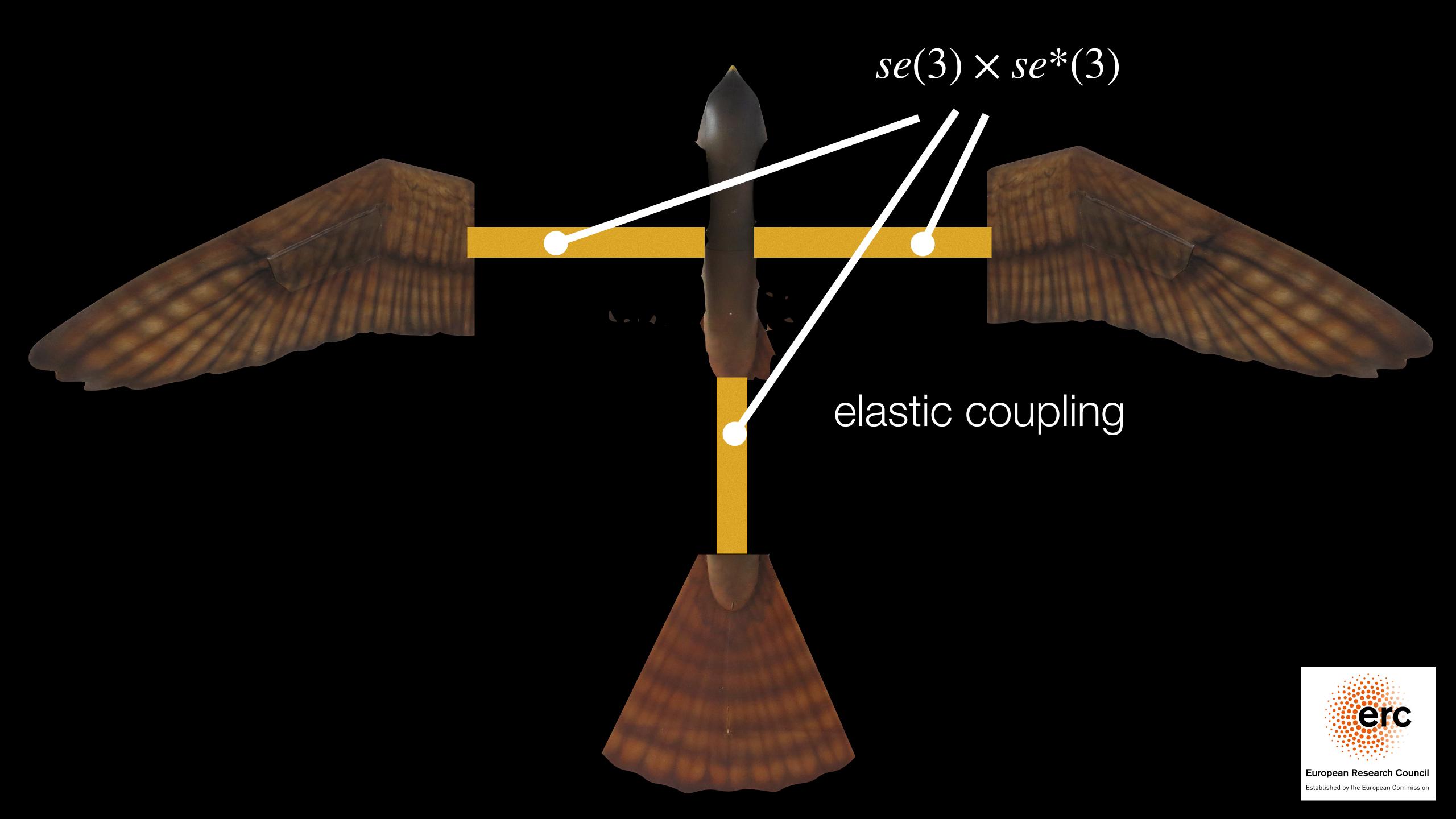
Sense-Experience as source Aristotele John Locke Inductive Reasoning

Empiricists

Epistēmē

(Theoretical/Science)





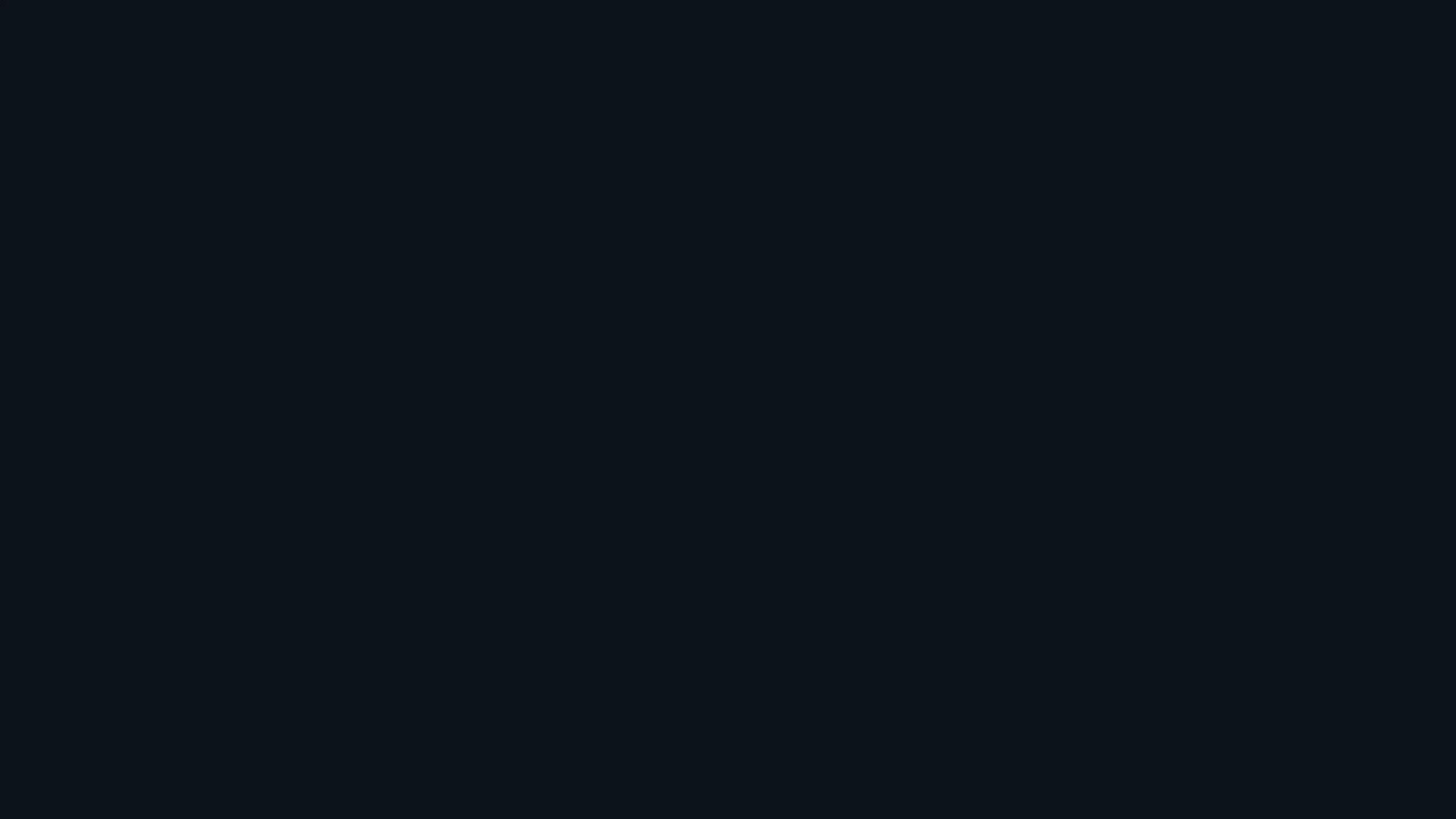
$$\rho\left(\frac{\partial v}{\partial t} + v \bullet \nabla v\right) = -\nabla p + \mu \Delta v + \delta F$$

 $\Omega^{n-1}(\partial M) \otimes \Omega^{1}(M)$ $\Omega^{0}(\partial M) \otimes \Gamma(TM)$

Tensor valued differential forms

Variable Boundary W

 $se(3) \times se*(3)$



Structures Drive Progress in Mathematics and Science

```
\mathbb{R} as a set (\mathbb{R}, +) as a group (\mathbb{R}, +, \bullet) as a field \mathbb{R}^n as a set (\mathbb{R}^n, \boxplus, \boxtimes, (\mathbb{R}, +, \bullet)) as a vector space (\mathbb{R}^n, \boxplus, \boxtimes, (\mathbb{R}, +, \bullet), \operatorname{Id}) as a Hilbert space
```

Be Aware of Coordinates

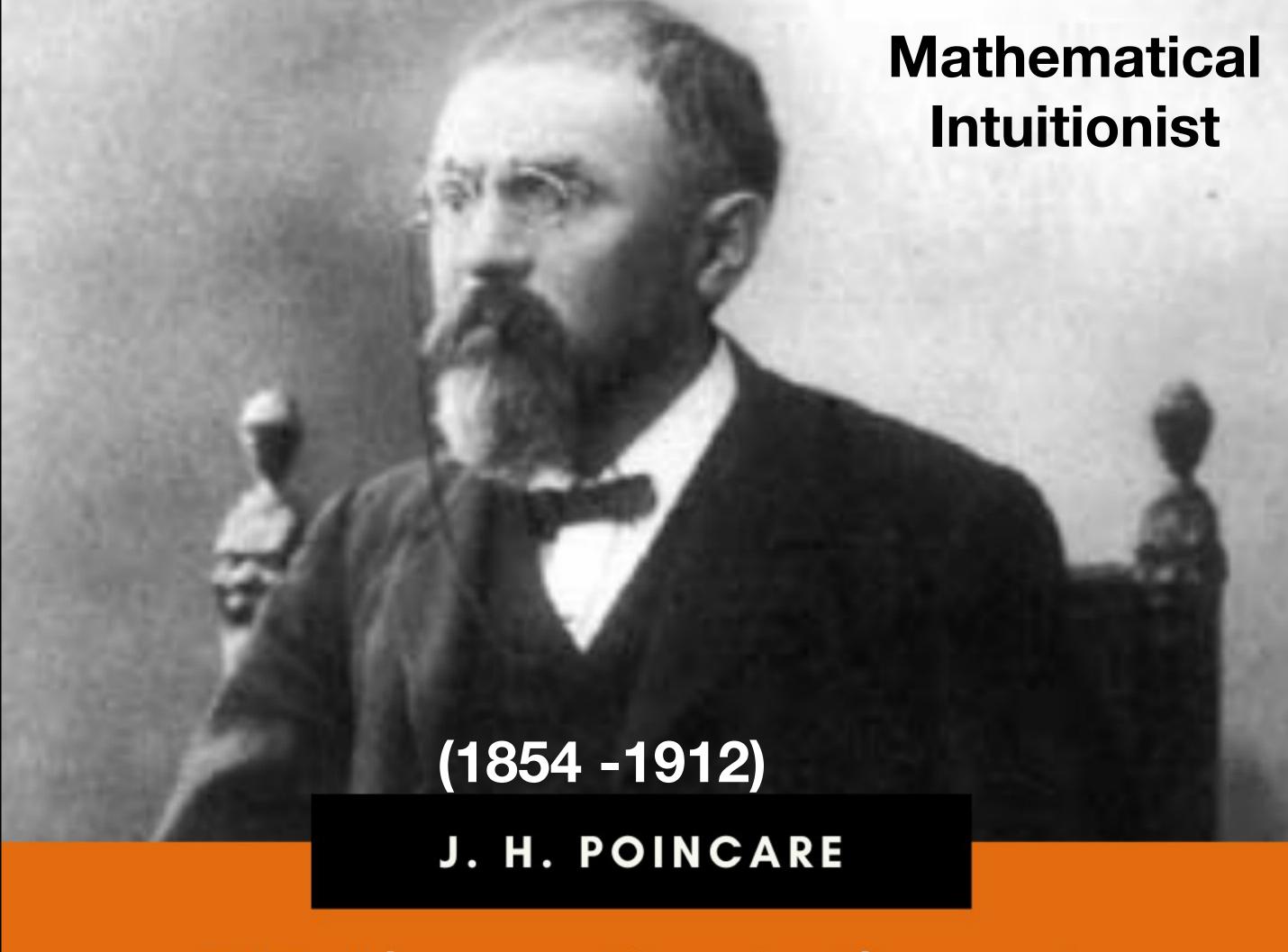
Indiscriminate use $\mathbb{R}^n \sim \text{Danger of not understanding needed structures}$ Understanding Concepts \Leftrightarrow Understanding Needed Mathematical Structures

"A gentleman or a lady only chooses a basis if he/she must."

Mathematics is likely the most beautiful creation of the human mind and the most powerful tool for engineers

Abstraction:

get rid of what does NOT matter



"Mathematics is the art of giving the same name to different things."

About Port Based Thinking and University curricula

NOW

(Bad) Linear Algebra

(Little) Mechanics

(Little) Electromagnetism

(Little) Fluid Dynamics

A MUCH MORE EFFICIENT AND EFFECTIVE WAY

Proper Linear Algebra

Basic Concepts of Differential Geometry & Exterior Calculus

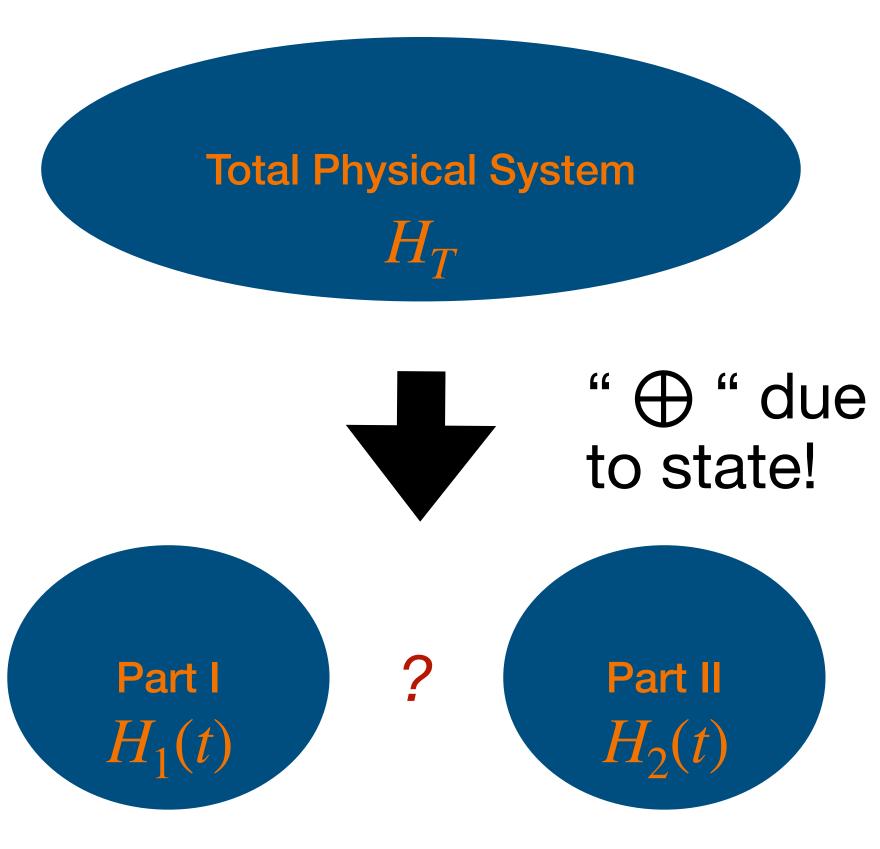
Port Based Modeling

Mechanics Electromagnetism Fluid Dynamics

Decomposition in Physics and Power Ports

Decomposition

Energy is the glue of physics: Energy Decomposition



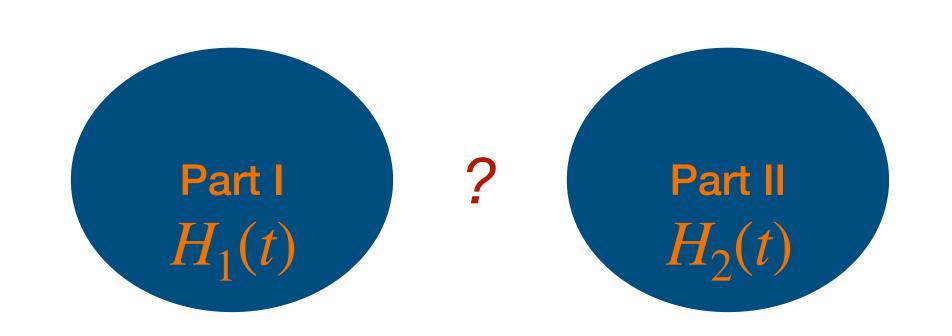
How to describe interconnection to ensure the requirement?

