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Motivation
• In Physics Symmetries (conserved quantities) are at the very fundament of the 

description of nature and Gauge Fields are at the core of the description of 
interaction


• Energy Is the Mathematical Embodiment of the invariance of physical laws (more 
later)


• Energy is at the core of the description of any Interaction

• Mathematics is the most powerful tool Engineers have

and yet, 


most of the time energy is ignored in the modelling and/or control of physical systems 
and physics and mathematics is not taken seriously.

Goal: Give you an idea of why you may want to look into port-based concepts 
                                       A `Tutorial like’ way talk



A game about paradigm shifts
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Break your patterns: think out of the box (or aquarium :-))

I will try to let you think about Physical Modeling in a way you 
may not be familiar with, which could give you different 

perspectives: the Port-Based way





Realising a dream

Leonardo da Vinci,  
Codice sul volo degli 
uccelli. Biblioteca 
Reale di Torino, 1505.  

Leonardo da Vinci 
(1452-1519)



Weight: 730 g
Payload: 20 g

Speeds +/- 80 Km/h
5 Beaufort wind conditions

EPP  
expandable  
polypropylene

Patented

Wings

Flapping and Gliding



Best Paper Award RAM 2017



Reversed Von Kármán sheet generation *OEFFE
 UIF FêFDUJWF BOHMF PG BUUBDL ↵Fê EFQFOET EJSFDUMZ PO UIF 4USPVIBM
OVNCFS 	�
� ↵Fê EFUFSNJOFT UIF ìPX BSPVOE UIF XJOH UJQ� JG JU JT JO UIF QSPQFS
SBOHF
 UIF XJOH JT UPEP� JT JU JO EZOBNJD TUBMM PS OPU -FBEJOH�&EHF
7PSUJDFT 	-&7T
 BSF HFOFSBUFE BU UIF XJOH UJQ
 USBWFM BMPOH UIF DIPSE BOE BSF
ëOBMMZ TIFE BU UIF USBJMJOH FEHF�

↵Fê(t) = UBO�1

 
ḣ(t)

U1

!
+ ✓(t) = UBO�1(4U ⇡ DPT(!t)) + ✓(t) 	�


7PO ,ÈSNÈO *O BOZ CMVOU PCKFDU JO BO BJSìPX
 -&7T DBO CF HFOFSBUFE BOE
TIFE� 6TVBMMZ
 UIFTF SFTVMU JO B TP�DBMMFE 7PO ,ÈSNÈO WPSUFY TIFFU
 B TFSJFT PG
-&7T UIBU BSF TIFE BMUFSOBUJOH PO UIF UXP TJEFT PG UIF PCKFDU� ɨF WPSUFY TIFFU
JOEVDFT ESBH PO UIF PCKFDU BOE DBO DBVTF JU UP WJCSBUF 	F�H� iTJOHJOHw UFMFQIPOF
XJSFT
 CSJEHF TVTQFOTJPO DBCMFT
�

*O UIF 3PCJSE�T DBTF
 UIF QMVOHJOH BOE QJUDIJOH DBVTFT UIF WPSUJDFT UP CF
TIFE JO BO BDUJWF XBZ
 SFWFSTJOH UIFJS SPUBUJPO EJSFDUJPO� B SFWFSTFE 7PO ,ÈSNÈO
TIFFU JT HFOFSBUFE� ɨF WPSUJDFT UIFO DSFBUF B SFBSXBSET�QPJOUJOH KFU TUSFBN UIBU
QSPQFMT UIF XJOH GPSXBSET
 UIVT HFOFSBUJOH UISVTU� Figure 7 TIPXT UIF TIBQF PG
UIF SFWFSTFE WPSUFY TIFFU BOE SFTVMUJOH KFU TUSFBN��

Figure 7 – Illustration of the reversed Von Kármán vortex sheet induced by

a pitching and plunging airfoil; upstroke (red) and downstroke (cyan). If

the Leading-Edge Vortices (LEVs) remain attached until stroke reversal, a

backwards-pointing jetstream is generated in the wake, propelling the wing

forwards.

�6TF B QBJS PG SFE�DZBO BOBHMZQIJD HMBTTFT BOE MPPL XJUI BMUFSOBUJOH FZFT UP TFF UIF EJêFSFOU
NPUJPOT DMFBSMZ�
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Strouhal number (0.2 < St < 0.4 )





Why and how does it “really” work?


Only understanding that we can systematically improve it



What we cannot speak about (clearly) 
we must pass over in silence.”   
(Ludwig Wittgenstein 1889-1951)

To talk about robotic flapping (clearly) we must use the right 
tools and language:  

physics and port-based / energy-aware methods 
proper mathematics



Rationalists

Empiricists

Technē
(Useful/Engineering)

Epistēmē
(Theoretical/Science)

Aristotle (384–322 BC)

K
no

w
le

dg
e Aristotele

Plato

John Locke

Reason as source

Sense-Experience as source

Rene Descartes

Inductive Reasoning

Deductive Reasoning



se(3) × se*(3)

elastic coupling



se(3) × se*(3)

Variable Boundary W

ρ ( ∂v
∂t

+ v ∙ ∇v) = − ∇p + μΔv + δF

Ω0(∂M) ⊗ Γ(TM)
Ωn−1(∂M) ⊗ Ω1(M)

Tensor valued differential forms





Structures Drive Progress in Mathematics and Science

Indiscriminate use  Danger of not understanding needed structuresℝn ∼

Be Aware of 
Coordinates

Understanding Concepts   Understanding Needed Mathematical Structures⇔

"A gentleman or a lady only chooses a basis if he/she must.” 

 as a setℝn

 as a vector space(ℝn, ⊞ , ⊠ , (ℝ, + , ∙ ))

 as a setℝ

 as a group(ℝ, + )

 as a field(ℝ, + , ∙ )

 as a Hilbert space(ℝn, ⊞ , ⊠ , (ℝ, + , ∙ ), Id)



Mathematics is 
likely the most 
beautiful creation 
of the human mind 
and the most 
powerful tool for 
engineers

Abstraction: 

get rid of what does 
NOT matter

Mathematical 
Intuitionist

(1854 -1912)



About Port Based Thinking and University curricula

(Bad) Linear Algebra
(Little) Mechanics
(Little) Electromagnetism
(Little) Fluid Dynamics

NOW

Proper Linear Algebra
Basic Concepts of Differential Geometry & Exterior Calculus

Port Based Modeling
Mechanics Electromagnetism Fluid Dynamics

A MUCH MORE EFFICIENT AND EFFECTIVE WAY



Decomposition in Physics 
and 

 Power Ports



Decomposition
Energy is the glue of physics: Energy Decomposition

Total Physical System

Part I Part II

The (classical) Physical System under 
consideration will have an Energy 

 content at each instant of time, 
independent of its Physical nature! If the 
system is not interacting with anything 
else we have that  is constant.

H(t) ∈ ℝ

H(t) = HT

Splitting the Physical System in two, each 
of the parts will have an Energy 

 and we want that for the 
first principle of thermodynamics, at all 
times 

H1(t), H2(t) ∈ ℝ

H1(t) + H2(t) = HT

HT

H1(t) H2(t)
?

How to describe 
interconnection to ensure the 

requirement?

“  “ due 
to state!

⊕



Decomposition
Energy is the glue of physics: Energy Decomposition

Part I Part II

Splitting the Physical System in two, each 
of the parts will have an Energy 

 and we want that for the 
first principle of thermodynamics, at all 
time 

H1(t), H2(t) ∈ ℝ

H1(t) + H2(t) = HT

H1(t) H2(t)
?

For Physical Reasons, the two parts will 
influence each other (bilaterally). Let’s 
name  the influence of II on I and  
the influence of I on II.

f(t) e(t)
Part I Part II
H1(t) H2(t)

e(t)

f(t)

What is “the nature” of  and  ? 
(Newton’s third law: action-reaction)

e(t) f(t)

H1(t) + H2(t) = HT ⇒ ·H1(t) = − ·H2(t)
Power Transfer!



Decomposition
Energy is the glue of physics: Energy Decomposition

 should characterise the interaction at each instant of time  and should 
also take care that they represent a scalar power transfer as desired and some 
extra structure to satisfy Kirchhoff’s laws. 

f(t), e(t) t

Solution
 should have the nature of a vector and a co-vector and the natural 

application of one on the other  will result in a scalar which will have the 
value of the power transfer at that time!

f(t), e(t)
e( f )

f(t) ∈ 𝒱, e(t) ∈ 𝒱* ⇒ e( f )(t) ∈ ℝ

H1(t) + H2(t) = HT ⇒ ·H1(t) = − ·H2(t)
Power Transfer!Part I Part II

H1(t) H2(t)

e(t)

f(t)



Solution
 should have the nature of a vector and a co-vector and the 

application of one on the other  will result in a scalar which will have the 
value of the power transfer at that time!

f(t), e(t)
e( f )

f(t) ∈ 𝒱, e(t) ∈ 𝒱* ⇒ e( f )(t) ∈ ℝ

Finite Dimension Infinite Dimension 
𝒱 ∼ ℝelectrical circuits

𝒱 ∼ se(3)multibody dynamics
𝒱 ∼ Ωk(M) No strain

𝒱 ∼ Ωk(M; Tq
p M) General Case of 

Continuous 
mechanics

Part I Part II
H1(t) H2(t)

e(t)

f(t)



Solution
 should have the nature of a vector and a co-vector and the 

application of one on the other  will result in a scalar which will have the 
value of the power transfer at that time!

f(t), e(t)
e( f )

f(t) ∈ 𝒱, e(t) ∈ 𝒱* ⇒ e( f )(t) ∈ ℝ

Finite Dimension Infinite Dimension 
𝒱 ∼ ℝelectrical circuits

𝒱 ∼ se(3)multibody dynamics
𝒱 ∼ Ωk(M) No strain

𝒱 ∼ Ωk(M; Tq
p M) General Case of 

Continuous 
mechanics

Part I Part II
H1(t) H2(t)

e(t)

f(t)
et := e(t), ft := f(t) P1→2(t) = et( ft)
And this is properly defined for ANY possible imaginable vector space!!

ANY field in Physics can be described therefore this way!!



On Board 
The geometry of inputs and outputs



On Board

• What is an input?


• What equations make sense for an input of a n.l. system ?