The (classical) Physical System under consideration will have an Energy $H(t) \in \mathbb{R}$ content at each instant of time, independent of its Physical nature! If the system is not interacting with anything else we have that $H(t) = H_T$ is constant.

Splitting the Physical System in two, each of the parts will have an Energy $H_1(t), H_2(t) \in \mathbb{R}$ and we want that for the first principle of thermodynamics, at all times $H_1(t) + H_2(t) = H_T$

Decomposition

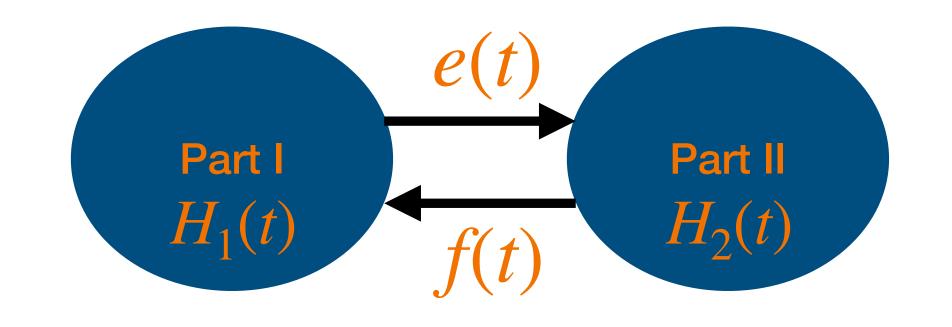
Energy is the glue of physics: Energy Decomposition



Splitting the Physical System in two, each of the parts will have an Energy

 $H_1(t), H_2(t) \in \mathbb{R}$ and we want that for the first principle of thermodynamics, at all time $H_1(t) + H_2(t) = H_T$

$$H_1(t) + H_2(t) = H_T \Rightarrow \dot{H}_1(t) = -\dot{H}_2(t)$$
Power Transfer!

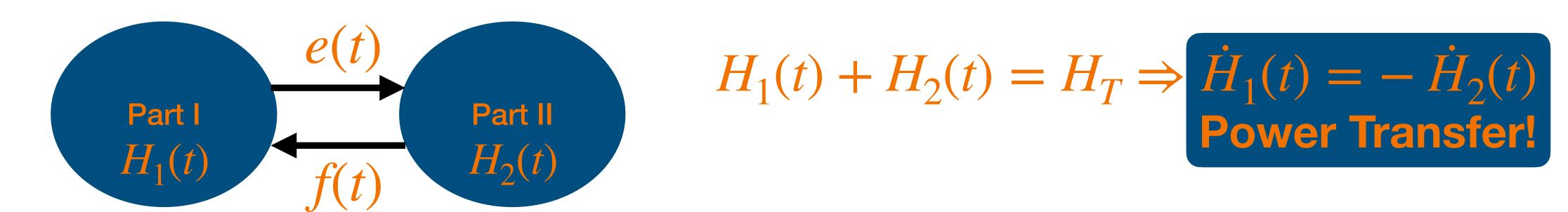


For Physical Reasons, the two parts will influence each other (bilaterally). Let's name f(t) the influence of II on I and e(t) the influence of I on II.

What is "the nature" of e(t) and f(t)? (Newton's third law: action-reaction)

Decomposition

Energy is the glue of physics: Energy Decomposition



f(t), e(t) should characterise the interaction at each instant of time t and should also take care that they represent a **scalar** power transfer as desired and some extra structure to satisfy **Kirchhoff's laws**.

Solution

f(t), e(t) should have the nature of a vector and a co-vector and the natural application of one on the other e(f) will result in a scalar which will have the value of the power transfer at that time!

$$f(t) \in \mathcal{V}, e(t) \in \mathcal{V}^* \Rightarrow e(f)(t) \in \mathbb{R}$$

Solution

f(t), e(t) should have the nature of a vector and a co-vector and the application of one on the other e(f) will result in a scalar which will have the value of the power transfer at that time!

$$f(t) \in \mathcal{V}, e(t) \in \mathcal{V}^* \Rightarrow e(f)(t) \in \mathbb{R}$$

Finite Dimension

electrical circuits $\mathcal{V} \sim \mathbb{R}$ multibody dynamics $\mathcal{V} \sim se(3)$

Infinite Dimension

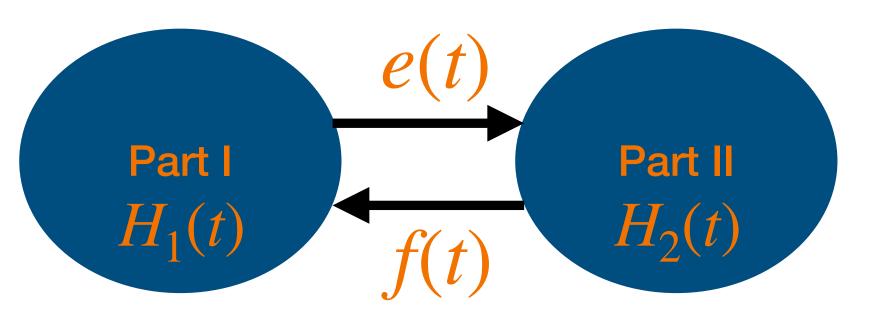
 $\mathcal{V} \sim \Omega^k(M)$ $\mathcal{V} \sim \Omega^k(M; T_p^q M)$

No strain

General Case of

Continuous

mechanics



Solution

f(t), e(t) should have the nature of a vector and a co-vector and the application of one on the other e(f) will result in a scalar which will have the value of the power transfer at that time!

$$f(t) \in \mathcal{V}, e(t) \in \mathcal{V}^* \Rightarrow e(f)(t) \in \mathbb{R}$$

Finite Dimension

electrical circuits $\mathcal{V} \sim \mathbb{R}$ multibody dynamics $\mathcal{V} \sim se(3)$

Infinite Dimension

$$\mathcal{V} \sim \Omega^k(M) \qquad \text{No strain}$$

$$\mathcal{V} \sim \Omega^k(M; T_p^q M) \qquad \text{General Case of Continuous mechanics}$$

Part I
$$H_1(t)$$

$$f(t)$$

$$P_{1\rightarrow 2}(t) = e_t(f_t)$$

$$e_t := e(t), f_t := f(t)$$

And this is properly defined for ANY possible imaginable vector space!!

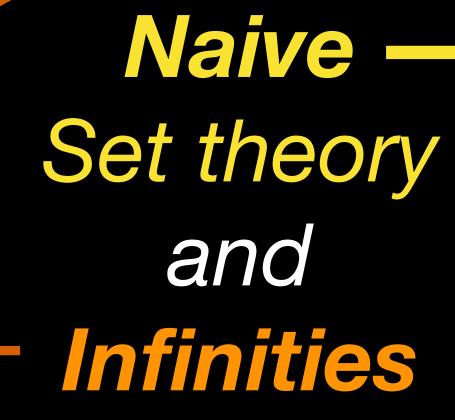
ANY field in Physics can be described therefore this way!!

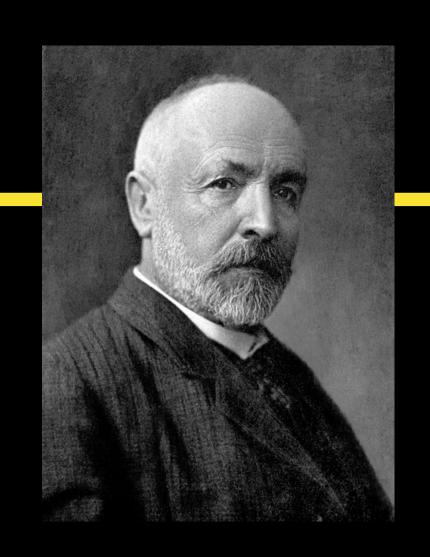
On Board The geometry of inputs and outputs

On Board

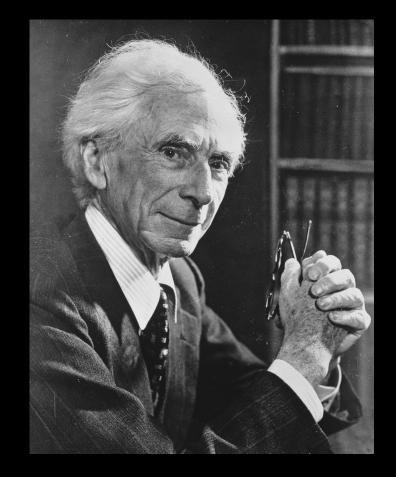
- What is an input?
- What equations make sense for an input of a n.l. system?
- The need for extra structure

The Mathematics Crisis in 1900





→ Paradox



Bertrand Russel

(1845-1918)

Georg Cantor

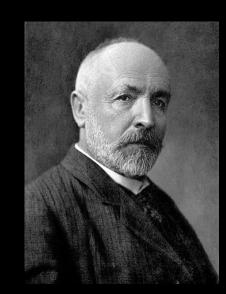
(1872 - 1970)

Vector Spaces NO-Extra Structure Duality -> Topology

Vector Spaces Additional Structure Inner Product -> Geometry

Henri Poincaré (1854-1912)

Intuitionist



Georg Cantor (1845-1918)

1900

Mathematics Crisis

David Hilbert (1862-1943)

Formalist

"Duality" in Mathematics

Duality (for finite dimensional case)

$$e_1, \dots, e_n \in \mathcal{T}$$
 Basis

$$(\mathscr{T}^*, \boxplus, \boxtimes)$$
 Dual vector Space

$$e^1, \dots, e^n \in \mathcal{V}^*$$
 Dual Basis

$$\langle e^i | e_j \rangle := e^i(e_j) = \delta^i_j$$

INVARIANT!!!

$$\langle \mathbf{F} | \mathbf{V} \rangle := \mathbf{F}(\mathbf{V}) = F_i v^i$$
Bra Ket

Forces Transform Differently than velocities! In General $A \neq (A^{-1})^T$!

No Inner Product No Hilbert Structure

Vectors are different than Dual Vectors: they transform differently!

"Pairing" in Mathematics

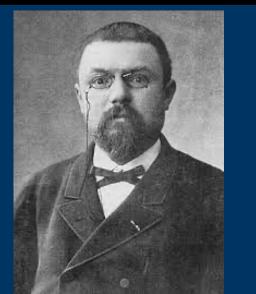
Pairing and Duality

$$p: \mathcal{A} \times \mathcal{B} \to \mathbb{R}$$

Vector Spaces

 \Rightarrow

Dual Vector Spaces



DUALITY NO Extra Structure

$$<|>: \mathcal{V} \times \mathcal{V}^* \rightarrow \mathbb{R}; (f, e) \mapsto e(f)$$

Vector Spaces

Vector Spaces

Extra Structure !!

$$<,>: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}; (v_1,v_2) \mapsto M(v_1,v_2)$$

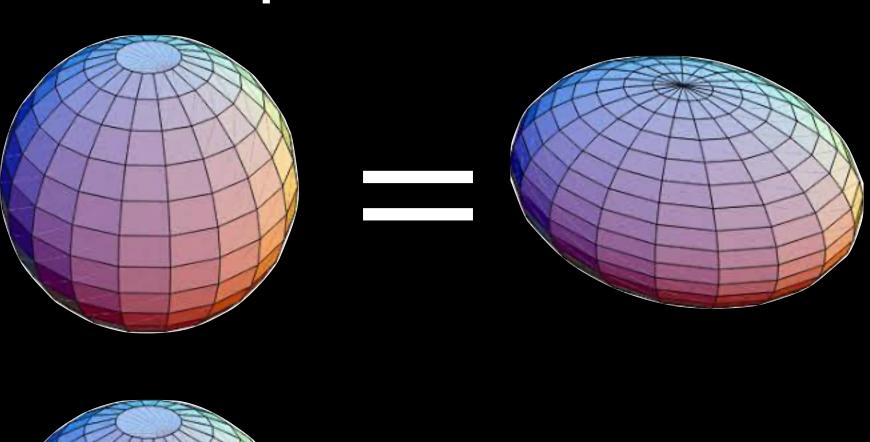
Hilbert Structure

About Topology and Geometry

Topology Versus Geometry

Topology

Neighbourhoods of points No concept of Distance/Metric



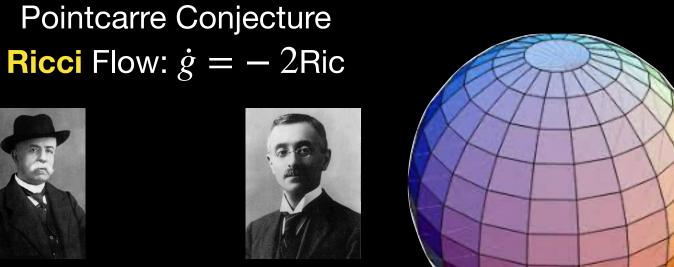
Gregorio

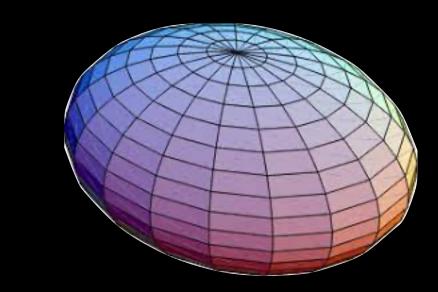
Ricci-Curbastro

Shiing Shen Chern

Carl Friedrich Ossian Gauss Bonnet

Concept of Distance/Metric present





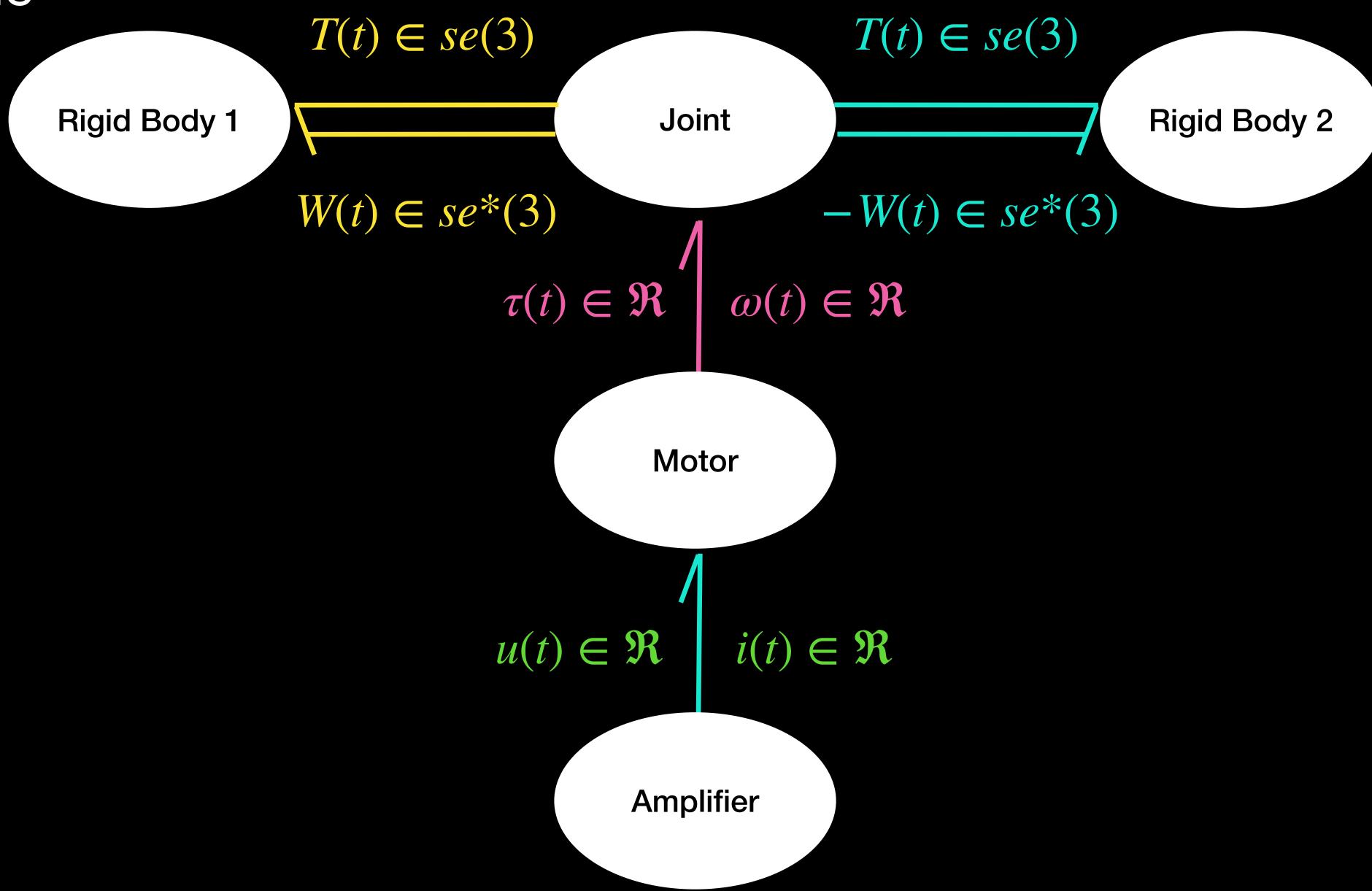
Tensor Calculus

Pierre

The Geometry & Topology of Power-Ports

Generalising "voltages and currents"

Example



Finite Dimensional Case ODEs and DAEs

Flows and Efforts are maps from time to a vector space and its dual respectively

$$f: T \to V$$
 $e: T \to V^*$

The power is then WITHOUT any additional structure e(f)

In multi-bodies V, V^* would be Lie-algebras representing Twist and Wrenches for example. This is GENERAL and possible for ANY PHYSICAL finite dimensional system

What about infinite dimensional Systems (fields) in a covariant way which makes EXPLICIT

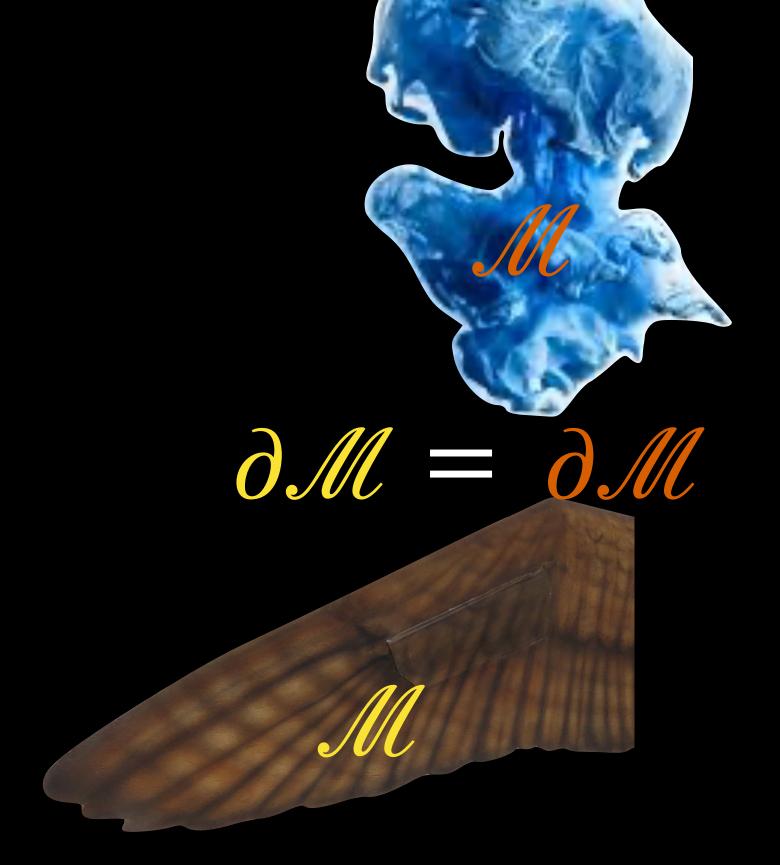
what is geometry and topology?

Infinite Dimensional Case PDE and Fields

We have a domain on which fields are defined, a manifold *M*, and its boundary *M*: we want to allow energy through the boundary: we have power-port densities.

We need a "language" able to express all concepts:

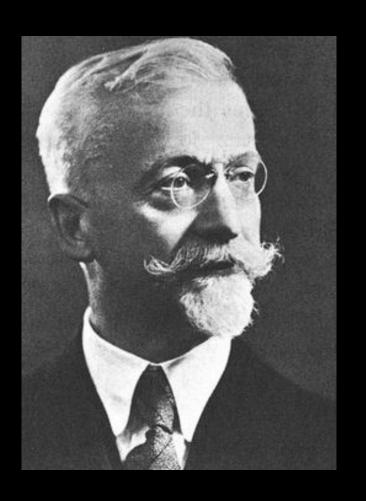
- in all dimensions
- coordinate-free
- applicable to all physical domains
- possibly in curved spaces
- making explicit what is topology and geometry



Exterior Calculus & (T.V./L.A.V.) Differential Forms

Integration is a topological operation:
it is NOT dependent on a metrical structure!
Riemann integration is a
"bad"/"old"
way to talk about integration!

Hermann Grassmann (1809-1877)



Élie Cartan (1869-1951)

Differential Forms

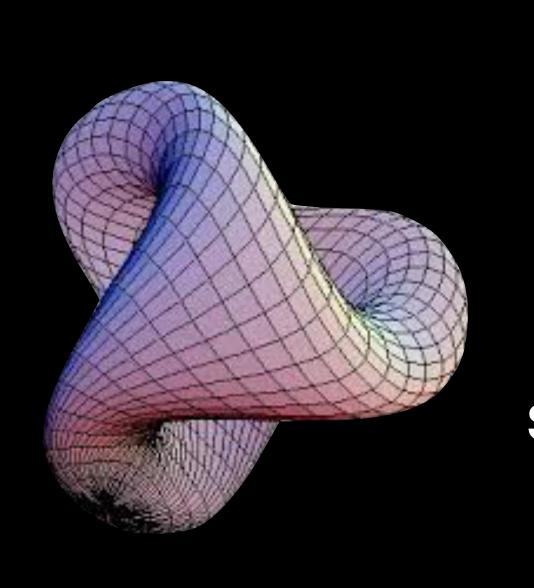
Generalising "evaluate a function in a point" to any dimension

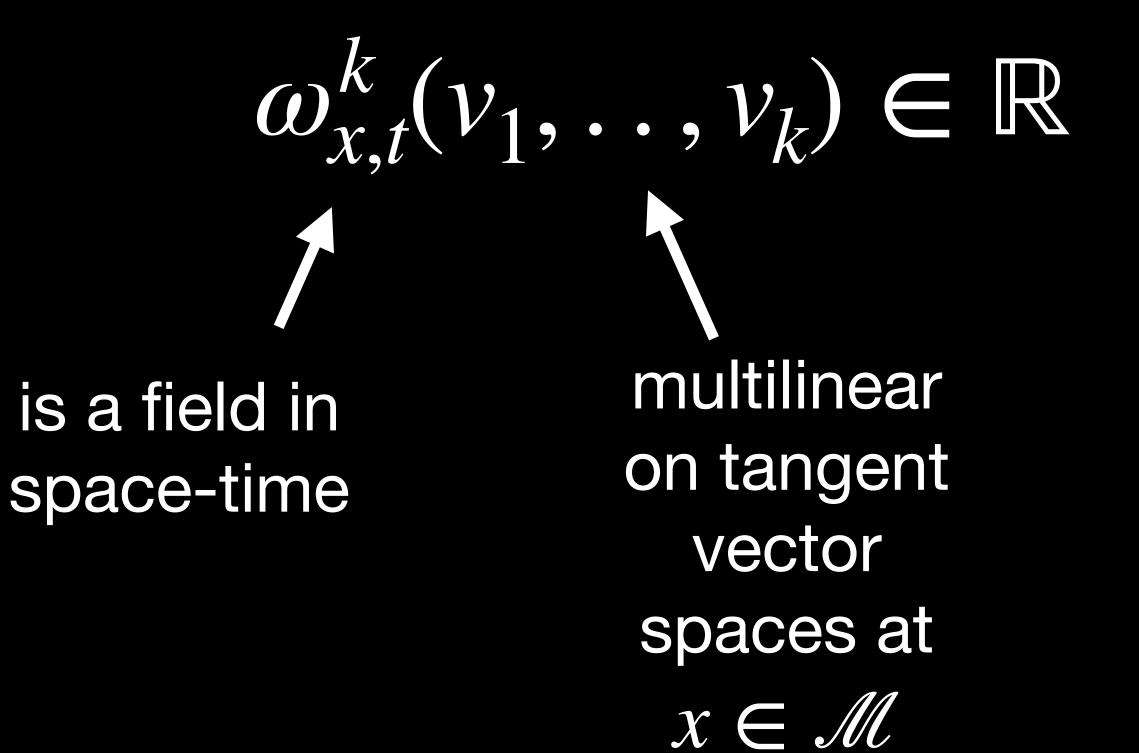
The coordinate invariant way to talk about integration

Differential Forms

Intuitive, minimalistic ideas

A k-form $\omega^k \in \Omega^k(\mathcal{M})$ is a completely antisymmetric k-linear field $(k \in \mathbb{N})$





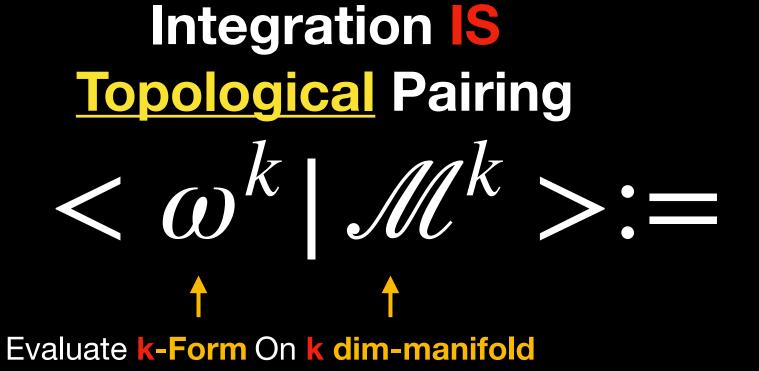
scalar valued

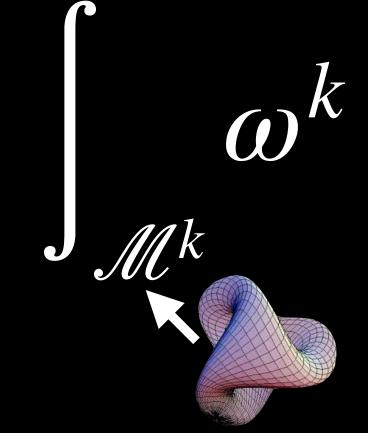
(For deformations and shear stress Tensor Valued forms are needed!!)

Forms: Measure of k-volumes

Due to the full antisymmetry:

k-forms "measure k-volumes" of k-dimensional spaces INTRINSICALLY





Georges de Rham (1903-1990)

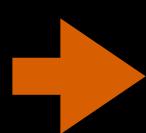
Evaluate function 0-form point 1-form

2-form

3-form

On

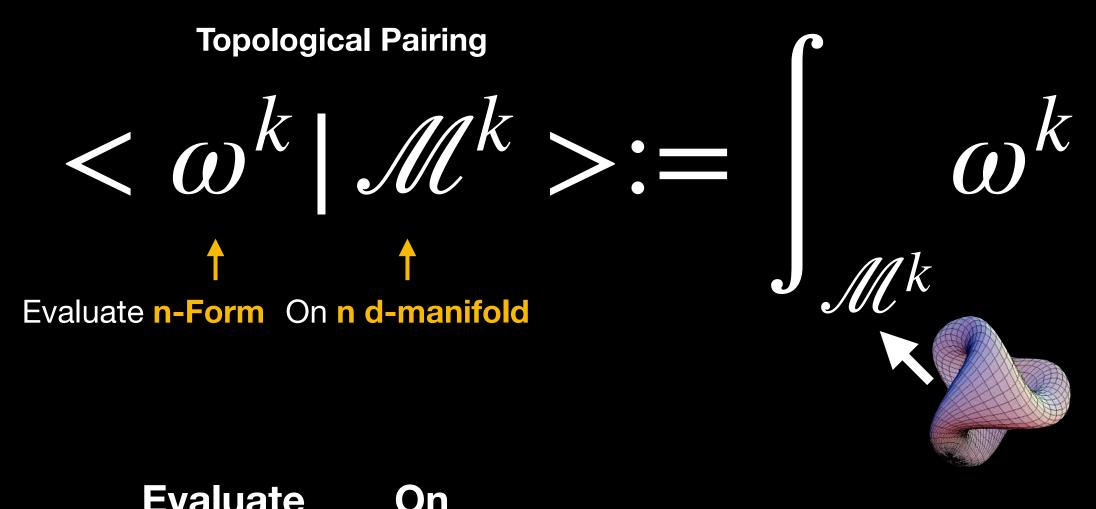
Od-manifold line 1d-manifold surface 2d-manifold **3d-manifold** volume



Generalisation of evaluation of a function on a point to ANY dimension

Forms Versus Pseudo-Forms

For dimensions higher than 0, orientation matter!