• The need for extra structure



The Mathematics Crisis in 1900

Georg Cantor

(1845-1918)
Bertrand Russel 


(1872 –1970)

Naive  
Set theory 

and  
Infinities

Paradox



Henri Poincaré

Intuitionist
(1854-1912)

David Hilbert

Formalist
(1862-1943)

1900  
Mathematics Crisis

Georg Cantor
(1845-1918)

Duality -> Topology Inner Product -> Geometry

Vector SpacesVector Spaces
NO-Extra Structure Additional Structure



“Duality” in Mathematics



Duality (for finite dimensional case)

(𝒱, + , ∙ ) Vector Space ∈ 𝒱 Basise1, . . . , en

v = (e1 . . . en)
v1

⋮
vn

⏟
∈ℝn

F = (F1 . . . Fn)
∈ℝn

e1

⋮
en

(𝒱*, ⊞ , ⊠ ) Dual vector Space ∈ 𝒱* Dual Basise1, . . . , en

⟨ei |ej⟩ := ei(ej) = δi
j

Covariant

Contravariant

⟨F |V⟩ := F(V) = Fivi

Bra Ket

No Inner Product 
No Hilbert Structure

INVARIANT!!!

Vectors are different than Dual Vectors: they transform differently!

(e1 . . . en)
e1

⋮
en

(Co=Variant with vectors)

Forces Transform Differently than velocities !
In General  !A ≠ (A−1)T



“Pairing” in Mathematics



Pairing and Duality

𝒜 ℬ p : 𝒜 × ℬ → ℝ

𝒱
Vector Spaces

𝒱 *
Dual Vector Spaces

⇒ < | >: 𝒱 × 𝒱* → ℝ; ( f, e) ↦ e( f )
NO Extra StructureDUALITY ⇒

< , >: 𝒱 × 𝒱 → ℝ; (v1, v2) ↦ M(v1, v2)
Extra Structure !!

𝒱
Vector Spaces

𝒱
Vector Spaces

Hilbert Structure



About Topology and Geometry



Topology Versus Geometry
Topology

Neighbourhoods of points
No concept of Distance/Metric

Geometry
Shape

Concept of Distance/Metric present

≠
=

= Pointcarre Conjecture

Ricci Flow: ·g = − 2Ric

Tullio 

Levi-Civita

Gregorio 

Ricci-Curbastro

Tensor Calculus

Carl 
Friedrich

Gauss

Pierre 
Ossian 
Bonnet

Shiing 
Shen  
Chern



The Geometry & Topology 
 of Power-Ports 

Generalising “voltages and currents”



Rigid Body 1 Joint Rigid Body 2

Example
T(t) ∈ se(3)

W(t) ∈ se*(3)

T(t) ∈ se(3)

−W(t) ∈ se*(3)

i(t) ∈ ℜu(t) ∈ ℜ

ω(t) ∈ ℜτ(t) ∈ ℜ

Motor

Amplifier



Finite Dimensional Case
ODEs and DAEs

Flows and Efforts are maps from time to a vector space and its dual 
respectively


The power is then WITHOUT any additional structure

In multi-bodies                would be Lie-algebras representing Twist and 
Wrenches for example. This is GENERAL and possible for ANY 
PHYSICAL finite dimensional system

f : T → V e : T → V*

e( f )
V, V*



What about infinite dimensional Systems (fields) 
in a covariant way which makes  

EXPLICIT  
what is geometry and topology ?



Infinite Dimensional Case
PDE and Fields
We have a domain on which fields are 
defined, a manifold         , and its 
boundary           : we want to allow 
energy through the boundary: we have 
power-port densities.


ℳ
∂ℳ

Exterior Calculus 
& 

(T.V./L.A.V.) Differential Forms 

We need a “language” able to express all concepts:

-  in all dimensions 
-  coordinate-free 
-  applicable to all physical domains 
- possibly in curved spaces 
- making explicit what is topology and geometry

ℳ

∂ℳ ∂ℳ=

ℳ



Integration is a topological operation: 
it is NOT dependent on a metrical structure! 

Riemann integration is a  
“bad”/“old” 

way to talk about integration!



Differential Forms  
 
Generalising  “evaluate a function in a point”  to any dimension

Hermann Grassmann (1809-1877) Élie Cartan (1869-1951)

The coordinate invariant way to talk about integration



Differential Forms
Intuitive, minimalistic ideas

A k-form  is a completely antisymmetric k-linear field  ωk ∈ Ωk(ℳ)

ωk
x,t(v1, . . , vk) ∈ ℝ scalar 

valued

is a field in 
space-time

multilinear 
on tangent 

vector 
spaces at 

 x ∈ ℳ

(For deformations 
and shear stress 

Tensor Valued 
forms are needed!!)

(k ∈ ℕ)



Forms: Measure of k-volumes

Due to the full antisymmetry: 
 k-forms ‘’measure k-volumes’’of  k-dimensional spaces INTRINSICALLY

< ωk |ℳk >:= ∫ℳk

ωk scalar 
valued

Evaluate k-Form On k dim-manifold

Integration IS 
Topological Pairing

function0-form 0d-manifoldpoint
1-form
2-form

line
surface

1d-manifold
2d-manifold

3-form volume 3d-manifold

OnEvaluate

Generalisation of  
evaluation of a function on a point  

to ANY dimension

∈ ℝ

Georges de Rham
(1903-1990)



Forms Versus Pseudo-Forms
For dimensions higher than 0, orientation matter!

Evaluate n-Form On n d-manifold

Topological Pairing

function0-form 0d-manifoldpoint
1-form
2-form

line
surface

1d-manifold
2d-manifold

3-form volume 3d-manifold

OnEvaluate

For manifold of dimensions > 0, we can define orientation (+1,-1)

 (True) Form= Straight =Inner Oriented

Pseudo Form= Twisted = Outer Oriented< ωk | − ℳk > = < ωk |ℳk > ⇒ ωk
< ωk | − ℳk > = − < ωk |ℳk > ⇒ ωk

< ωk |ℳk >:= ∫ℳk

ωk



Exterior Algebras Operators on Forms

• There is an operator      called the wedge-product which returns a (k+l)-
form when applied to a k-form and a l-form:


• There is a differential  ``topological’’ operator       (graded diff.) which 
maps a k form to a k+1 form


• There is a ``metric’’ operator       which maps a k true-form to a (n-k) 
pseudo-form. 

ωk ∧ ωl ↦ ωk+l

∧

∧
d

d(ωk) ↦ ωk+1d ∫ℳn

dω = ∫∂ℳn−1

tr ω Stokes 
Theorem

< ωk
1, ωk

2 >:= ∫ℳn

ωk
1 ∧ (⋆ω2)n−k Hilbert 

Inner Product
⋆ (ωk) ↦ ω̄n−k

⋆

⋆
true-form ↦ pseudo-form

pseudo-form ↦ true-form positive definite!



Forms: Pairings

< ωk
1, ωk

2 >:= ∫ℳn

ωk
1 ∧ (⋆ω2)n−k Hilbert 

Inner Product

< ωk
1 | ω̄n−k

2 >:= ∫ℳn

ωk
1 ∧ ω̄n−k

2
Poincaré 

Dual Product

Metric/Energy Structure  Needed

No Metric/Energy Structure Needed



Integration by Parts
One unique expression

∫ℳn

dω = ∫∂ℳn−1

tr ω Stokes 
Theorem d(ωk ∧ ωl) = dωk ∧ ωl + (−1)kωk ∧ ωl

Leibniz Rule for d

∫ℳn

d(ωk ∧ ωl) = ∫∂ℳn−1

trωk ∧ trωl = ∫ℳn

dωk ∧ ωl + (−1)k ∫ℳn

ωk ∧ dωl

∫ℳn

dωk ∧ ωl = (−1)k+1 ∫ℳn

ωk ∧ dωl + ∫∂ℳn−1

trωk ∧ trωl

Integration by Part

k + l + 1 = n



The Complex
The Vector Calculus Complex

Functions

Vectors 
Fields

Vectors 
Fields

∇→

∇×←

∇∙
→

Problems

•No clear distinction between topological properties and metrical properties 
•Not generalisable to dimension higher than 3

•No clear information about orientation properties of objects

•THE SAME operator  is represented with DIFFERENT operators 

•DIFFERENT objects are considered THE SAME: Vector Fields or Functions 
• ..

d (∇, ∇ × , ∇ ∙ )

ℳ 3D Space

James Clerk Maxwell  
(1831-1879)1873 reatise on Electricity and Magnetism



James Clerk Maxwell  
(1831-1879)

Hermann Grassmann  
(1809-1877)

Élie Cartan  
(1869-1951)

Bernhard Riemann 
(1826-1866)

Georges de Raham  
(1903-1990)

Time Line

Henri Pointcarre  
(1854-1912)

1850 2025

• teach Vector Calculus rather than 
Grassman/Cartan Exterior Calculus

• teach Riemann integration rather 
than de Raham Topological Pairing

We still

2025-1873=152!

Vector 
Calculus

1873 Maxwell Publication 
“Treatise on Electricity and Magnetism”

Riemann 
Integration

1854 Riemann Lecture  
Über die Darstellbarkeit einer Funktion 
durch eine trigonometrische Reihe

2025-1854=171!



The Complex
The Vector Calculus Complex

Functions

Vectors 
Fields

Vectors 
Fields

∇→

∇×←

∇∙
→

Functions Vectors 
Fields

Vectors 
Fields

Functions
∇→ ∇×→ ∇∙→

ℳ 3D Space



The Complex
The Vector Calculus Complex ℳ 3D Space

Functions Vectors 
Fields

Vectors 
Fields

Functions
∇→ ∇×→ ∇∙→

Functions∇←∇×←∇∙←
Vectors 
Fields

Vectors 
FieldsFunctions



Geometry

Forms

Pseudo 
Forms

Topology

The Complex
The Exterior Calculus Complex

ωk ∈ Ωk(ℳ)
 ANY Manifold 

from which points, lines, .. are taken

Ω1(ℳ) Ω2(ℳ) Ω3(ℳ)

Ωn(ℳ) Ωn−1(ℳ) Ωn−2(ℳ) Ωn−3(ℳ)

d→

d←

d→

d←

d→

d←
↓ ⋆3↓ ⋆2↓ ⋆1↓ ⋆0

d→

d←

. . .

. . .