0-form	function	point	0d-manifold
1-form		line	1d-manifold
2-form		surface	2d-manifold
3-form		volume	3d-manifold

For manifold of dimensions > 0, we can define orientation (+1,-1)

$$<\omega^k|-\mathcal{M}^k>=\blacksquare<\omega^k|\mathcal{M}^k>\Rightarrow\omega^k$$
 (True) Form= Straight =Inner Oriented $<\omega^k|-\mathcal{M}^k>=<\omega^k|\mathcal{M}^k>\Rightarrow\omega^k$ Pseudo Form= Twisted = Outer Oriented

Exterior Algebras Operators on Forms

• There is an operator \wedge called the wedge-product which returns a (k+l)-form when applied to a k-form and a l-form:

$$\omega^k \wedge \omega^l \mapsto \omega^{k+l}$$

• There is a differential "topological" operator d (graded diff.) which maps a k form to a k+1 form

$$d(\omega^k) \mapsto \omega^{k+1}$$

 $\int_{\mathcal{M}^n} d\omega = \int_{\partial \mathcal{M}^{n-1}} \operatorname{tr} \omega \qquad \text{Stokes}$ Theorem

There is a "metric" operator ★ which maps a k true-form to a (n-k) pseudo-form.

$$\begin{array}{c} \star & (\omega^k) \mapsto \bar{\omega}^{n-k} \\ \text{true-form} \mapsto \text{pseudo-form} \\ \text{pseudo-form} \mapsto \text{true-form} \end{array}$$

$$<\omega_1^k,\omega_2^k>:=\int_{\mathcal{M}^n}\omega_1^k\wedge(\star\omega_2)^{n-k}$$
 Hilbert Inner Product positive definite!

Forms: Pairings

Metric/Energy Structure Needed

$$<\omega_1^k,\omega_2^k>:=\int_{\mathcal{M}^n}\omega_1^k\wedge(\star\omega_2)^{n-k}$$
 Hilbert Inner Product

No Metric/Energy Structure Needed

$$<\omega_1^k | \bar{\omega}_2^{n-k}> := \int_{\mathcal{M}^n} \omega_1^k \wedge \bar{\omega}_2^{n-k}$$
 Poincaré Dual Product

Integration by Parts

One unique expression

$$\int_{\mathcal{M}^n} d\omega = \int_{\partial \mathcal{M}^{n-1}} \operatorname{tr} \omega$$

Stokes Theorem

Leibniz Rule for
$$d$$

$$d(\omega^k \wedge \omega^l) = d\omega^k \wedge \omega^l + (-1)^k \omega^k \wedge \omega^l$$

$$\int_{\mathcal{M}^n} d(\omega^k \wedge \omega^l) = \int_{\partial \mathcal{M}^{n-1}} \operatorname{tr} \omega^k \wedge \operatorname{tr} \omega^l = \int_{\mathcal{M}^n} d\omega^k \wedge \omega^l + (-1)^k \int_{\mathcal{M}^n} \omega^k \wedge d\omega^l$$

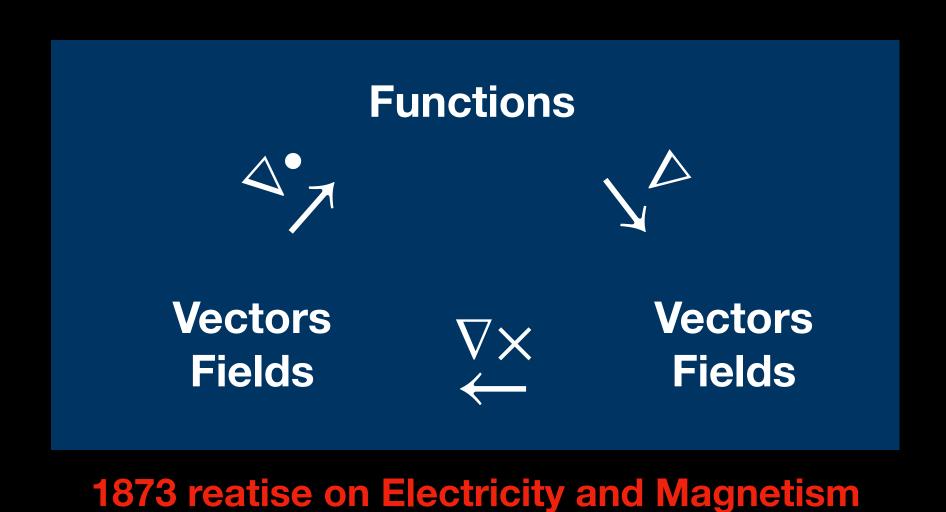
$$\int_{\mathcal{M}^n} d\omega^k \wedge \omega^l = (-1)^{k+1} \int_{\mathcal{M}^n} \omega^k \wedge d\omega^l + \int_{\partial \mathcal{M}^{n-1}} \operatorname{tr} \omega^k \wedge \operatorname{tr} \omega^l$$

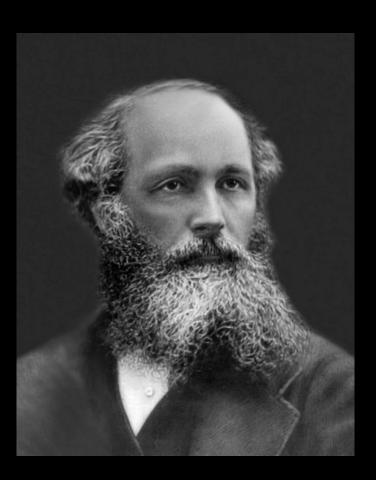
Integration by Part

The Complex

The Vector Calculus Complex





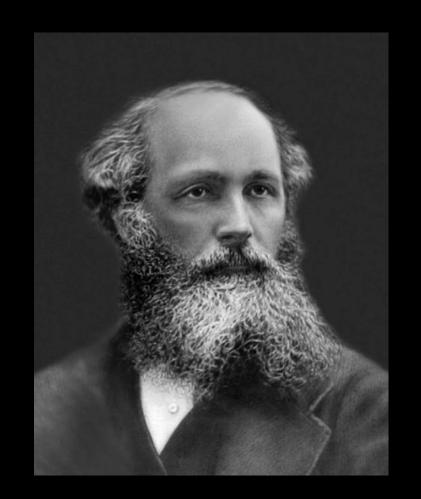


James Clerk Maxwell (1831-1879)

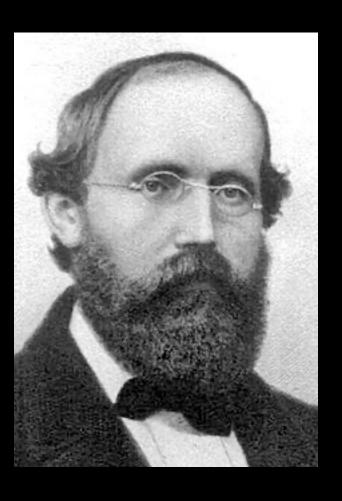
- No clear distinction between topological properties and metrical properties
- Not generalisable to dimension higher than 3
- No clear information about orientation properties of objects
- THE SAME operator d is represented with DIFFERENT operators ($\nabla, \nabla \times, \nabla \bullet$)
- DIFFERENT objects are considered THE SAME: Vector Fields or Functions

Problems

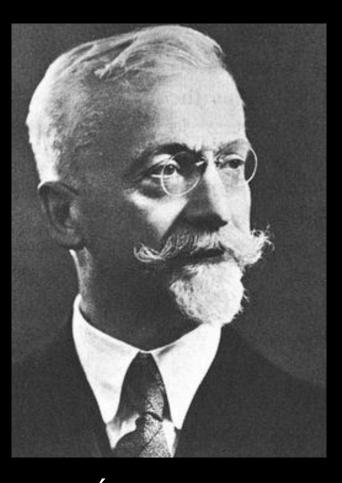
•



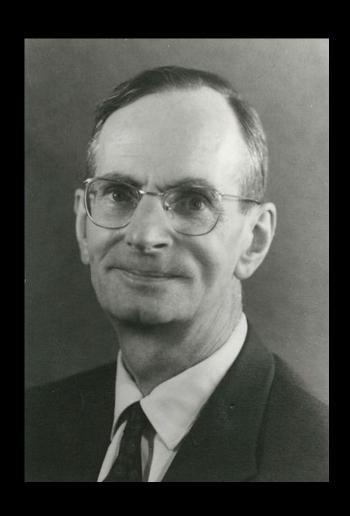
James Clerk Maxwell (1831-1879)



Bernhard Riemann (1826-1866)



Élie Cartan (1869-1951)



Georges de Raham (1903-1990)

• teach Vector Calculus rather than Grassman/Cartan Exterior Calculus

2025

• teach Riemann integration rather than de Raham Topological Pairing

1850

Time Line

Hermann Grassmann (1809-1877)

Henri Pointcarre **(1854-1912)**

Vector

Calculus

1873 Maxwell Publication

"Treatise on Electricity and Magnetism"

2025-1873=<u>152!</u>

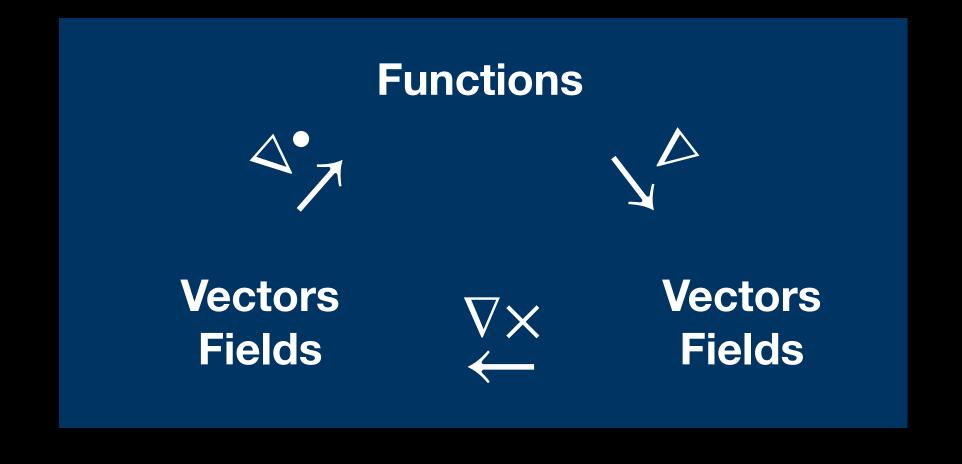
Riemann Integration 1854 Riemann Lecture Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe

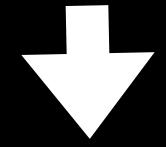
2025-1854=<u>171</u>!

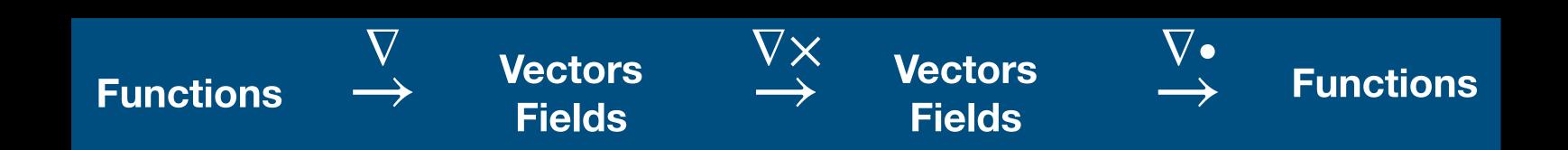
The Complex

The Vector Calculus Complex









The Complex The Vector Calculus Complex

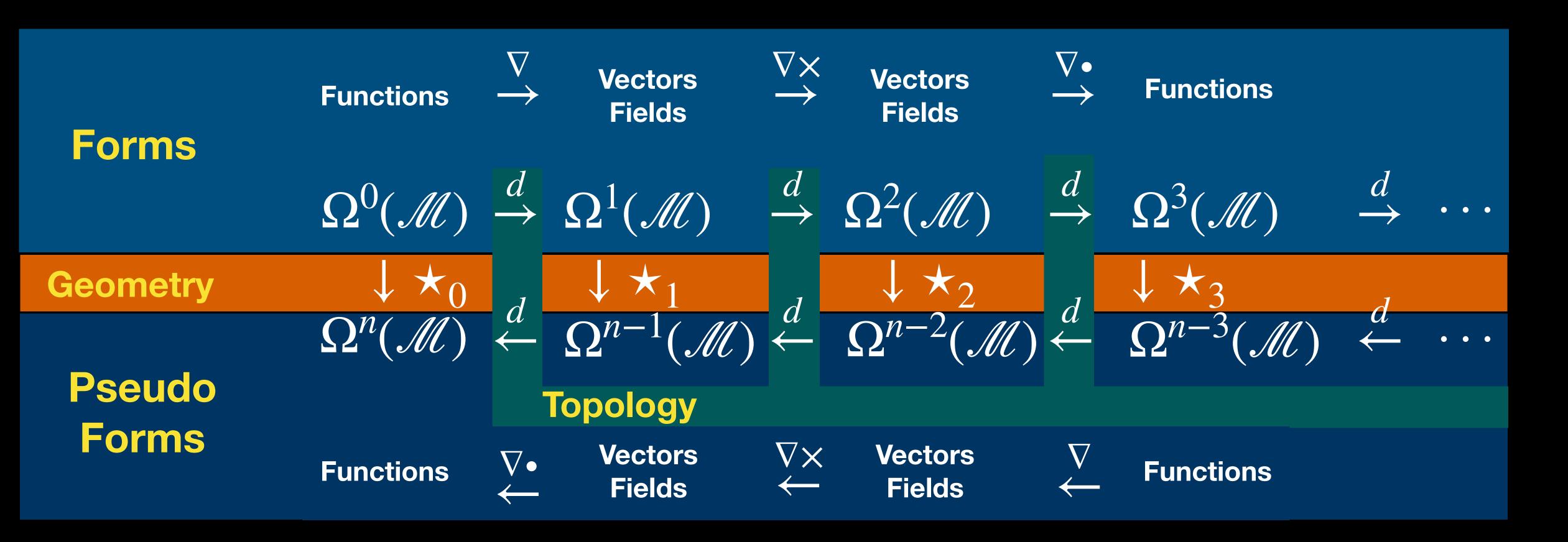


Functions	$\overset{\nabla}{\to}$	Vectors Fields	$\overset{\nabla\times}{\to}$	Vectors Fields	$\overset{\nabla_{\bullet}}{\rightarrow}$	Functions
Functions	V • ←	Vectors Fields	∇× ←	Vectors Fields	V	Functions