Ω0(ℳ)

Functions Vectors 
Fields

Vectors 
Fields

Functions
∇→ ∇×→ ∇∙→

Functions∇←∇×←∇∙←
Vectors 
Fields

Vectors 
FieldsFunctions



Ω2(ℳ)

Ω2(ℳ) Ω1(ℳ)

d→

d←
↓ ⋆2↓ ⋆1

Ω1(ℳ)

D
Electric Field Induction 2-form

B
Magnetic Field Induction 2-form

E
Electric Field Intensity 1-form

H
Magnetic Field Intensity 1-form

μϵ

Example

·D H
E·B

= d
= − d

ELECTRIC MAGNETIC

Maxwell Equations

Ampère’s law

Faraday’s law

Electric Energy Density (3 form) =  E ∧ D
Magnetic Energy Density (3 form) =  H ∧ B

Poynting Vector (2 form) =  E ∧ H

(−J)



Power flow in infinite dimensional space

• In a distributed space, power needs to 
be integrated (for 3D ):

• Volume


• Surface

n = 3

PV = ∫ℳn

ωn
P

PS = ∫∂ℳn−1

ωn−1
P

Power Densities



Natural Pairing, no extra structure needed!

Efforts and Flows in infinite dimensional systems

PV = ∫ℳn

ωn
P

PS = ∫∂ℳn−1

ωn−1
P

= ∫ℳn

ωk
e ∧ ωn−k

f

= ∫∂ℳn

ωk
e ∧ ωn−1−k

f

Efforts Flows

Example: Poynting Vector in Electromagnetism S2 = E1 ∧ H1



Example: Energy storage and continuity

H = ∫ℳn

ℋn

ℋn(xl(t)) Energy (density) -form function of a 
state -form function of time

n
l

Total energy contained in ℳn

·H = ∫ℳn

δxℋn−l ∧ ·xl

Variational derivative

Energy Storage

·ℋn = dΦn−1 + ρn Energy Continuity eq.·H = ∫ℳn−1

Φn−1 + ∫ℳn

ρn

Strong Form Weak Form



Example: Energy storage and motion

·H = ∫ℳn

δxℋn−l ∧ ·xl

·H = ∫ℳn−1

Φn−1 + ∫ℳn

ρn

Φn−1 = ωk
∂e ∧ ω(n−1)−k

∂f

∫ℳn

δxℋn−l ∧ ·xl = ∫ℳn−1

ωl
∂e ∧ ω(n−1)−l

∂f + ∫ℳn

ωm
e ∧ ωn−m

f

ρn = ωm
e ∧ ωn−m

f

Energy Continuity EquationEnergy Storage

ρnΦn−1



Stokes-Dirac Structure

∫ℳn

δxℋn−l ∧ ·xl = ∫ℳn−1

ωl
∂e ∧ ω(n−1)−l

∂f + ∫ℳn

ωm
e ∧ ωn−m

f

Energy 
Storage S-D

δxℋn−l

·xl

ω
n−

m
f

ω
me

ωl
∂e

ω(n−1)−l
∂f



Working  
on  

Fluid Dynamics  
and  

Solid mechanics 

We need more!



Differential Forms
Intuitive, minimalistic ideas

A k-form          is a completely antisysimmetric k-linear field  ωk

ωk
x,t(v1, . . , vk) ∈ ℜ scalar 

valued

is a field in 
space-time

multilinear 
on tangent 

vector 
spaces at x

ℜ



Tensor-Valued-Differential Forms
Intuitive, minimalistic ideas

A k-form          is a completely antisysimmetric k-linear field  ωk

ωk
x,t(v1, . . , vk) ∈ Txℳj

i
tensor 
valued

is a field in 
space-time

multilinear 
on tangent 

vector 
spaces at x

Txℳj
i



The Geometry of Continua 
(its essence)



Projectors
(We have no concept of orthogonality yet!)



𝒜k

𝒱n

What is the projection of  on  ? v 𝒜k

v

This is a not well posed question!



Projection
Direct Sum Decomposition
Given:  

• a Vector space  

• Two subspaces  s.t. 

(𝒱n, + , ∙ )
𝒜k, ℬ(n−k) ⊂ 𝒱n 𝒜k ∩ ℬ(n−k) = 0𝒱

 (direct sum)𝒱n = 𝒜k ⊕ ℬn−k

∀v ∈ 𝒱, ∃! a ∈ 𝒜, ∃! b ∈ ℬ, s.t. v = a + b

We write

If

We say that  is the projection of  along  and  is the projection of  along a v ℬ b v 𝒜



𝒜k

ℬ(n−k)

𝒱n

along  ? ℬ(n−k)

v

What is the projection of  on v 𝒜k

a

Answer: a

b
= a + b



ℬn

Matter

manifold
c ∈ 𝒞∞

𝒞 := Emb∞(ℬ, 𝒜)

𝔰𝔢(3) Rigid Body Motions

Connection

𝒟

Deformation Space

𝒟 ∼ ℳ(ℬ) ∋ ̂g = c*g

c

·c ∈ Tc𝒞

ℝ𝒱
Potential Energy

Tℬ

𝒮 := c(ℬ) ⊂ ℬ
̂v ∈ Γ(Tℬ) v ∈ Γ(T𝒮)
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open port-based model for ANY elastic media
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Navier Stokes Equations
On-Shell Equations (barotropic case)

informally in the aforementioned paper:9 “Energy dissipation can be
incorporated in the framework by terminating some of the ports by a
resistive relation. In this way we can represent the Navier–Stokes equa-
tions.” The present work is a geometrically thorough technical imple-
mentation of this vision in quite useful generality, namely for fluid
domains represented by arbitrary Riemannian manifolds of any
dimension. As the related work, we cite the much more special case of
a flat one-dimensional spatial domain10 where reactive flows were con-
sidered, and the fluid–solid interconnection models based on the port-
Hamiltonian theory in Refs. 11 and 12, where simplified models for
the fluid were considered.

The way to achieve the complete level of generality in this work is
by extending the differential form representation of port-Hamiltonian
fluid systems7 to tensor-valued forms and the identification of novel
duality pairings that are necessary to extend the definition of power
flows in this context. The employment of tensor-valued forms for the
geometric description of stress, in turn, was inspired by the treatment
in Ref. 13. While the present paper explicitly only treats Newtonian
fluids in order to keep the presentation focused, it is clear that all rele-
vant constructions lend themselves for extensions to a larger class of
fluids.

As additional contribution, we use the proposed geometric tools
to treat the fluid dynamics together with their thermodynamic evolu-
tion, which allows us to draw conclusions on the validity of the pro-
posed port-Hamiltonian model with respect to a general
Fourier–Navier–Stokes fluid.

Our consistent use of differential geometric language in the port-
Hamiltonian treatment of the Navier–Stokes equations is essential for
four reasons (see Refs. 5, 14, and 15 for an exposition of clodes fluid
dynamical systems in this geometric setting). First, it ensures that con-
structions and conclusions are free of involuntary coordinate artifacts,
whose absence otherwise had to be proven laboriously on a case by
case basis. Second, the differential geometric formulation connects to
recent results on numerical schemes that exploit algebraic isomor-
phisms between continuous quantities and their discretization16 (we
refer to, e.g., Refs. 17–19 for works in this direction). Third, this pro-
vides the right tool to deal with global questions, which cannot be
addressed by formulations tied to local coordinate charts. The stan-
dard vector calculus representation of the Navier–Stokes equations
already falls apart if one chooses problem adapted coordinates even in
the case of a flat fluid domain. Much more so if the domain features a
nonzero curvature or nontrivial topology.

Both are already the case for a sphere, which is the obviously rele-
vant domain for fluid flow in many practical atmospheric models,
where coordinate representations can only describe the dynamics on a
patch of the domain, but intrinsically fails to capture the evolution of
the entire vector field as a whole. Fourthly, and finally, the vector cal-
culus formulation of the Navier–Stokes equations does not contain the
information needed for their unique extension to curved fluid
domains,20 where any naive integration of tensor-valued forms is
generically meaningless.15 In order to keep the essential methodology
clear also for readers which are not practitioners of the framework, we
motivate every step taken toward the construction of the port-
Hamiltonian formulation of the Navier–Stokes-equations in this
article.

The paper is organized as follows. In Secs. II and III an overview
of the Navier–Stokes equations will be presented, respectively, in the

coordinate-dependent and geometric case. In Sec. IV the power bal-
ance in Newtonian fluids is calculated in the general case, and will
help the reader to understand the underlying reasoning behind the
definition of a port-Hamiltonian model. The port-Hamiltonian model
for ideal fluids is reviewed in Sec. V and in Sec. VI the novel model
valid for Newtonian fluids is presented. In Sec. VII some consider-
ations on the NS equations and the resulting energy balance are
drawn. Section VIII contains conclusions and future work. We refer to
Appendix B for an overview on the complete thermodynamic repre-
sentation of Newtonian fluids in the proposed differential geometric
language.

Notation. Standard differential geometric notation is used
throughout the article. The symbols used in this paper are as follows.
The mathematical model of fluid domains is a compact, orientable,
and n-dimensional Riemannian manifold M with (possibly empty)
boundary @M. The space of vector fields onM is the space of sections
CðTMÞ of the tangent bundle TM. The space of differential p-forms is
denoted by XpðMÞ and we also occasionally refer to 0-forms as func-
tions, 1-forms as covector fields, and n-forms as top-forms. For
v 2 CðTMÞ, we use the standard definitions for the interior product
by iv : XpðMÞ! Xp#1ðMÞ and the Lie derivative operatorlv acting
on tensor fields of any valence. The metric-compatible and torsion-
free covariant derivative rv , the Hodge star operator
? : XpðMÞ! Xn#pðMÞ, and the associated volume form lvol ¼ ?1 as
well as the musical operators [ : CðTMÞ! X1ðMÞ and ] : X1ðMÞ
! CðTMÞ, which, respectively, transform vector fields to 1-forms and
vice versa, are all uniquely induced by the Riemannian metric in the
standard way. When making use of Stokes theorem

Ð
Mdx ¼

Ð
@Mi
%x

for x 2 Xn#1ðMÞ, we explicitly employ the linear operator i%, some-
times referred to as the trace operator, which is the pullback of the
canonical inclusion map i : @M ,!M. When dealing with tensor-
valued forms do we adopt the additional convention that a numerical
index i 2 f1; 2g on the left or the right of a standard operator on dif-
ferential forms indicates whether the operator acts on the “first leg”
(the tensor value, which in this case needs to be a form) or on the
“second leg” (the underlying form) of the tensor-valued form on
the respective side of the operator: For an n form-valued m form
a& b, for instance, we define ?1ða& bÞ :¼ ?a& b and ?2ða& bÞ
:¼ a& ?b. For the representation of the above concepts in terms of
coordinate charts, see Ref. 13.