The Complex The Exterior Calculus Complex

$$\omega^k \in \Omega^k(\mathcal{M})$$

ANY Manifold from which points, lines, .. are taken



Example

Maxwell Equations

Faraday's law

$$B = -dE$$

Ampère's law

$$\dot{D} = dH \quad (-J)$$

Electric Energy Density (3 form) = $E \wedge D$

Magnetic Energy Density (3 form) = $H \land B$

Poynting Vector (2 form) = $E \wedge H$

Electric Field Intensity 1-form

$$\Omega^1(\mathcal{M}) \stackrel{d}{\rightarrow} \Omega^2(\mathcal{M})$$

$$\Omega^2(\mathcal{M})$$

Electric Field Induction 2-form

ELECTRIC

Magnetic Field Induction 2-form

$$\Omega^2(M)$$

$$\Omega^1(\mathcal{M})$$

Magnetic Field Intensity 1-form

MAGNETIC

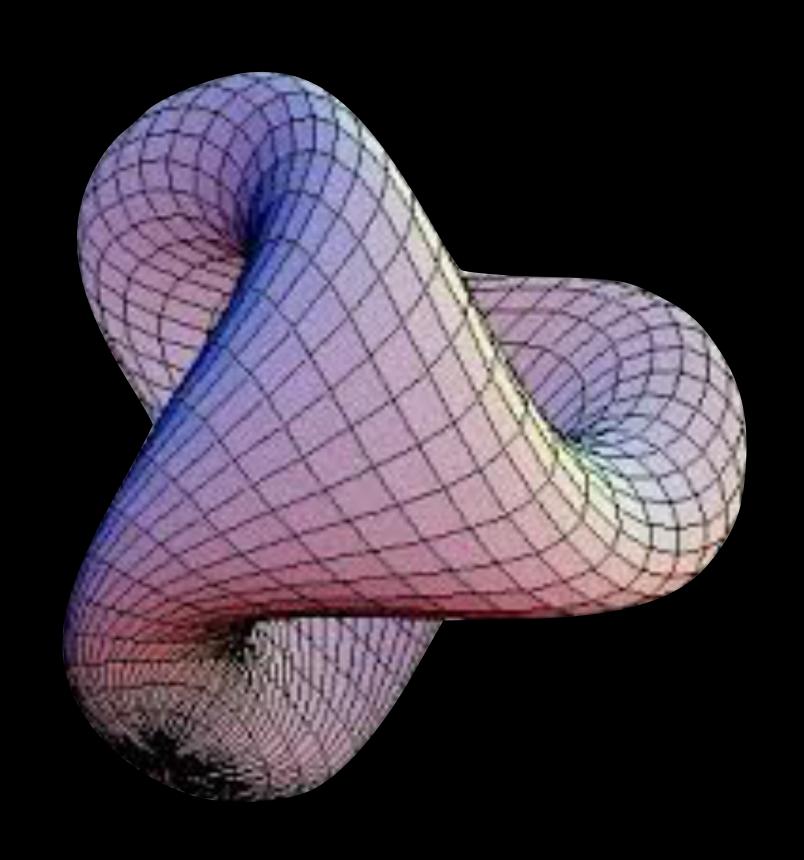
Power flow in infinite dimensional space

- In a distributed space, power needs to be integrated (for 3D n=3):
 - Volume

$$P_V = \int_{\mathcal{M}^n} \omega_P^n$$

Surface

$$P_{S} = \int_{\partial \mathcal{M}^{n-1}} \omega_{P}^{n-1}$$



Efforts and Flows in infinite dimensional systems

$$P_{V} = \int_{\mathcal{M}^{n}} \omega_{P}^{n} = \int_{\mathcal{M}^{n}} \omega_{e}^{k} \wedge \omega_{f}^{n-k}$$

$$P_{S} = \int_{\partial \mathcal{M}^{n-1}} \omega_{P}^{n-1} = \int_{\partial \mathcal{M}^{n}} \omega_{e}^{k} \wedge \omega_{f}^{n-1-k}$$

Natural Pairing, no extra structure needed!

Example: Poynting Vector in Electromagnetism $S^2 = E^1 \wedge H^1$

Example: Energy storage and continuity

$$\mathcal{H}^n(x^l(t))$$

$$H = \int_{\mathcal{M}^n} \mathcal{H}^n$$

Energy (density) n-form function of a state l-form function of time

Total energy contained in \mathcal{M}^n

$$\dot{H} = \int_{\mathcal{M}^n} \delta_{x} \mathcal{H}^{n-l} \wedge \dot{x}^l$$
 Variational derivative

Energy Storage

Strong Form
$$\dot{\mathcal{H}}^n = d\Phi^{n-1} + \rho^n$$

Weak Form
$$\dot{H} = \int_{\mathcal{M}^{n-1}} \Phi^{n-1} + \int_{\mathcal{M}^n} \rho^n$$

Energy Continuity eq.

Example: Energy storage and motion

Energy Storage

$$\dot{H} = \int_{\mathbb{Z}^n} \delta_{x} \mathcal{H}^{n-l} \wedge \dot{x}^l$$

Energy Continuity Equation

$$\dot{H} = \int_{\mathcal{M}^{n-1}} \Phi^{n-1} + \int_{\mathcal{M}^n} \rho^n$$

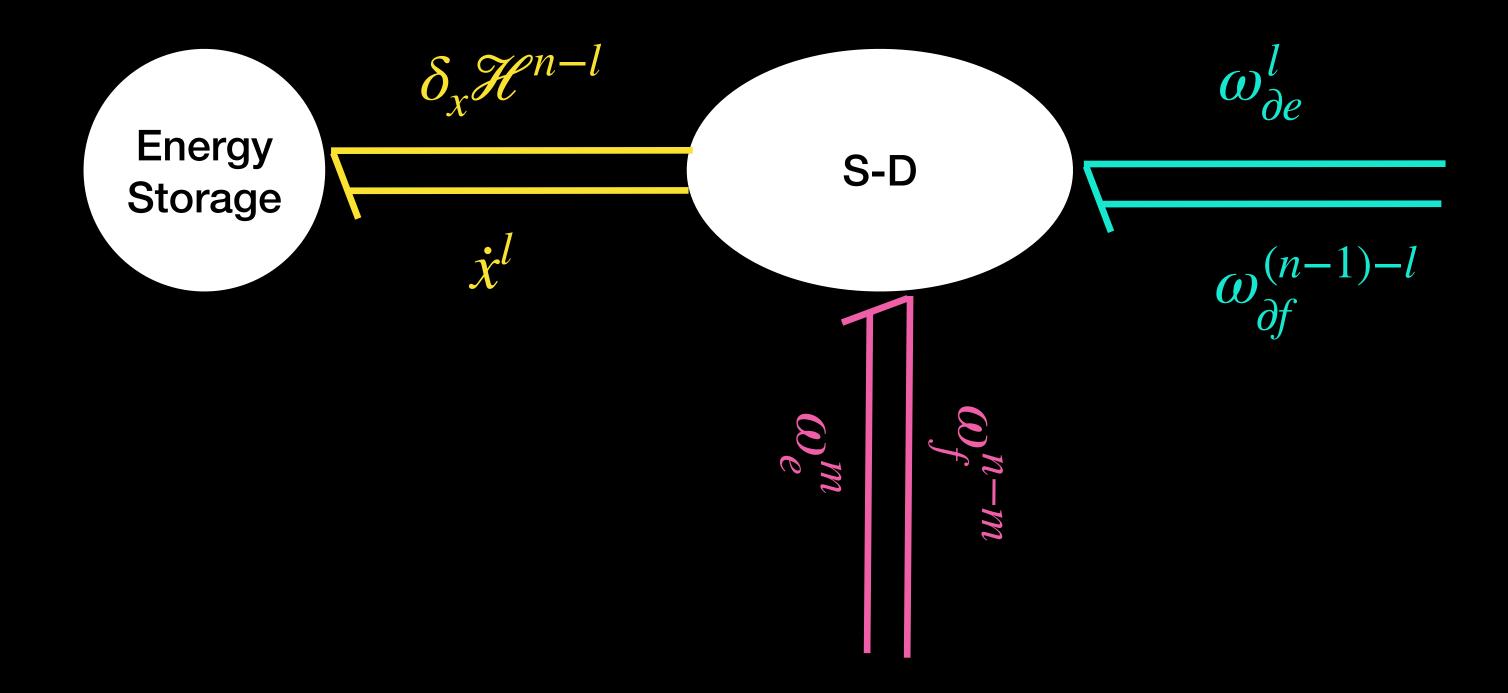
$$\Phi^{n-1} = \omega_{\partial e}^k \wedge \omega_{\partial f}^{(n-1)-k}$$

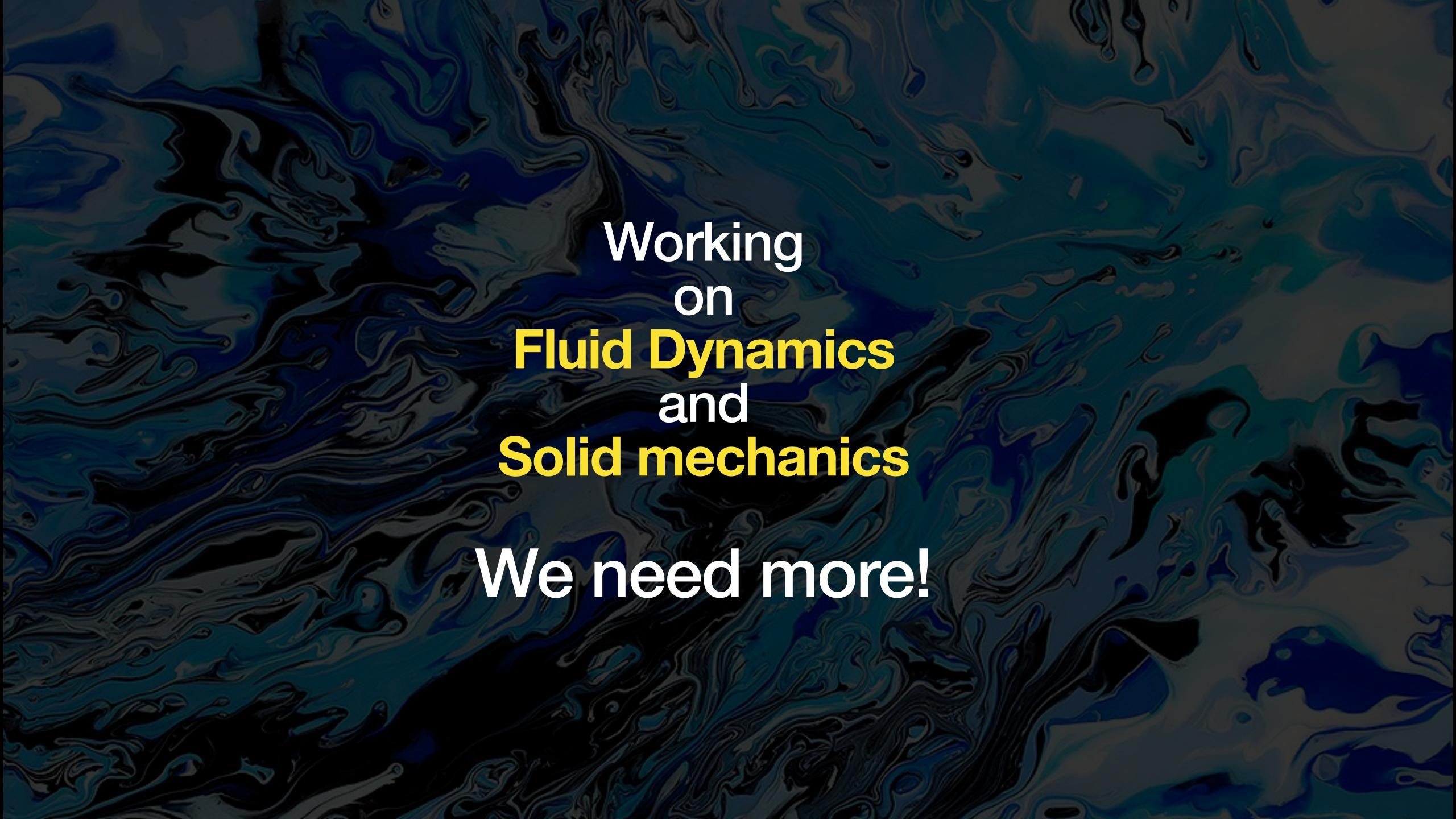
$$\rho^n = \omega_e^m \wedge \omega_f^{n-m}$$

$$\int_{\mathcal{M}^n} \delta_{x} \mathcal{H}^{n-l} \wedge \dot{x}^l = \int_{\mathcal{M}^{n-1}} \omega_{\partial e}^l \wedge \omega_{\partial f}^{(n-1)-l} + \int_{\mathcal{M}^n} \omega_{e}^m \wedge \omega_{f}^{n-m}$$

Stokes-Dirac Structure

$$\int_{\mathcal{M}^n} \delta_{x} \mathcal{H}^{n-l} \wedge \dot{x}^l = \int_{\mathcal{M}^{n-1}} \omega_{\partial e}^l \wedge \omega_{\partial f}^{(n-1)-l} + \int_{\mathcal{M}^n} \omega_{e}^m \wedge \omega_{f}^{n-m}$$

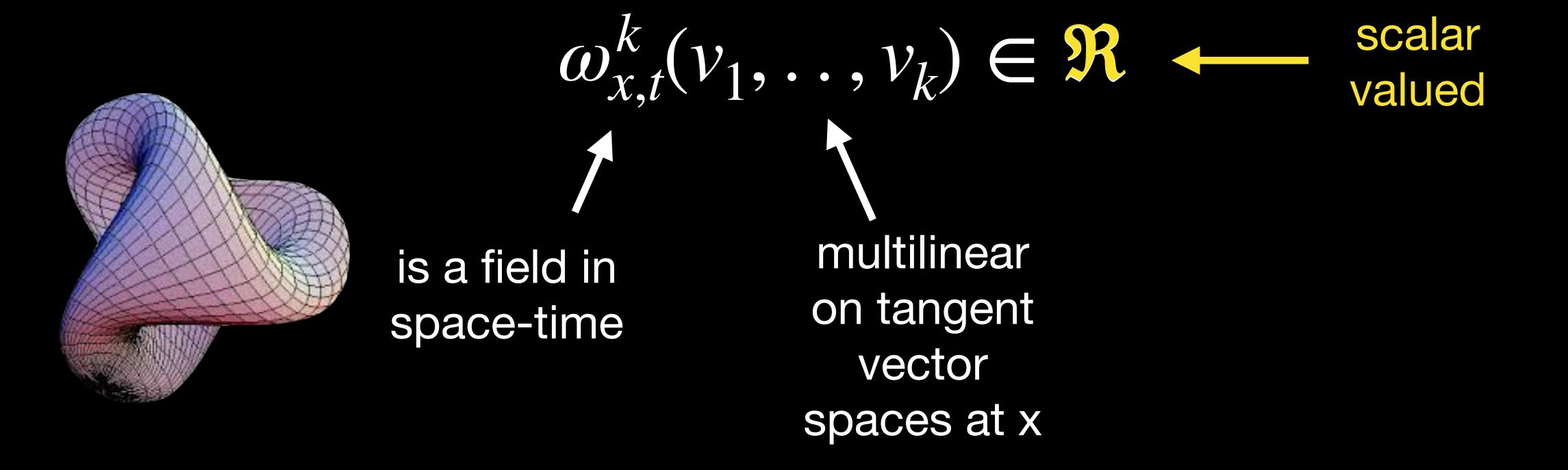




Differential Forms

Intuitive, minimalistic ideas

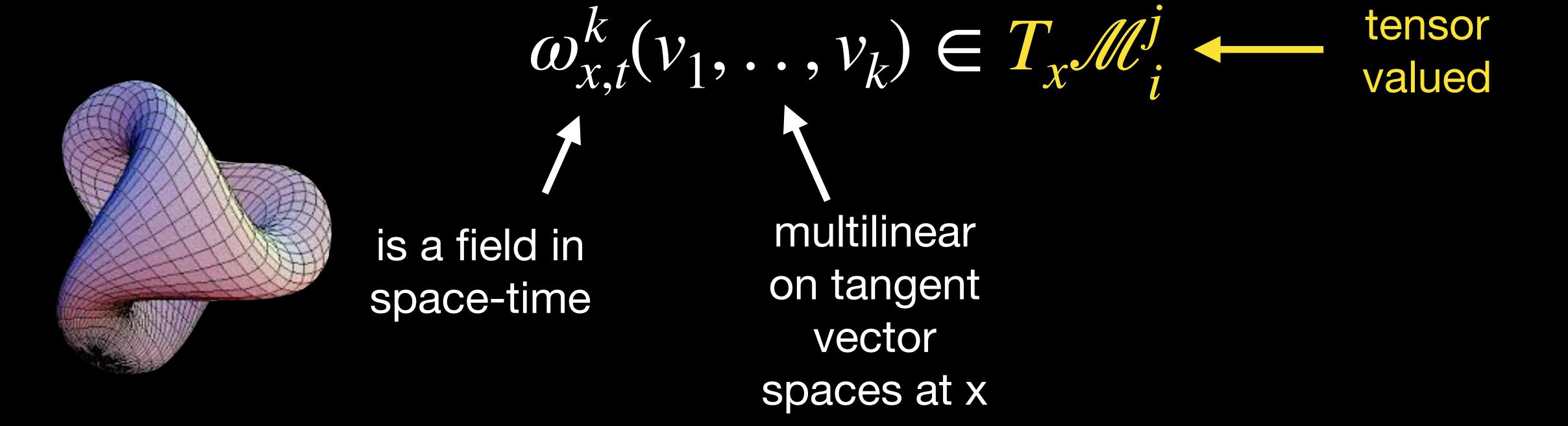
A k-form ω^k is a completely antisysimmetric k-linear field



Tensor-Valued-Differential Forms

Intuitive, minimalistic ideas

A k-form ω^k is a completely antisysimmetric k-linear field



Intrinsic Nonlinear Elasticity: An Exterior Calculus Formulation

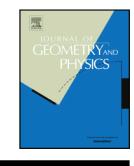
Ramy Rashad¹ · Andrea Brugnoli² · Federico Califano¹ · Erwin Luesink³ · Stefano Stramigioli¹

Journal of Geometry and Physics 200 (2024) 105172

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys



The principal bundle structure of continuum mechanics Stefano Stramigioli

Journal of Nonlinear Science (2025) 35:35 https://doi.org/10.1007/s00332-025-10130-1

The Port-Hamiltonian Structure of Continuum Mechanics

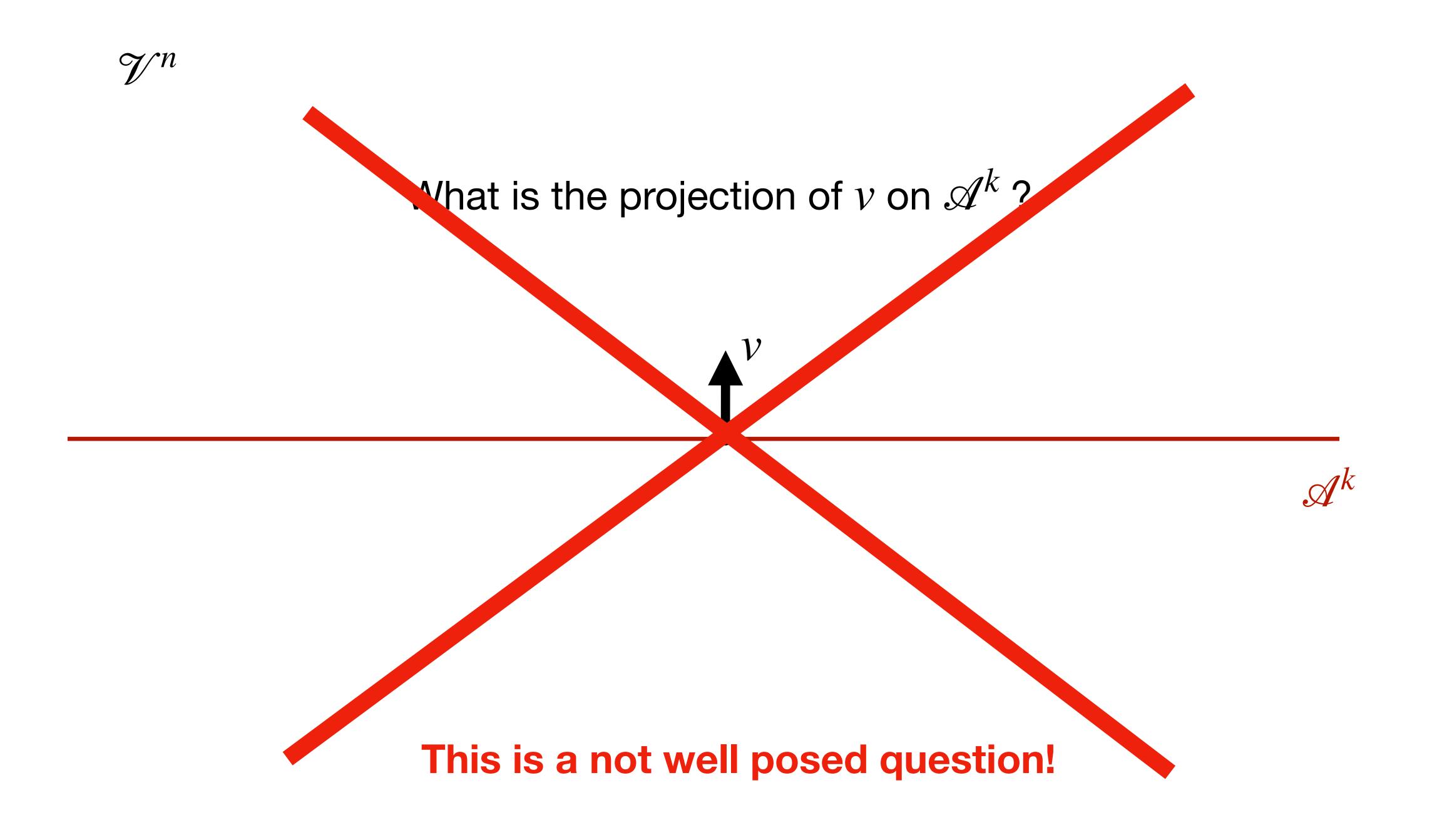
Ramy Rashad^{1,2} · Stefano Stramigioli²

The Geometry of Continua

(its essence)

Projectors

(We have no concept of orthogonality yet!)



Projection

Direct Sum Decomposition

Given:

- a Vector space $(\mathcal{V}^n, +, \bullet)$
- Two subspaces $\mathscr{A}^k, \mathscr{B}^{(n-k)} \subset \mathscr{V}^n$ s.t. $\mathscr{A}^k \cap \mathscr{B}^{(n-k)} = 0_{\mathscr{V}}$

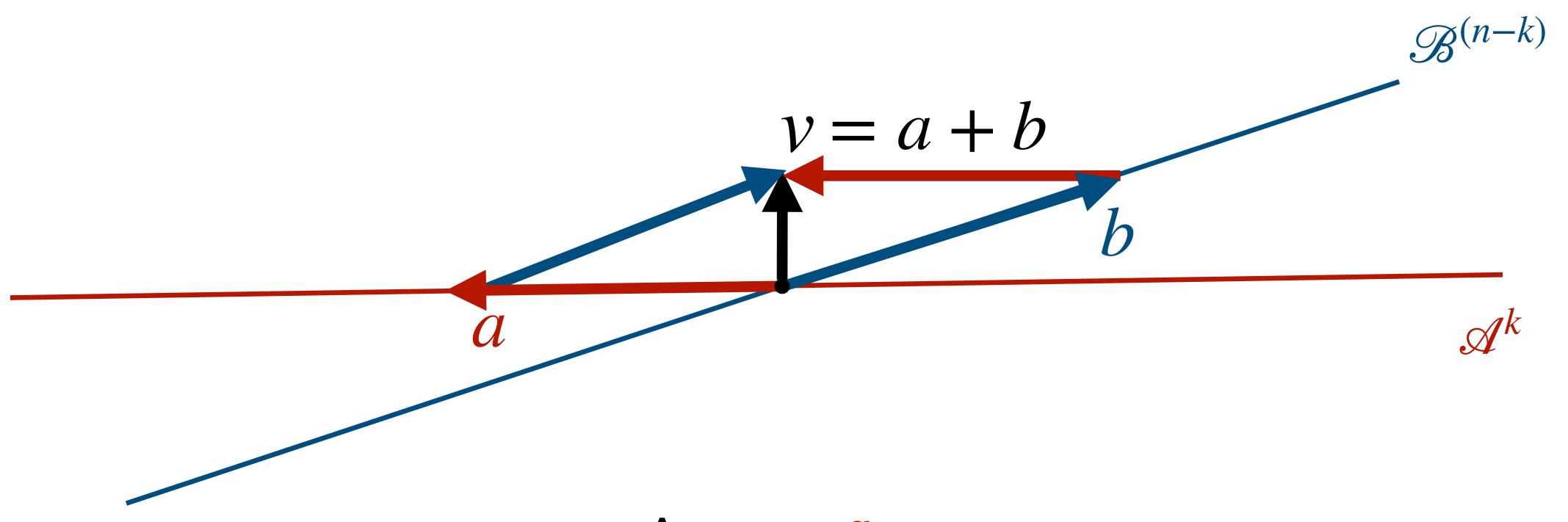
We write

$$\mathcal{V}^n = \mathcal{A}^k \oplus \mathcal{B}^{n-k}$$
 (direct sum)

Iff $\forall v \in \mathcal{V}, \exists ! a \in \mathcal{A}, \exists ! b \in \mathcal{B}, \text{ s.t. } v = a + b$

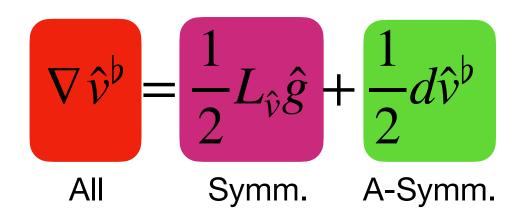
We say that a is the projection of v along ${\mathscr B}$ and b is the projection of v along ${\mathscr A}$

What is the projection of v on \mathcal{A}^k along $\mathcal{B}^{(n-k)}$?