II. COORDINATE-DEPENDENT NAVIER–STOKES
EQUATIONS

On flat n-dimensional Euclidean space and after having chosen
Cartesian coordinates, the momentum balance equation for
Newtonian fluids can be written as the n equations

@tðqviÞ þ @mðqvmviÞ ¼ #@ipþ @msmi; (1)

where all indices range from 1 to the dimension n of the fluid domain
and repeated indices are summed over. On the left hand side of this
momentum balance equation, the scalar field q represents the mass
density of the fluid and the vector field components vi represent the
velocity vector field of the fluid. Both depend on time and their
spatial-temporal evolution is related by the supplementary mass conti-
nuity equation

@tqþ @mðqvmÞ ¼ 0: (2)
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informally in the aforementioned paper:9 “Energy dissipation can be
incorporated in the framework by terminating some of the ports by a
resistive relation. In this way we can represent the Navier–Stokes equa-
tions.” The present work is a geometrically thorough technical imple-
mentation of this vision in quite useful generality, namely for fluid
domains represented by arbitrary Riemannian manifolds of any
dimension. As the related work, we cite the much more special case of
a flat one-dimensional spatial domain10 where reactive flows were con-
sidered, and the fluid–solid interconnection models based on the port-
Hamiltonian theory in Refs. 11 and 12, where simplified models for
the fluid were considered.

The way to achieve the complete level of generality in this work is
by extending the differential form representation of port-Hamiltonian
fluid systems7 to tensor-valued forms and the identification of novel
duality pairings that are necessary to extend the definition of power
flows in this context. The employment of tensor-valued forms for the
geometric description of stress, in turn, was inspired by the treatment
in Ref. 13. While the present paper explicitly only treats Newtonian
fluids in order to keep the presentation focused, it is clear that all rele-
vant constructions lend themselves for extensions to a larger class of
fluids.

As additional contribution, we use the proposed geometric tools
to treat the fluid dynamics together with their thermodynamic evolu-
tion, which allows us to draw conclusions on the validity of the pro-
posed port-Hamiltonian model with respect to a general
Fourier–Navier–Stokes fluid.

Our consistent use of differential geometric language in the port-
Hamiltonian treatment of the Navier–Stokes equations is essential for
four reasons (see Refs. 5, 14, and 15 for an exposition of clodes fluid
dynamical systems in this geometric setting). First, it ensures that con-
structions and conclusions are free of involuntary coordinate artifacts,
whose absence otherwise had to be proven laboriously on a case by
case basis. Second, the differential geometric formulation connects to
recent results on numerical schemes that exploit algebraic isomor-
phisms between continuous quantities and their discretization16 (we
refer to, e.g., Refs. 17–19 for works in this direction). Third, this pro-
vides the right tool to deal with global questions, which cannot be
addressed by formulations tied to local coordinate charts. The stan-
dard vector calculus representation of the Navier–Stokes equations
already falls apart if one chooses problem adapted coordinates even in
the case of a flat fluid domain. Much more so if the domain features a
nonzero curvature or nontrivial topology.

Both are already the case for a sphere, which is the obviously rele-
vant domain for fluid flow in many practical atmospheric models,
where coordinate representations can only describe the dynamics on a
patch of the domain, but intrinsically fails to capture the evolution of
the entire vector field as a whole. Fourthly, and finally, the vector cal-
culus formulation of the Navier–Stokes equations does not contain the
information needed for their unique extension to curved fluid
domains,20 where any naive integration of tensor-valued forms is
generically meaningless.15 In order to keep the essential methodology
clear also for readers which are not practitioners of the framework, we
motivate every step taken toward the construction of the port-
Hamiltonian formulation of the Navier–Stokes-equations in this
article.

The paper is organized as follows. In Secs. II and III an overview
of the Navier–Stokes equations will be presented, respectively, in the

coordinate-dependent and geometric case. In Sec. IV the power bal-
ance in Newtonian fluids is calculated in the general case, and will
help the reader to understand the underlying reasoning behind the
definition of a port-Hamiltonian model. The port-Hamiltonian model
for ideal fluids is reviewed in Sec. V and in Sec. VI the novel model
valid for Newtonian fluids is presented. In Sec. VII some consider-
ations on the NS equations and the resulting energy balance are
drawn. Section VIII contains conclusions and future work. We refer to
Appendix B for an overview on the complete thermodynamic repre-
sentation of Newtonian fluids in the proposed differential geometric
language.

Notation. Standard differential geometric notation is used
throughout the article. The symbols used in this paper are as follows.
The mathematical model of fluid domains is a compact, orientable,
and n-dimensional Riemannian manifold M with (possibly empty)
boundary @M. The space of vector fields onM is the space of sections
CðTMÞ of the tangent bundle TM. The space of differential p-forms is
denoted by XpðMÞ and we also occasionally refer to 0-forms as func-
tions, 1-forms as covector fields, and n-forms as top-forms. For
v 2 CðTMÞ, we use the standard definitions for the interior product
by iv : XpðMÞ! Xp#1ðMÞ and the Lie derivative operatorlv acting
on tensor fields of any valence. The metric-compatible and torsion-
free covariant derivative rv , the Hodge star operator
? : XpðMÞ! Xn#pðMÞ, and the associated volume form lvol ¼ ?1 as
well as the musical operators [ : CðTMÞ! X1ðMÞ and ] : X1ðMÞ
! CðTMÞ, which, respectively, transform vector fields to 1-forms and
vice versa, are all uniquely induced by the Riemannian metric in the
standard way. When making use of Stokes theorem

Ð
Mdx ¼

Ð
@Mi
%x

for x 2 Xn#1ðMÞ, we explicitly employ the linear operator i%, some-
times referred to as the trace operator, which is the pullback of the
canonical inclusion map i : @M ,!M. When dealing with tensor-
valued forms do we adopt the additional convention that a numerical
index i 2 f1; 2g on the left or the right of a standard operator on dif-
ferential forms indicates whether the operator acts on the “first leg”
(the tensor value, which in this case needs to be a form) or on the
“second leg” (the underlying form) of the tensor-valued form on
the respective side of the operator: For an n form-valued m form
a& b, for instance, we define ?1ða& bÞ :¼ ?a& b and ?2ða& bÞ
:¼ a& ?b. For the representation of the above concepts in terms of
coordinate charts, see Ref. 13.

II. COORDINATE-DEPENDENT NAVIER–STOKES
EQUATIONS

On flat n-dimensional Euclidean space and after having chosen
Cartesian coordinates, the momentum balance equation for
Newtonian fluids can be written as the n equations

@tðqviÞ þ @mðqvmviÞ ¼ #@ipþ @msmi; (1)

where all indices range from 1 to the dimension n of the fluid domain
and repeated indices are summed over. On the left hand side of this
momentum balance equation, the scalar field q represents the mass
density of the fluid and the vector field components vi represent the
velocity vector field of the fluid. Both depend on time and their
spatial-temporal evolution is related by the supplementary mass conti-
nuity equation

@tqþ @mðqvmÞ ¼ 0: (2)
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On the right hand side of the momentum balance equation, the second
rank tensor field s models the viscous stress of the fluid and is, for
Newtonian fluids, equal to

sij :¼ kð@mvmÞdij þ jð@ivj þ @jviÞ (3)

in terms of the fluid velocity field and two non-negative constants, the
so-called bulk viscosity constant k and the shear viscosity constant j.
Finally, the scalar field p represents the fluid’s static pressure and is
governed by thermodynamic equations of state corresponding to the
specific thermodynamic assumptions one entertains for any given
fluid. Notice, from the right hand side of the balance equation, that we
chose to not encode the pressure p of the fluid as yet another contribu-
tion to the stress tensor s, as it is often done, but instead to keep it as a
separate quantity of thermodynamic nature. For definiteness, we con-
sider the extraordinarily simple case of barotropic fluids, which are
compressible fluids whose pressure field p is completely determined by
the mass density q and the potential UðqÞ for the internal energy den-
sity qUðqÞ of the fluid, by means of the equation of state

p ¼ q2 @U
@q
ðqÞ; (4)

which effectively completely decouples the fluid from the thermody-
namic domain. Since the central constructions of the present article
are not concerned with thermodynamical issues and, indeed, can be
extended to include rather generic thermodynamics assumptions, such
as those underlying the Fourier–Navier–Stokes fluid models, the loss
of generality incurred by our consideration of barotropic fluids is ines-
sential to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between the pro-
posed model and the complete fluid model including thermodynamics
in Appendix B.

What buys the above simplicity of formulation of the momentum
balance equation (1), continuity equation (2), and the Newtonian vis-
cous stress tensor (3) is only the combination of flatness of the under-
lying space and the thus enabled choice of Cartesian coordinates. This
implies particular numerical coincidences: The components of the
metric tensor dij of the inverse metric tensor dij and the components dji
of the Kronecker symbol numerically all coincide in these coordinates,
dij ¼ dij ¼ dij; which, in turn, implies that also @i :¼ dij@j ¼ @jdij
¼ @i. This simplicity, however, comes at the cost of seriously obscur-
ing the coordinate-independent nature of both the equations and the
objects determined by it. The often employed vector calculus formula-
tion of these equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of flatness of
the underlying space and the need to choose Cartesian coordinates on
top of that. We will therefore not dwell on the above formulation but
replace it in the Sec. III by the already known proper coordinate-
independent formulation of the Navier–Stokes equation. Not only
does this repair the above-mentioned shortcomings for flat domains
but it also directly generalizes the Navier–Stokes equations for fluid
flow on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER–STOKES EQUATIONS

In this section we introduce the coordinate-free formulation of
the momentum conservation equation (1), which can be found, e.g., in
Refs. 13 and 21. Whether one adheres to a flat domain for the fluid or

generalizes to an n-dimensional Riemannian manifold, it does not
make a difference for the coordinate-independent formulation that we
employ in this work. We will hence suppose from the beginning that
the domain is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of all rele-
vant integrals and the applicability of Stokes’ theorem, we impose the
physically unproblematic assumption that the manifold is both com-
pact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity equation take
their geometrically most insightful form in this setting when expressed
in terms of differential forms of various degrees. Indeed, instead of a
time-dependent fluid velocity vector field v 2 CðTMÞ, we rather use
the covector field (i.e., 1-form)

! :¼ gðv; %Þ 2 X1ðMÞ

and instead of the scalar field q, we employ the mass density top form
(i.e., n-form)

l :¼ ?q 2 XnðMÞ;

where the operator ? denotes the Hodge dual on the Riemannian
manifold (M, g).

The information contained in the viscous stress tensor, finally,
is now encoded in a covector-valued ðn& 1Þ-form t 2 X1ðMÞ
'Xn&1ðMÞ. The motivation of such tensorial nature for stress in this
geometric formulation can be extensively found in Refs. 13, 21, and 22
and the intuition is that stress, in a continuum, needs to be integrated
over a surface to get a traction force, i.e., a covector. We are thus
tempted to write the expression for the traction force acting on an
ðn& 1Þ-dimensional surface S ( M as ft ¼

Ð
St where the integra-

tion acts only on the “form part,” i.e., the second leg of t. However,
even if we can give a component-wise meaning to this integral on a
flat space, integration of tensor–valued forms is not defined on general
Riemannian manifolds. The intuitive reason for this is that the basis
vectors onM can change from point to point on a curved space, which
does not permit factoring the necessary basis vectors out of the inte-
gral. In other terms, the sum/integration of (co)vector belonging to dif-
ferent (co)tangent spaces is not a well defined operation on
Riemannian manifolds.13,14 Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be of fun-
damental importance in this work are the rate of work, or power, gen-
erated by the stress on a surface. To define it we introduce the useful
binary operator

_̂ : ðX1ðMÞ ' XlðMÞÞ ) ðCðTMÞ ' XkðMÞÞ! XlþkðMÞ; (5)

taking as input two tensor valued forms with dual properties on the
first leg, which are paired producing a function, while the forms char-
acterizing the second leg of the arguments are simply wedged together
with the usual ! acting on scalar valued differential forms. As an
example of application of this operator, the following identity which
will be used later is valid in case a 2 X1ðMÞ ' XnðMÞ and
v 2 CðTMÞ:

a _̂ v ¼ ?iv ?2 a; (6)

where the fluid velocity vector field v is uniquely identified with a vec-
tor valued zero-form v 2 CðTMÞ ' X0ðMÞ.
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On the right hand side of the momentum balance equation, the second
rank tensor field s models the viscous stress of the fluid and is, for
Newtonian fluids, equal to

sij :¼ kð@mvmÞdij þ jð@ivj þ @jviÞ (3)

in terms of the fluid velocity field and two non-negative constants, the
so-called bulk viscosity constant k and the shear viscosity constant j.
Finally, the scalar field p represents the fluid’s static pressure and is
governed by thermodynamic equations of state corresponding to the
specific thermodynamic assumptions one entertains for any given
fluid. Notice, from the right hand side of the balance equation, that we
chose to not encode the pressure p of the fluid as yet another contribu-
tion to the stress tensor s, as it is often done, but instead to keep it as a
separate quantity of thermodynamic nature. For definiteness, we con-
sider the extraordinarily simple case of barotropic fluids, which are
compressible fluids whose pressure field p is completely determined by
the mass density q and the potential UðqÞ for the internal energy den-
sity qUðqÞ of the fluid, by means of the equation of state

p ¼ q2 @U
@q
ðqÞ; (4)

which effectively completely decouples the fluid from the thermody-
namic domain. Since the central constructions of the present article
are not concerned with thermodynamical issues and, indeed, can be
extended to include rather generic thermodynamics assumptions, such
as those underlying the Fourier–Navier–Stokes fluid models, the loss
of generality incurred by our consideration of barotropic fluids is ines-
sential to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between the pro-
posed model and the complete fluid model including thermodynamics
in Appendix B.

What buys the above simplicity of formulation of the momentum
balance equation (1), continuity equation (2), and the Newtonian vis-
cous stress tensor (3) is only the combination of flatness of the under-
lying space and the thus enabled choice of Cartesian coordinates. This
implies particular numerical coincidences: The components of the
metric tensor dij of the inverse metric tensor dij and the components dji
of the Kronecker symbol numerically all coincide in these coordinates,
dij ¼ dij ¼ dij; which, in turn, implies that also @i :¼ dij@j ¼ @jdij
¼ @i. This simplicity, however, comes at the cost of seriously obscur-
ing the coordinate-independent nature of both the equations and the
objects determined by it. The often employed vector calculus formula-
tion of these equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of flatness of
the underlying space and the need to choose Cartesian coordinates on
top of that. We will therefore not dwell on the above formulation but
replace it in the Sec. III by the already known proper coordinate-
independent formulation of the Navier–Stokes equation. Not only
does this repair the above-mentioned shortcomings for flat domains
but it also directly generalizes the Navier–Stokes equations for fluid
flow on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER–STOKES EQUATIONS

In this section we introduce the coordinate-free formulation of
the momentum conservation equation (1), which can be found, e.g., in
Refs. 13 and 21. Whether one adheres to a flat domain for the fluid or

generalizes to an n-dimensional Riemannian manifold, it does not
make a difference for the coordinate-independent formulation that we
employ in this work. We will hence suppose from the beginning that
the domain is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of all rele-
vant integrals and the applicability of Stokes’ theorem, we impose the
physically unproblematic assumption that the manifold is both com-
pact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity equation take
their geometrically most insightful form in this setting when expressed
in terms of differential forms of various degrees. Indeed, instead of a
time-dependent fluid velocity vector field v 2 CðTMÞ, we rather use
the covector field (i.e., 1-form)

! :¼ gðv; %Þ 2 X1ðMÞ

and instead of the scalar field q, we employ the mass density top form
(i.e., n-form)

l :¼ ?q 2 XnðMÞ;

where the operator ? denotes the Hodge dual on the Riemannian
manifold (M, g).

The information contained in the viscous stress tensor, finally,
is now encoded in a covector-valued ðn& 1Þ-form t 2 X1ðMÞ
'Xn&1ðMÞ. The motivation of such tensorial nature for stress in this
geometric formulation can be extensively found in Refs. 13, 21, and 22
and the intuition is that stress, in a continuum, needs to be integrated
over a surface to get a traction force, i.e., a covector. We are thus
tempted to write the expression for the traction force acting on an
ðn& 1Þ-dimensional surface S ( M as ft ¼

Ð
St where the integra-

tion acts only on the “form part,” i.e., the second leg of t. However,
even if we can give a component-wise meaning to this integral on a
flat space, integration of tensor–valued forms is not defined on general
Riemannian manifolds. The intuitive reason for this is that the basis
vectors onM can change from point to point on a curved space, which
does not permit factoring the necessary basis vectors out of the inte-
gral. In other terms, the sum/integration of (co)vector belonging to dif-
ferent (co)tangent spaces is not a well defined operation on
Riemannian manifolds.13,14 Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be of fun-
damental importance in this work are the rate of work, or power, gen-
erated by the stress on a surface. To define it we introduce the useful
binary operator

_̂ : ðX1ðMÞ ' XlðMÞÞ ) ðCðTMÞ ' XkðMÞÞ! XlþkðMÞ; (5)

taking as input two tensor valued forms with dual properties on the
first leg, which are paired producing a function, while the forms char-
acterizing the second leg of the arguments are simply wedged together
with the usual ! acting on scalar valued differential forms. As an
example of application of this operator, the following identity which
will be used later is valid in case a 2 X1ðMÞ ' XnðMÞ and
v 2 CðTMÞ:

a _̂ v ¼ ?iv ?2 a; (6)

where the fluid velocity vector field v is uniquely identified with a vec-
tor valued zero-form v 2 CðTMÞ ' X0ðMÞ.
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On the right hand side of the momentum balance equation, the second
rank tensor field s models the viscous stress of the fluid and is, for
Newtonian fluids, equal to

sij :¼ kð@mvmÞdij þ jð@ivj þ @jviÞ (3)

in terms of the fluid velocity field and two non-negative constants, the
so-called bulk viscosity constant k and the shear viscosity constant j.
Finally, the scalar field p represents the fluid’s static pressure and is
governed by thermodynamic equations of state corresponding to the
specific thermodynamic assumptions one entertains for any given
fluid. Notice, from the right hand side of the balance equation, that we
chose to not encode the pressure p of the fluid as yet another contribu-
tion to the stress tensor s, as it is often done, but instead to keep it as a
separate quantity of thermodynamic nature. For definiteness, we con-
sider the extraordinarily simple case of barotropic fluids, which are
compressible fluids whose pressure field p is completely determined by
the mass density q and the potential UðqÞ for the internal energy den-
sity qUðqÞ of the fluid, by means of the equation of state

p ¼ q2 @U
@q
ðqÞ; (4)

which effectively completely decouples the fluid from the thermody-
namic domain. Since the central constructions of the present article
are not concerned with thermodynamical issues and, indeed, can be
extended to include rather generic thermodynamics assumptions, such
as those underlying the Fourier–Navier–Stokes fluid models, the loss
of generality incurred by our consideration of barotropic fluids is ines-
sential to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between the pro-
posed model and the complete fluid model including thermodynamics
in Appendix B.

What buys the above simplicity of formulation of the momentum
balance equation (1), continuity equation (2), and the Newtonian vis-
cous stress tensor (3) is only the combination of flatness of the under-
lying space and the thus enabled choice of Cartesian coordinates. This
implies particular numerical coincidences: The components of the
metric tensor dij of the inverse metric tensor dij and the components dji
of the Kronecker symbol numerically all coincide in these coordinates,
dij ¼ dij ¼ dij; which, in turn, implies that also @i :¼ dij@j ¼ @jdij
¼ @i. This simplicity, however, comes at the cost of seriously obscur-
ing the coordinate-independent nature of both the equations and the
objects determined by it. The often employed vector calculus formula-
tion of these equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of flatness of
the underlying space and the need to choose Cartesian coordinates on
top of that. We will therefore not dwell on the above formulation but
replace it in the Sec. III by the already known proper coordinate-
independent formulation of the Navier–Stokes equation. Not only
does this repair the above-mentioned shortcomings for flat domains
but it also directly generalizes the Navier–Stokes equations for fluid
flow on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER–STOKES EQUATIONS

In this section we introduce the coordinate-free formulation of
the momentum conservation equation (1), which can be found, e.g., in
Refs. 13 and 21. Whether one adheres to a flat domain for the fluid or

generalizes to an n-dimensional Riemannian manifold, it does not
make a difference for the coordinate-independent formulation that we
employ in this work. We will hence suppose from the beginning that
the domain is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of all rele-
vant integrals and the applicability of Stokes’ theorem, we impose the
physically unproblematic assumption that the manifold is both com-
pact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity equation take
their geometrically most insightful form in this setting when expressed
in terms of differential forms of various degrees. Indeed, instead of a
time-dependent fluid velocity vector field v 2 CðTMÞ, we rather use
the covector field (i.e., 1-form)

! :¼ gðv; %Þ 2 X1ðMÞ

and instead of the scalar field q, we employ the mass density top form
(i.e., n-form)

l :¼ ?q 2 XnðMÞ;

where the operator ? denotes the Hodge dual on the Riemannian
manifold (M, g).