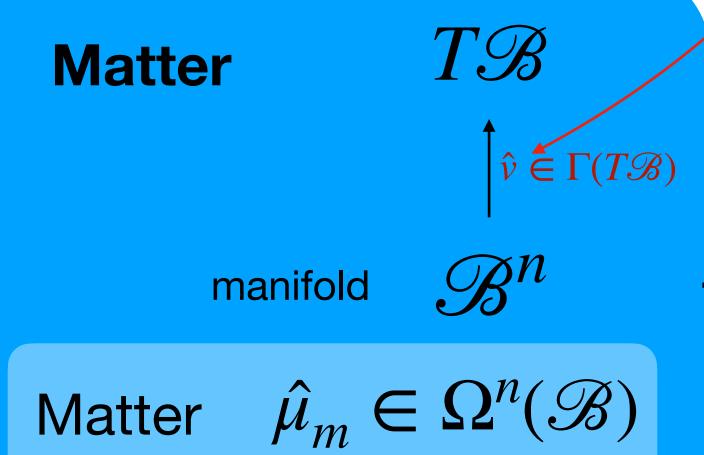


Answer: a

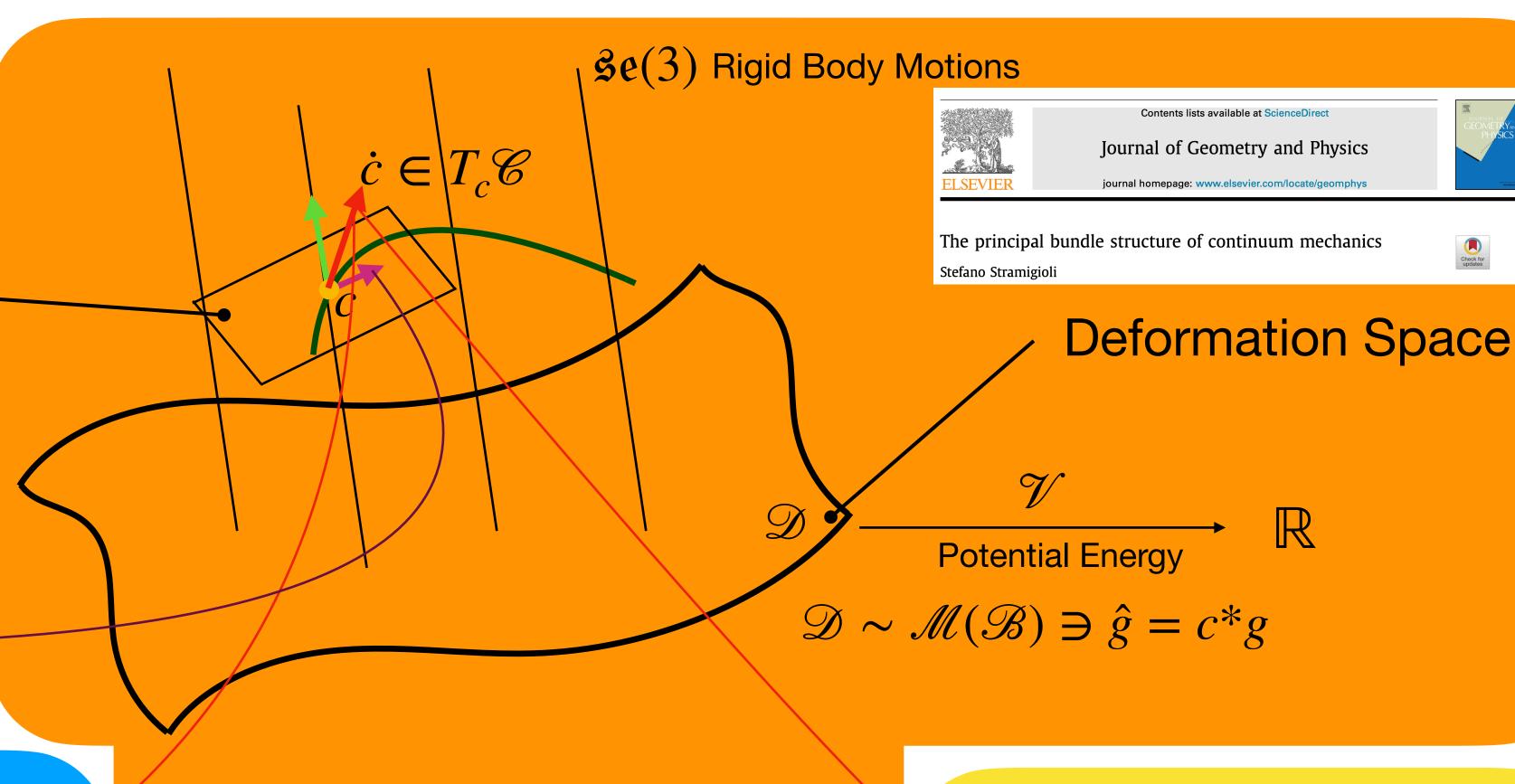
Connection -

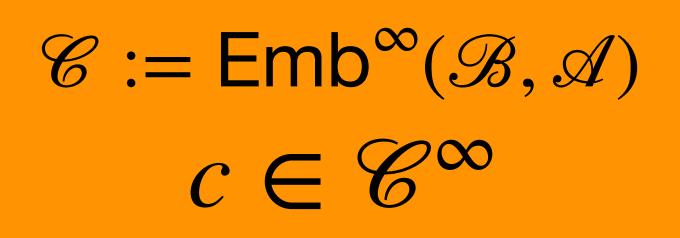


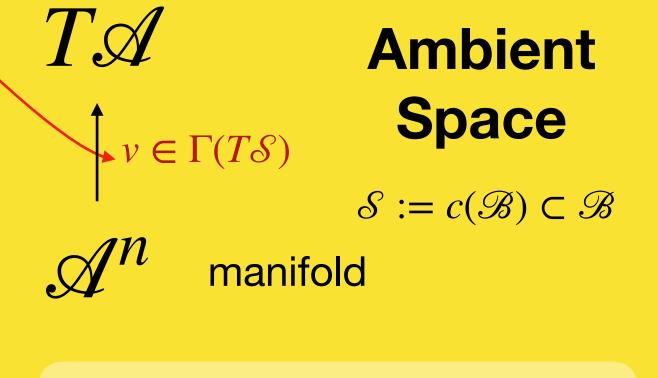
 $L_{\hat{\mathcal{V}}}\hat{g}$ Rate of Strain



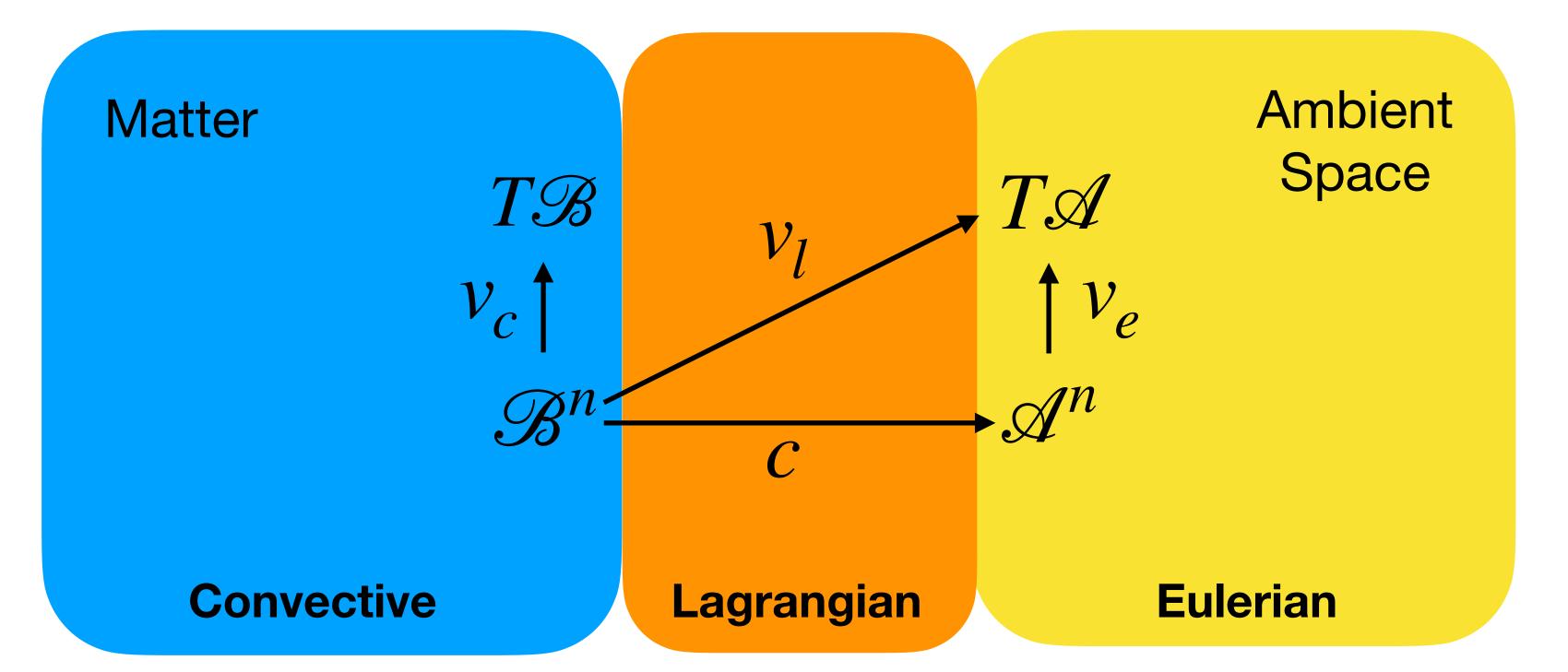
constant structure







$$g \in \mathcal{M}(\mathcal{A})$$
 Metric constant structure

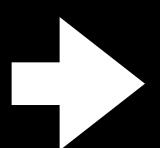


- Using the presented construction is possible to define precisely an open port-based model for ANY elastic media
- It can be shown that it is absolutely necessary to introduce **bundled** valued forms due to the **symmetric nature of the rate of strain**
- $L_{v_c}g_c$ Rate of Strain
- •Introducing the right mappings of **metrics** it is possible to define **geometric connections** to do all operation invariantly like divergence.
- Differently than sometimes thought, vorticity is not the source of dissipation

Energy storage and need for tensor-valued forms

Energy Storage

$$\dot{H} = \int_{\mathcal{M}^n} \delta_{\chi} \mathcal{M}^{n-l} \wedge \dot{x}^l$$



$$\dot{H} = \int_{\mathcal{M}^n} \langle \delta_q \mathcal{H}^{n-l} | \dot{q}^l \rangle$$

$$7/*^{\text{Dual}} 7/$$

$$\nabla v_c^{\flat} = \frac{1}{2} L_{v_c} g_c + \frac{1}{2} dv_c^{\flat}$$
All Symm. A-Symm.

$$\dot{H} = \int_{\mathcal{M}^n} \underbrace{\delta_q \mathcal{H}^{n-l} \dot{\wedge}}_{n-form} \dot{q}^l$$

t.v. form t.v. pseudo-form

Energy storage and need for tensor-valued forms

$$\nabla v_c^{\flat} = \frac{1}{2} L_{v_c} g_c + \frac{1}{2} dv_c^{\flat}$$
All Symm. A-Symm.

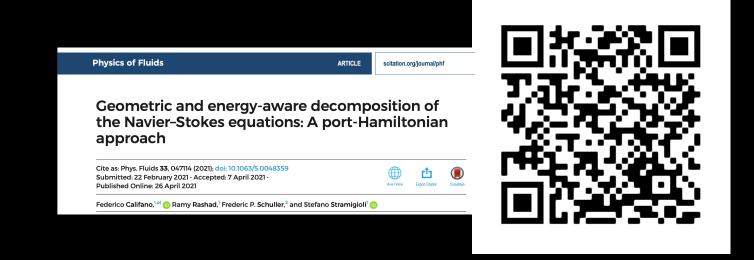
$$\dot{H} = \int_{\mathcal{M}^n} \underbrace{\delta_q \mathcal{H}^{n-l} \ \dot{\wedge} }_{\text{t.v. form}} \underbrace{\dot{q}^l}_{\text{t.v. pseudo-form}}$$

 $E = e_F \otimes e_V \in \\ \Omega^k(M^n) \otimes \Gamma(T_l^p M^n) \\ F = f_F \otimes f_V \in \\ \Omega^{n-k}(M^n) \otimes \Gamma(T_l^p M^n)$

$$(e_F \otimes e_V) \dot{\wedge} (f_F \otimes f_V) := \langle e_v | f_v \rangle e_F \wedge f_F \in \Omega^n(M^n)$$

$$power = \int_{M^n} E \dot{\wedge} F$$

Navier Stokes Equations On-Shell Equations (barotropic case)



Coordinate dependent NS equations

$$\partial_t(\rho v^i) + \partial_m(\rho v^m v^i) = -\partial^i p + \partial_m au^{mi}$$
 Static Pressure

$$\partial_t \rho + \partial_m (\rho v^m) = 0$$
 Mass Continuity

$$au^{ij} := \lambda(\partial_m v^m) \delta^{ij} + \kappa(\partial^i v^j + \partial^j v^i)$$
Bulk Shear

$$p = \rho^2 \frac{\partial U}{\partial \rho}(\rho) \qquad \qquad \text{Barotropic} \\ \text{(for simplicity and easily extendable)}$$

Any n-dimensional Rimannian manifold (Differential Geometry Background needed!)

$$u := g(\nu, \cdot) \in \Omega^1(M)$$
co-vector representation of flow

$$\mu:=\star \rho \in \Omega^n(M)$$
 mass top-form

$$\mathscr{T} \in \Omega^1(M) \otimes \Omega^{n-1}(M)$$
 viscous stress tensor

$$\dot{\wedge}: (\Omega^1(M)\otimes\Omega^l(M)) imes (\Gamma(TM)\otimes\Omega^k(M)) o\Omega^{l+k}(M)$$
 pairing
$$P_\mathscr{T}=\int_{\mathcal{S}}\mathscr{T}\dot{\wedge} v$$
 power dissipated

$$\mathrm{d}_{\nabla}:\Omega^1(M)\otimes\Omega^{n-1}(M)\to\Omega^1(M)\otimes\Omega^n(M)$$
 exterior covariant derivative

geometrical

$$(\mathrm{d}_\nabla \mathscr{T})\dot{\wedge} v = \mathrm{d}(\mathscr{T}\dot{\wedge} v) - \mathscr{T}\dot{\wedge}\nabla v$$
 topological

$$(\mathscr{L}_{\nu}g)_{ij} = \nabla_i \nu_j + \nabla_j \nu_i$$
 rate of strain (symmetric!)

ON-SHELL EQUATIONS

Momentum Balance

 $\dot{\mu} = -\mathrm{d}(\star \mu \star \nu)$

$$\dot{\nu} + \mathrm{d}\left(\frac{1}{2}\star(\nu\wedge\star\nu)\right) + \iota_{\nu}\mathrm{d}\nu = -\frac{\mathrm{d}p}{\star\mu} + \frac{\star_{2}\mathrm{d}\nabla\mathcal{Y}}{\star\mu}$$

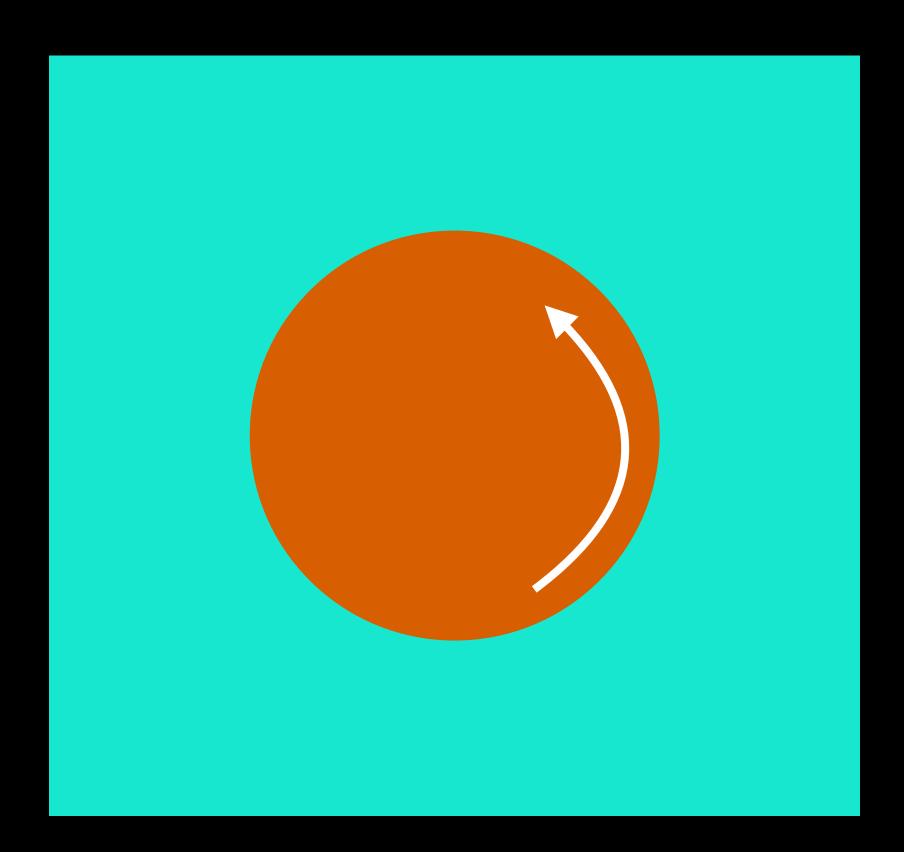
$$\mathcal{T}_{\lambda} := \lambda(\mathrm{div}(\nu)\mu_{\mathrm{vol}}), \quad \text{Bulk}$$

$$\mathcal{T}_{\kappa} := \kappa(\star_{2}\mathcal{L}_{\nu}g), \quad \text{Shear}$$
Mass Continuity

Strictly Euclidean => hides geometry

Valid in any curved space of any dimension and completely coordinate invariant NOTHING HIDES THE PHYSICS

Other intuitive reasons for natural use of t.v. forms



Traction force = surface integral of **Stress**

Stress = map from plane to force = force values 2-form

Rotating disc in fluid with no slip condition

The restriction of Scalar Forms on the boundary would NOT be able to express a tangential force inducing flow in the fluid

Journal of Nonlinear Science (2023) 33:84 https://doi.org/10.1007/s00332-023-09945-7

Intrinsic Nonlinear Elasticity: An Exterior Calculus Formulation

Ramy Rashad¹ · Andrea Brugnoli² · Federico Califano¹ · Erwin Luesink³ · Stefano Stramigioli¹

Received: 3 March 2023 / Accepted: 11 July 2023 / Published online: 24 July 2023 © The Author(s) 2023

Abstract

In this paper, we formulate the theory of nonlinear elasticity in a geometrically intrinsic manner using exterior calculus and bundle-valued differential forms. We represent kinematics variables, such as velocity and rate of strain, as intensive vector-valued forms, while kinetics variables, such as stress and momentum, as extensive covector-valued pseudo-forms. We treat the spatial, material and convective representations of the motion and show how to geometrically convert from one representation to the other. Furthermore, we show the equivalence of our exterior calculus formulation to standard formulations in the literature based on tensor calculus. In addition, we highlight two types of structures underlying the theory: first, the principal bundle structure relating the space of embeddings to the space of Riemannian metrics on the body and how the latter represents an intrinsic space of deformations and second, the de Rham complex structure relating the spaces of bundle-valued forms to each other.