The information contained in the viscous stress tensor, finally,
is now encoded in a covector-valued ðn& 1Þ-form t 2 X1ðMÞ
'Xn&1ðMÞ. The motivation of such tensorial nature for stress in this
geometric formulation can be extensively found in Refs. 13, 21, and 22
and the intuition is that stress, in a continuum, needs to be integrated
over a surface to get a traction force, i.e., a covector. We are thus
tempted to write the expression for the traction force acting on an
ðn& 1Þ-dimensional surface S ( M as ft ¼

Ð
St where the integra-

tion acts only on the “form part,” i.e., the second leg of t. However,
even if we can give a component-wise meaning to this integral on a
flat space, integration of tensor–valued forms is not defined on general
Riemannian manifolds. The intuitive reason for this is that the basis
vectors onM can change from point to point on a curved space, which
does not permit factoring the necessary basis vectors out of the inte-
gral. In other terms, the sum/integration of (co)vector belonging to dif-
ferent (co)tangent spaces is not a well defined operation on
Riemannian manifolds.13,14 Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be of fun-
damental importance in this work are the rate of work, or power, gen-
erated by the stress on a surface. To define it we introduce the useful
binary operator

_̂ : ðX1ðMÞ ' XlðMÞÞ ) ðCðTMÞ ' XkðMÞÞ! XlþkðMÞ; (5)

taking as input two tensor valued forms with dual properties on the
first leg, which are paired producing a function, while the forms char-
acterizing the second leg of the arguments are simply wedged together
with the usual ! acting on scalar valued differential forms. As an
example of application of this operator, the following identity which
will be used later is valid in case a 2 X1ðMÞ ' XnðMÞ and
v 2 CðTMÞ:

a _̂ v ¼ ?iv ?2 a; (6)

where the fluid velocity vector field v is uniquely identified with a vec-
tor valued zero-form v 2 CðTMÞ ' X0ðMÞ.
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co-vector representation of flow

On the right hand side of the momentum balance equation, the second
rank tensor field s models the viscous stress of the fluid and is, for
Newtonian fluids, equal to

sij :¼ kð@mvmÞdij þ jð@ivj þ @jviÞ (3)

in terms of the fluid velocity field and two non-negative constants, the
so-called bulk viscosity constant k and the shear viscosity constant j.
Finally, the scalar field p represents the fluid’s static pressure and is
governed by thermodynamic equations of state corresponding to the
specific thermodynamic assumptions one entertains for any given
fluid. Notice, from the right hand side of the balance equation, that we
chose to not encode the pressure p of the fluid as yet another contribu-
tion to the stress tensor s, as it is often done, but instead to keep it as a
separate quantity of thermodynamic nature. For definiteness, we con-
sider the extraordinarily simple case of barotropic fluids, which are
compressible fluids whose pressure field p is completely determined by
the mass density q and the potential UðqÞ for the internal energy den-
sity qUðqÞ of the fluid, by means of the equation of state

p ¼ q2 @U
@q
ðqÞ; (4)

which effectively completely decouples the fluid from the thermody-
namic domain. Since the central constructions of the present article
are not concerned with thermodynamical issues and, indeed, can be
extended to include rather generic thermodynamics assumptions, such
as those underlying the Fourier–Navier–Stokes fluid models, the loss
of generality incurred by our consideration of barotropic fluids is ines-
sential to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between the pro-
posed model and the complete fluid model including thermodynamics
in Appendix B.

What buys the above simplicity of formulation of the momentum
balance equation (1), continuity equation (2), and the Newtonian vis-
cous stress tensor (3) is only the combination of flatness of the under-
lying space and the thus enabled choice of Cartesian coordinates. This
implies particular numerical coincidences: The components of the
metric tensor dij of the inverse metric tensor dij and the components dji
of the Kronecker symbol numerically all coincide in these coordinates,
dij ¼ dij ¼ dij; which, in turn, implies that also @i :¼ dij@j ¼ @jdij
¼ @i. This simplicity, however, comes at the cost of seriously obscur-
ing the coordinate-independent nature of both the equations and the
objects determined by it. The often employed vector calculus formula-
tion of these equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of flatness of
the underlying space and the need to choose Cartesian coordinates on
top of that. We will therefore not dwell on the above formulation but
replace it in the Sec. III by the already known proper coordinate-
independent formulation of the Navier–Stokes equation. Not only
does this repair the above-mentioned shortcomings for flat domains
but it also directly generalizes the Navier–Stokes equations for fluid
flow on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER–STOKES EQUATIONS

In this section we introduce the coordinate-free formulation of
the momentum conservation equation (1), which can be found, e.g., in
Refs. 13 and 21. Whether one adheres to a flat domain for the fluid or

generalizes to an n-dimensional Riemannian manifold, it does not
make a difference for the coordinate-independent formulation that we
employ in this work. We will hence suppose from the beginning that
the domain is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of all rele-
vant integrals and the applicability of Stokes’ theorem, we impose the
physically unproblematic assumption that the manifold is both com-
pact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity equation take
their geometrically most insightful form in this setting when expressed
in terms of differential forms of various degrees. Indeed, instead of a
time-dependent fluid velocity vector field v 2 CðTMÞ, we rather use
the covector field (i.e., 1-form)

! :¼ gðv; %Þ 2 X1ðMÞ

and instead of the scalar field q, we employ the mass density top form
(i.e., n-form)

l :¼ ?q 2 XnðMÞ;

where the operator ? denotes the Hodge dual on the Riemannian
manifold (M, g).

The information contained in the viscous stress tensor, finally,
is now encoded in a covector-valued ðn& 1Þ-form t 2 X1ðMÞ
'Xn&1ðMÞ. The motivation of such tensorial nature for stress in this
geometric formulation can be extensively found in Refs. 13, 21, and 22
and the intuition is that stress, in a continuum, needs to be integrated
over a surface to get a traction force, i.e., a covector. We are thus
tempted to write the expression for the traction force acting on an
ðn& 1Þ-dimensional surface S ( M as ft ¼

Ð
St where the integra-

tion acts only on the “form part,” i.e., the second leg of t. However,
even if we can give a component-wise meaning to this integral on a
flat space, integration of tensor–valued forms is not defined on general
Riemannian manifolds. The intuitive reason for this is that the basis
vectors onM can change from point to point on a curved space, which
does not permit factoring the necessary basis vectors out of the inte-
gral. In other terms, the sum/integration of (co)vector belonging to dif-
ferent (co)tangent spaces is not a well defined operation on
Riemannian manifolds.13,14 Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be of fun-
damental importance in this work are the rate of work, or power, gen-
erated by the stress on a surface. To define it we introduce the useful
binary operator

_̂ : ðX1ðMÞ ' XlðMÞÞ ) ðCðTMÞ ' XkðMÞÞ! XlþkðMÞ; (5)

taking as input two tensor valued forms with dual properties on the
first leg, which are paired producing a function, while the forms char-
acterizing the second leg of the arguments are simply wedged together
with the usual ! acting on scalar valued differential forms. As an
example of application of this operator, the following identity which
will be used later is valid in case a 2 X1ðMÞ ' XnðMÞ and
v 2 CðTMÞ:

a _̂ v ¼ ?iv ?2 a; (6)

where the fluid velocity vector field v is uniquely identified with a vec-
tor valued zero-form v 2 CðTMÞ ' X0ðMÞ.
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mass top-form

On the right hand side of the momentum balance equation, the second
rank tensor field s models the viscous stress of the fluid and is, for
Newtonian fluids, equal to

sij :¼ kð@mvmÞdij þ jð@ivj þ @jviÞ (3)

in terms of the fluid velocity field and two non-negative constants, the
so-called bulk viscosity constant k and the shear viscosity constant j.
Finally, the scalar field p represents the fluid’s static pressure and is
governed by thermodynamic equations of state corresponding to the
specific thermodynamic assumptions one entertains for any given
fluid. Notice, from the right hand side of the balance equation, that we
chose to not encode the pressure p of the fluid as yet another contribu-
tion to the stress tensor s, as it is often done, but instead to keep it as a
separate quantity of thermodynamic nature. For definiteness, we con-
sider the extraordinarily simple case of barotropic fluids, which are
compressible fluids whose pressure field p is completely determined by
the mass density q and the potential UðqÞ for the internal energy den-
sity qUðqÞ of the fluid, by means of the equation of state

p ¼ q2 @U
@q
ðqÞ; (4)

which effectively completely decouples the fluid from the thermody-
namic domain. Since the central constructions of the present article
are not concerned with thermodynamical issues and, indeed, can be
extended to include rather generic thermodynamics assumptions, such
as those underlying the Fourier–Navier–Stokes fluid models, the loss
of generality incurred by our consideration of barotropic fluids is ines-
sential to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between the pro-
posed model and the complete fluid model including thermodynamics
in Appendix B.

What buys the above simplicity of formulation of the momentum
balance equation (1), continuity equation (2), and the Newtonian vis-
cous stress tensor (3) is only the combination of flatness of the under-
lying space and the thus enabled choice of Cartesian coordinates. This
implies particular numerical coincidences: The components of the
metric tensor dij of the inverse metric tensor dij and the components dji
of the Kronecker symbol numerically all coincide in these coordinates,
dij ¼ dij ¼ dij; which, in turn, implies that also @i :¼ dij@j ¼ @jdij
¼ @i. This simplicity, however, comes at the cost of seriously obscur-
ing the coordinate-independent nature of both the equations and the
objects determined by it. The often employed vector calculus formula-
tion of these equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of flatness of
the underlying space and the need to choose Cartesian coordinates on
top of that. We will therefore not dwell on the above formulation but
replace it in the Sec. III by the already known proper coordinate-
independent formulation of the Navier–Stokes equation. Not only
does this repair the above-mentioned shortcomings for flat domains
but it also directly generalizes the Navier–Stokes equations for fluid
flow on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER–STOKES EQUATIONS

In this section we introduce the coordinate-free formulation of
the momentum conservation equation (1), which can be found, e.g., in
Refs. 13 and 21. Whether one adheres to a flat domain for the fluid or

generalizes to an n-dimensional Riemannian manifold, it does not
make a difference for the coordinate-independent formulation that we
employ in this work. We will hence suppose from the beginning that
the domain is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of all rele-
vant integrals and the applicability of Stokes’ theorem, we impose the
physically unproblematic assumption that the manifold is both com-
pact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity equation take
their geometrically most insightful form in this setting when expressed
in terms of differential forms of various degrees. Indeed, instead of a
time-dependent fluid velocity vector field v 2 CðTMÞ, we rather use
the covector field (i.e., 1-form)

! :¼ gðv; %Þ 2 X1ðMÞ

and instead of the scalar field q, we employ the mass density top form
(i.e., n-form)

l :¼ ?q 2 XnðMÞ;

where the operator ? denotes the Hodge dual on the Riemannian
manifold (M, g).

The information contained in the viscous stress tensor, finally,
is now encoded in a covector-valued ðn& 1Þ-form t 2 X1ðMÞ
'Xn&1ðMÞ. The motivation of such tensorial nature for stress in this
geometric formulation can be extensively found in Refs. 13, 21, and 22
and the intuition is that stress, in a continuum, needs to be integrated
over a surface to get a traction force, i.e., a covector. We are thus
tempted to write the expression for the traction force acting on an
ðn& 1Þ-dimensional surface S ( M as ft ¼

Ð
St where the integra-

tion acts only on the “form part,” i.e., the second leg of t. However,
even if we can give a component-wise meaning to this integral on a
flat space, integration of tensor–valued forms is not defined on general
Riemannian manifolds. The intuitive reason for this is that the basis
vectors onM can change from point to point on a curved space, which
does not permit factoring the necessary basis vectors out of the inte-
gral. In other terms, the sum/integration of (co)vector belonging to dif-
ferent (co)tangent spaces is not a well defined operation on
Riemannian manifolds.13,14 Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be of fun-
damental importance in this work are the rate of work, or power, gen-
erated by the stress on a surface. To define it we introduce the useful
binary operator

_̂ : ðX1ðMÞ ' XlðMÞÞ ) ðCðTMÞ ' XkðMÞÞ! XlþkðMÞ; (5)

taking as input two tensor valued forms with dual properties on the
first leg, which are paired producing a function, while the forms char-
acterizing the second leg of the arguments are simply wedged together
with the usual ! acting on scalar valued differential forms. As an
example of application of this operator, the following identity which
will be used later is valid in case a 2 X1ðMÞ ' XnðMÞ and
v 2 CðTMÞ:

a _̂ v ¼ ?iv ?2 a; (6)

where the fluid velocity vector field v is uniquely identified with a vec-
tor valued zero-form v 2 CðTMÞ ' X0ðMÞ.
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On the right hand side of the momentum balance equation, the second
rank tensor field s models the viscous stress of the fluid and is, for
Newtonian fluids, equal to

sij :¼ kð@mvmÞdij þ jð@ivj þ @jviÞ (3)

in terms of the fluid velocity field and two non-negative constants, the
so-called bulk viscosity constant k and the shear viscosity constant j.
Finally, the scalar field p represents the fluid’s static pressure and is
governed by thermodynamic equations of state corresponding to the
specific thermodynamic assumptions one entertains for any given
fluid. Notice, from the right hand side of the balance equation, that we
chose to not encode the pressure p of the fluid as yet another contribu-
tion to the stress tensor s, as it is often done, but instead to keep it as a
separate quantity of thermodynamic nature. For definiteness, we con-
sider the extraordinarily simple case of barotropic fluids, which are
compressible fluids whose pressure field p is completely determined by
the mass density q and the potential UðqÞ for the internal energy den-
sity qUðqÞ of the fluid, by means of the equation of state

p ¼ q2 @U
@q
ðqÞ; (4)

which effectively completely decouples the fluid from the thermody-
namic domain. Since the central constructions of the present article
are not concerned with thermodynamical issues and, indeed, can be
extended to include rather generic thermodynamics assumptions, such
as those underlying the Fourier–Navier–Stokes fluid models, the loss
of generality incurred by our consideration of barotropic fluids is ines-
sential to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between the pro-
posed model and the complete fluid model including thermodynamics
in Appendix B.

What buys the above simplicity of formulation of the momentum
balance equation (1), continuity equation (2), and the Newtonian vis-
cous stress tensor (3) is only the combination of flatness of the under-
lying space and the thus enabled choice of Cartesian coordinates. This
implies particular numerical coincidences: The components of the
metric tensor dij of the inverse metric tensor dij and the components dji
of the Kronecker symbol numerically all coincide in these coordinates,
dij ¼ dij ¼ dij; which, in turn, implies that also @i :¼ dij@j ¼ @jdij
¼ @i. This simplicity, however, comes at the cost of seriously obscur-
ing the coordinate-independent nature of both the equations and the
objects determined by it. The often employed vector calculus formula-
tion of these equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of flatness of
the underlying space and the need to choose Cartesian coordinates on
top of that. We will therefore not dwell on the above formulation but
replace it in the Sec. III by the already known proper coordinate-
independent formulation of the Navier–Stokes equation. Not only
does this repair the above-mentioned shortcomings for flat domains
but it also directly generalizes the Navier–Stokes equations for fluid
flow on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER–STOKES EQUATIONS

In this section we introduce the coordinate-free formulation of
the momentum conservation equation (1), which can be found, e.g., in
Refs. 13 and 21. Whether one adheres to a flat domain for the fluid or

generalizes to an n-dimensional Riemannian manifold, it does not
make a difference for the coordinate-independent formulation that we
employ in this work. We will hence suppose from the beginning that
the domain is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of all rele-
vant integrals and the applicability of Stokes’ theorem, we impose the
physically unproblematic assumption that the manifold is both com-
pact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity equation take
their geometrically most insightful form in this setting when expressed
in terms of differential forms of various degrees. Indeed, instead of a
time-dependent fluid velocity vector field v 2 CðTMÞ, we rather use
the covector field (i.e., 1-form)

! :¼ gðv; %Þ 2 X1ðMÞ

and instead of the scalar field q, we employ the mass density top form
(i.e., n-form)

l :¼ ?q 2 XnðMÞ;

where the operator ? denotes the Hodge dual on the Riemannian
manifold (M, g).

The information contained in the viscous stress tensor, finally,
is now encoded in a covector-valued ðn& 1Þ-form t 2 X1ðMÞ
'Xn&1ðMÞ. The motivation of such tensorial nature for stress in this
geometric formulation can be extensively found in Refs. 13, 21, and 22
and the intuition is that stress, in a continuum, needs to be integrated
over a surface to get a traction force, i.e., a covector. We are thus
tempted to write the expression for the traction force acting on an
ðn& 1Þ-dimensional surface S ( M as ft ¼

Ð
St where the integra-

tion acts only on the “form part,” i.e., the second leg of t. However,
even if we can give a component-wise meaning to this integral on a
flat space, integration of tensor–valued forms is not defined on general
Riemannian manifolds. The intuitive reason for this is that the basis
vectors onM can change from point to point on a curved space, which
does not permit factoring the necessary basis vectors out of the inte-
gral. In other terms, the sum/integration of (co)vector belonging to dif-
ferent (co)tangent spaces is not a well defined operation on
Riemannian manifolds.13,14 Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be of fun-
damental importance in this work are the rate of work, or power, gen-
erated by the stress on a surface. To define it we introduce the useful
binary operator

_̂ : ðX1ðMÞ ' XlðMÞÞ ) ðCðTMÞ ' XkðMÞÞ! XlþkðMÞ; (5)

taking as input two tensor valued forms with dual properties on the
first leg, which are paired producing a function, while the forms char-
acterizing the second leg of the arguments are simply wedged together
with the usual ! acting on scalar valued differential forms. As an
example of application of this operator, the following identity which
will be used later is valid in case a 2 X1ðMÞ ' XnðMÞ and
v 2 CðTMÞ:

a _̂ v ¼ ?iv ?2 a; (6)

where the fluid velocity vector field v is uniquely identified with a vec-
tor valued zero-form v 2 CðTMÞ ' X0ðMÞ.
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viscous stress tensor

On the right hand side of the momentum balance equation, the second
rank tensor field s models the viscous stress of the fluid and is, for
Newtonian fluids, equal to

sij :¼ kð@mvmÞdij þ jð@ivj þ @jviÞ (3)

in terms of the fluid velocity field and two non-negative constants, the
so-called bulk viscosity constant k and the shear viscosity constant j.
Finally, the scalar field p represents the fluid’s static pressure and is
governed by thermodynamic equations of state corresponding to the
specific thermodynamic assumptions one entertains for any given
fluid. Notice, from the right hand side of the balance equation, that we
chose to not encode the pressure p of the fluid as yet another contribu-
tion to the stress tensor s, as it is often done, but instead to keep it as a
separate quantity of thermodynamic nature. For definiteness, we con-
sider the extraordinarily simple case of barotropic fluids, which are
compressible fluids whose pressure field p is completely determined by
the mass density q and the potential UðqÞ for the internal energy den-
sity qUðqÞ of the fluid, by means of the equation of state

p ¼ q2 @U
@q
ðqÞ; (4)

which effectively completely decouples the fluid from the thermody-
namic domain. Since the central constructions of the present article
are not concerned with thermodynamical issues and, indeed, can be
extended to include rather generic thermodynamics assumptions, such
as those underlying the Fourier–Navier–Stokes fluid models, the loss
of generality incurred by our consideration of barotropic fluids is ines-
sential to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between the pro-
posed model and the complete fluid model including thermodynamics
in Appendix B.