Communicated by Alain Goriely.

□ Ramy Rashad

r.a.m.rashadhashem@utwente.nl

Andrea Brugnoli

brugnoli@math.tu-berlin.de

Federico Califano

f.califano@utwente.nl

Erwin Luesink

e.luesink@utwente.nl

Stefano Stramigioli s.stramigioli@utwente.nl

- Robotics and Mechatronics Department, University of Twente, Enschede, The Netherlands
- Institute of Mathematics, Technische Universität Berlin, Berlin, Germany
- Mathematics of Operations Research, University of Twente, Enschede, The Netherlands

Journal of Nonlinear Science (2025) 35:35 https://doi.org/10.1007/s00332-025-10130-1

The Port-Hamiltonian Structure of Continuum Mechanics

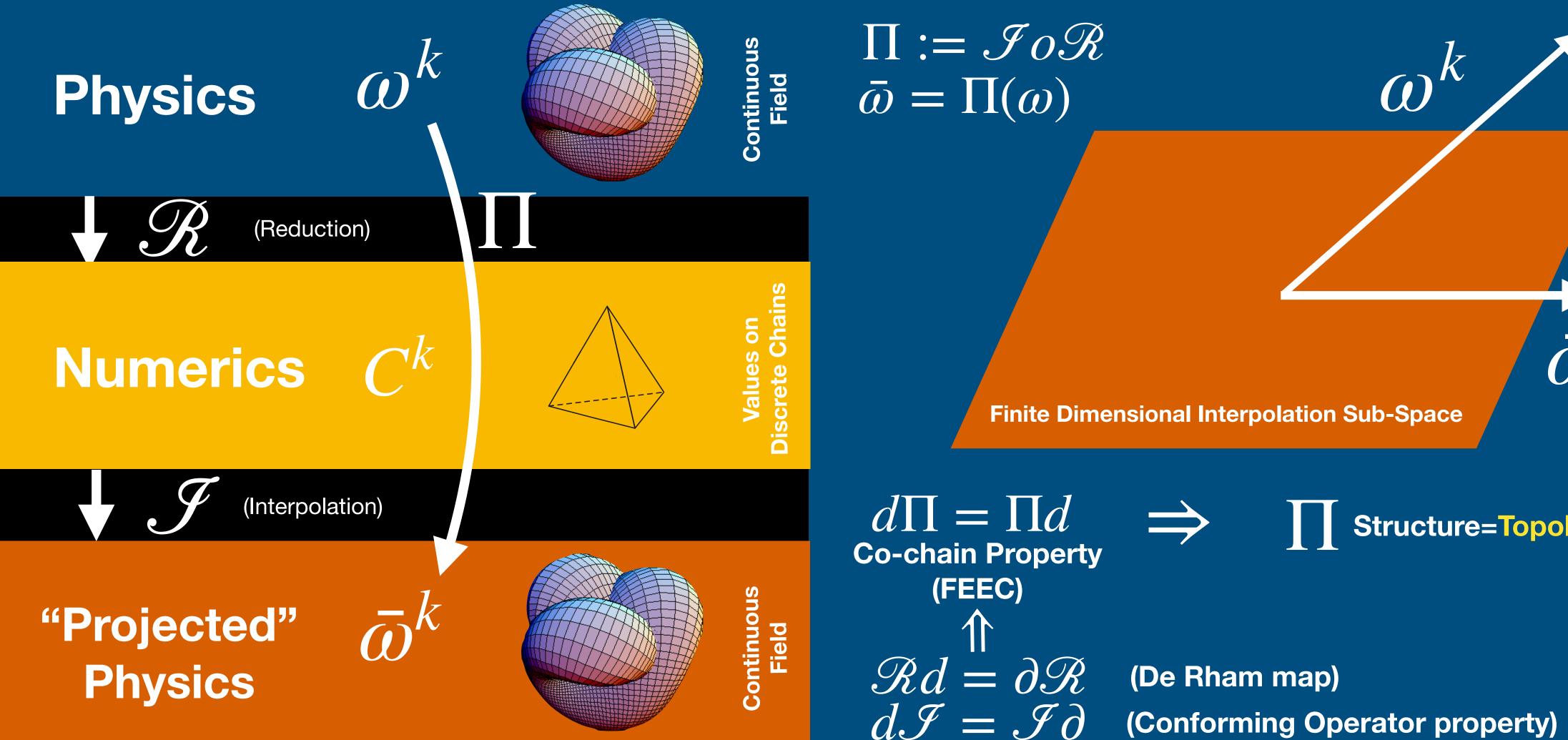
Ramy Rashad^{1,2} · Stefano Stramigioli²

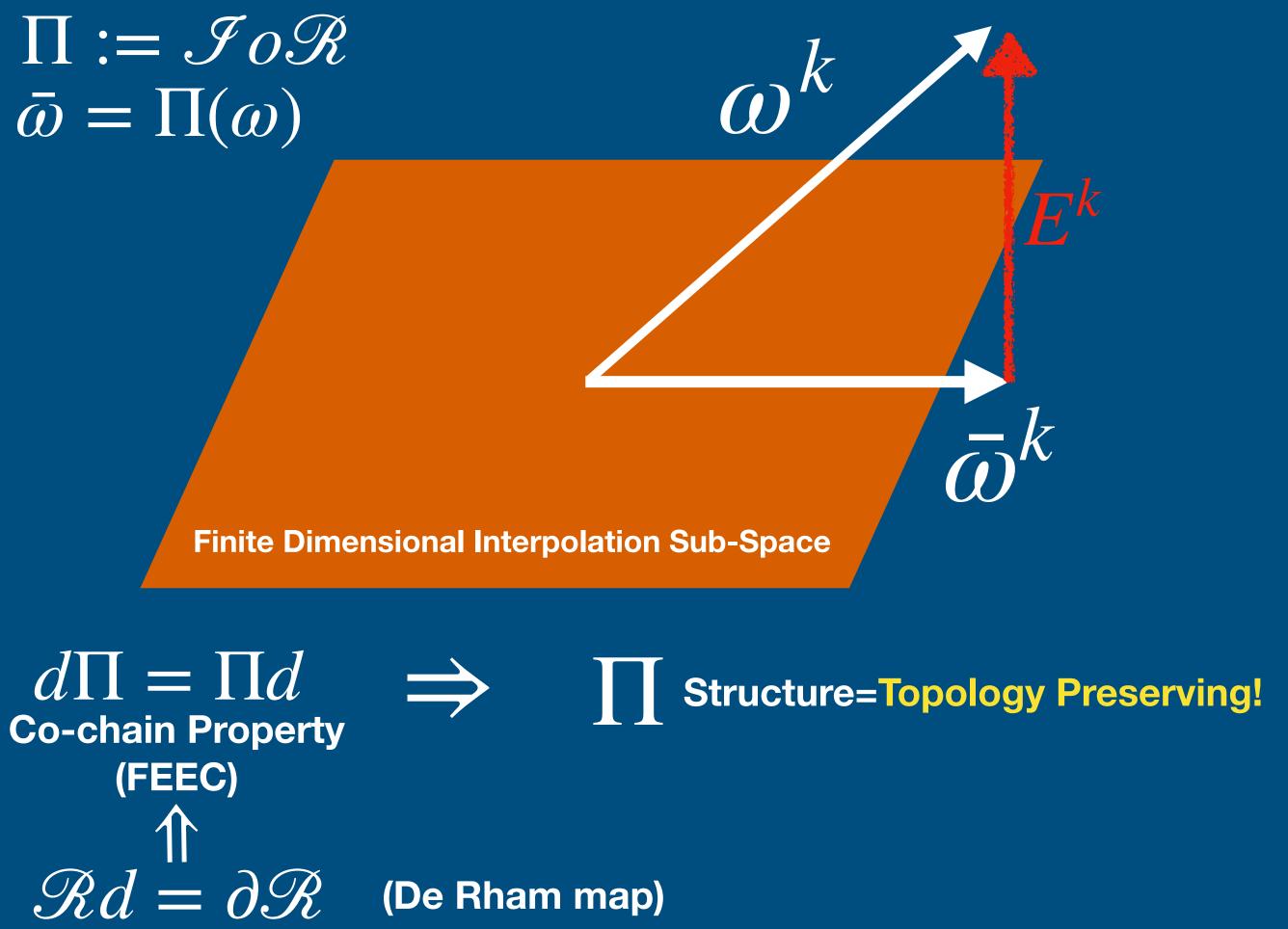
Received: 1 April 2024 / Accepted: 15 January 2025 © The Author(s) 2025

The most comprehensive and insightful description of continuous media and the need for tensor value forms

Intro to Mimetic (Topology Preserving) Discretisation

In the context of Exterior Calculus

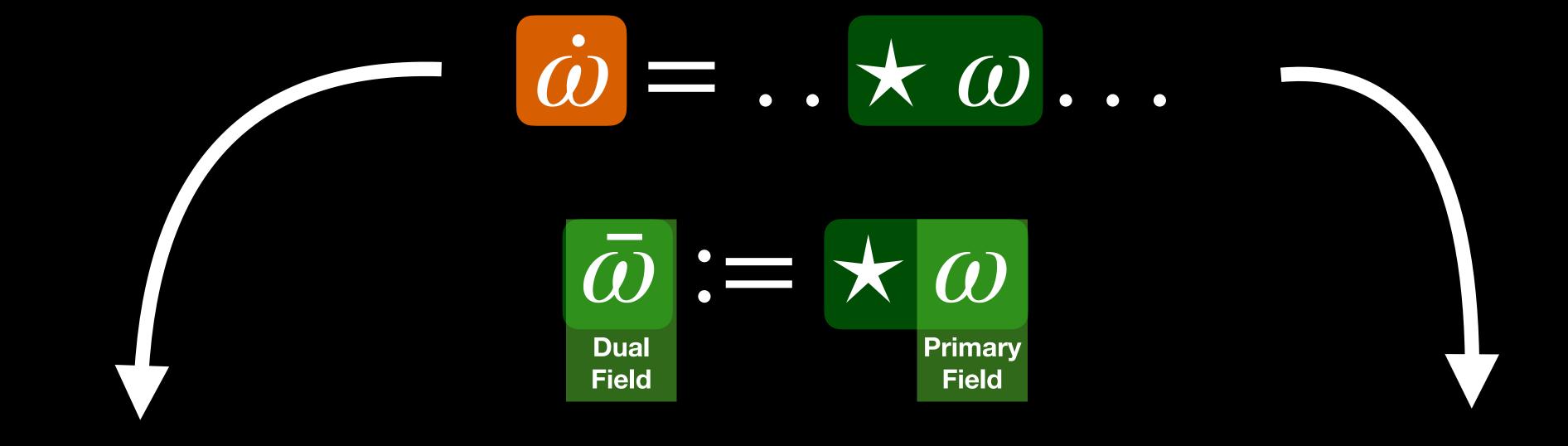




Whitney Forms

Dual Fields Method

Both systems and use them along...



$$\dot{\omega} = ... \bar{\omega}$$
...

Primary System

- One Initialisation
- Use Each Other states
- **★** Disappeared!

$$\dot{\bar{\omega}} = \dots (-1)^l \omega \dots$$
Dual System

Dual Field Method

It could be seen

- This tools brings to a spatial discretisation of PDE which outperforms any non-structure preserving method
- This can be used together with symplectic time integration
- It has open boundaries!
- Can then be used for model reduction, learning and Control!

Upcoming work: GR & QFT

- To solve a specific problem we need the right structures and abstractions
- I am finalizing a way to show how Gravity can appear from interaction of Quantum Fields and exterior calculus plays a crucial role.
- This has been an open problem for many years and is due to the fact that excellent scientists have not been using the right abstractions and mathematical tools.

Conclusions

True knowledge comes with deep understanding of a topic and its inner workings.

Albert Einstein

Conclusions

- Port-Based methods is a fantastic way to understanding the physics of continua (and flapping flights)
- •To handle geometric strain **new tools needed to be used** which showed issues previously not known in the literature.
- Port-based thinking is the driving force behind all this.
- Such insights have brought to new challenges which are being tackled in theoretical physics (QFT and GR and their connection)

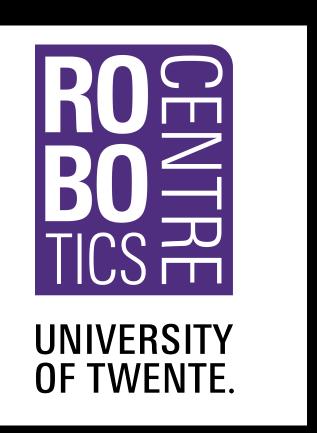
My Personal Advise

I am convinced that the great breakthroughs can only be achieved by

- Deeply understanding the right mathematical structures needed to understand a problem: not too much, not too little structure
- Let the mathematics structure guide you along the way by understanding the operation that you can or you cannot do!
- Be critical on each step you do and ask you always why?
- And yet, trust the signals your intuition and vision give you but always check with proper coordinate invariant mathematics

Epistemological growth is not about solving a problem, but understanding "why and how" to solve it.

Stefano Stramigioli



Thanks for listening