What buys the above simplicity of formulation of the momentum
balance equation (1), continuity equation (2), and the Newtonian vis-
cous stress tensor (3) is only the combination of flatness of the under-
lying space and the thus enabled choice of Cartesian coordinates. This
implies particular numerical coincidences: The components of the
metric tensor dij of the inverse metric tensor dij and the components dji
of the Kronecker symbol numerically all coincide in these coordinates,
dij ¼ dij ¼ dij; which, in turn, implies that also @i :¼ dij@j ¼ @jdij
¼ @i. This simplicity, however, comes at the cost of seriously obscur-
ing the coordinate-independent nature of both the equations and the
objects determined by it. The often employed vector calculus formula-
tion of these equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of flatness of
the underlying space and the need to choose Cartesian coordinates on
top of that. We will therefore not dwell on the above formulation but
replace it in the Sec. III by the already known proper coordinate-
independent formulation of the Navier–Stokes equation. Not only
does this repair the above-mentioned shortcomings for flat domains
but it also directly generalizes the Navier–Stokes equations for fluid
flow on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER–STOKES EQUATIONS

In this section we introduce the coordinate-free formulation of
the momentum conservation equation (1), which can be found, e.g., in
Refs. 13 and 21. Whether one adheres to a flat domain for the fluid or

generalizes to an n-dimensional Riemannian manifold, it does not
make a difference for the coordinate-independent formulation that we
employ in this work. We will hence suppose from the beginning that
the domain is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of all rele-
vant integrals and the applicability of Stokes’ theorem, we impose the
physically unproblematic assumption that the manifold is both com-
pact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity equation take
their geometrically most insightful form in this setting when expressed
in terms of differential forms of various degrees. Indeed, instead of a
time-dependent fluid velocity vector field v 2 CðTMÞ, we rather use
the covector field (i.e., 1-form)

! :¼ gðv; %Þ 2 X1ðMÞ

and instead of the scalar field q, we employ the mass density top form
(i.e., n-form)

l :¼ ?q 2 XnðMÞ;

where the operator ? denotes the Hodge dual on the Riemannian
manifold (M, g).

The information contained in the viscous stress tensor, finally,
is now encoded in a covector-valued ðn& 1Þ-form t 2 X1ðMÞ
'Xn&1ðMÞ. The motivation of such tensorial nature for stress in this
geometric formulation can be extensively found in Refs. 13, 21, and 22
and the intuition is that stress, in a continuum, needs to be integrated
over a surface to get a traction force, i.e., a covector. We are thus
tempted to write the expression for the traction force acting on an
ðn& 1Þ-dimensional surface S ( M as ft ¼

Ð
St where the integra-

tion acts only on the “form part,” i.e., the second leg of t. However,
even if we can give a component-wise meaning to this integral on a
flat space, integration of tensor–valued forms is not defined on general
Riemannian manifolds. The intuitive reason for this is that the basis
vectors onM can change from point to point on a curved space, which
does not permit factoring the necessary basis vectors out of the inte-
gral. In other terms, the sum/integration of (co)vector belonging to dif-
ferent (co)tangent spaces is not a well defined operation on
Riemannian manifolds.13,14 Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be of fun-
damental importance in this work are the rate of work, or power, gen-
erated by the stress on a surface. To define it we introduce the useful
binary operator

_̂ : ðX1ðMÞ ' XlðMÞÞ ) ðCðTMÞ ' XkðMÞÞ! XlþkðMÞ; (5)

taking as input two tensor valued forms with dual properties on the
first leg, which are paired producing a function, while the forms char-
acterizing the second leg of the arguments are simply wedged together
with the usual ! acting on scalar valued differential forms. As an
example of application of this operator, the following identity which
will be used later is valid in case a 2 X1ðMÞ ' XnðMÞ and
v 2 CðTMÞ:

a _̂ v ¼ ?iv ?2 a; (6)

where the fluid velocity vector field v is uniquely identified with a vec-
tor valued zero-form v 2 CðTMÞ ' X0ðMÞ.
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pairing

Remark 1. The previous identification stems upon the fact that a
TM-valued zero-form is just a section of the bundle TM, i.e., a vector
field, and the space CðTMÞ # X0ðMÞ is to be understood as the tensor
product of modules over the ring X0ðMÞ. In other words
CðTMÞ # X0ðMÞ :¼ fu1 # u2 j p1 % u1 ¼ p2 % u2g, where p1 and p2

are the projection maps over the bundles characterizing the two legs of
the vector-valued form. This is the technical meaning for symbol # in
the space of vector valued forms in this paper.

We can immediately give a physical interpretation of the power
generated by stress on a surface as

Pt ¼
ð

S
t _̂ v: (7)

Notice that thanks to the covector valued nature of stress, this defini-
tion provides a metric independent notion of power. In order to write
the differential momentum equation for a fluid in this language, we
need a further ingredient to calculate the net force of the stress on a
volume element, playing the role of the divergence of the Cartesian
version of the stress tensor s in (1). The key operator is the exterior
covariant derivative dr : X1ðMÞ # Xn&1ðMÞ! X1ðMÞ # XnðMÞ,
combining topological properties of the exterior derivative d and met-
ric properties of the Levi-Civita covariant differential r associated
with (M, g). Following Refs. 13 and 23, an implicit definition of dr as
the following identity on the space of top formsXnðMÞ is given as

ðdrtÞ _̂ v ¼ dðt _̂ vÞ &t _̂rv (8)

for any vector field v. Here rv 2 CðTMÞ # X1ðMÞ is the vector–val-
ued one–form representing the geometric analogous of the velocity
gradient in Euclidean space, and defined as rvðXÞ :¼ rXv for any
vector X, beingrX the covariant derivative in direction X.

In terms of the geometrically well-defined quantities above, the
momentum balance equation in convective form on a compact and
oriented Riemannian manifold takes the manifestly coordinate-
independent form13,14,21

_! þ d
"
1
2
?ð! ! ?!Þ

#
þ ivd! ¼ &

dp
?l
þ ?2drt

?l
: (9)

The left hand side of (9) is the differential form representation of the
material derivative of the velocity field while the right hand side enco-
des the way pressure and stress enter as force (covector) fields in the
equation.

When considering Newtonian fluids, t is composed as the sum
of a bulk stresstk and a shear stresstj, defined by

tk :¼ kðdivðvÞlvolÞ; (10)

tj :¼ jð?2lvgÞ; (11)

where lvol is the volume form induced by the Riemannian metric. The
bulk stress tk depends on the divergence of the velocity vector field
divðvÞ, defined as the function such that lvlvol ¼ divðvÞlvol holds
true. The shear stress tj is defined in order to model viscous stresses
whenever the transport of the metric under the flow of v is nonzero,
i.e., when v fails to be the generator of a rigid body motion. In fact
lvg extends the concept of rate of strain to Riemannian manifolds. As
a matter of fact, in term of components ðlvgÞij ¼ ri!j þrj!i, which
is the natural generalization on manifolds of the rate of strain in (3),
constructed by replacing ordinary derivatives with covariant

derivatives. It is interesting to notice that, contrarily to the bulk stress,
the shear stress does not admit a formulation using scalar valued dif-
ferential forms. In fact, being lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which is by
definition a totally antisymmetric tensor field. This is ultimately the
phenomenological reason why a geometric representation of
Navier–Stokes equations needs to be developed using (co)vector–val-
ued forms.

A computation of the above stress tensor components shows that
they encode precisely the same information as s in Cartesian coordi-
nates on a flat manifold, but are now defined on any Riemannian
manifold and are manifestly invariant with respect to the choice of
coordinates.

The continuity equation that supersedes (2) for the general case
of a Riemannian manifold and without coordinate assumptions takes
the simple geometric form7

_l ¼ &dð?l?!Þ; (12)

where it might aid the intuition to note that the right hand side is iden-
tical to minus the Lie derivativelvl. The barotropic equation of state,
which we assumed in (4) for definiteness, is already valid on any
Riemannian manifold.

IV. ENERGY IN THE FLUID AND ON-SHELL/OFF-SHELL
POWER BALANCE

The compressible Navier–Stokes momentum balance equation
(9) and continuity equation (12), together with the barotropic equa-
tion of state (4) we chose for definiteness, describe a system whose
energy loss due to viscosity is unavoidable, even if the domain bound-
aries would not allow for any exchange of matter or energy with the
environment. If such an exchange through the domain boundary is
additionally possible, the system may experience an additional loss or
gain of energy. In any case, the system does not obey conservation of
its mechanical energy which is expressed as function of the state varia-
bles ! and l as

Hð!; lÞ :¼
ð

M

1
2
?lð! ! ?!Þ þ Uð?lÞl

" #
(13)

composed of the sum of kinetic energy Kð!;lÞ ¼
Ð
M

1
2 ?lð! ! ?!Þ

and the potential energy. In this section we use the momentum and
continuity equations to compute the variation of the total energy in
the fluid domain _H , detecting the mechanisms which contribute to a
nonzero power flow in the system. Such a failure of the energy func-
tional to be a complete generator of the time evolution of a system is
the defining hallmark of a system that exchanges energy with its envi-
ronment. The description of such systems is trivially beyond the scope
of generalized Hamiltonian theory and requires a port-Hamiltonian
treatment instead.

Conscious of the fact that port-Hamiltonian theory does not rep-
resent yet a consolidated framework in physics and dynamical system
theory, we introduce some terminology which aims at helping the
reader in understanding the basics of port-based thinking. This termi-
nology is not standard in the port-Hamiltonian literature, but we
believe it is extremely useful to understand the role of the key geomet-
ric object characterizing a pH system, called Stokes Dirac Structure
(SDS), for nonpractitioner readers. Consider the energy functional
(13), dependent on the state variables ! and l, also called energy
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power dissipated

Remark 1. The previous identification stems upon the fact that a
TM-valued zero-form is just a section of the bundle TM, i.e., a vector
field, and the space CðTMÞ # X0ðMÞ is to be understood as the tensor
product of modules over the ring X0ðMÞ. In other words
CðTMÞ # X0ðMÞ :¼ fu1 # u2 j p1 % u1 ¼ p2 % u2g, where p1 and p2

are the projection maps over the bundles characterizing the two legs of
the vector-valued form. This is the technical meaning for symbol # in
the space of vector valued forms in this paper.

We can immediately give a physical interpretation of the power
generated by stress on a surface as

Pt ¼
ð

S
t _̂ v: (7)

Notice that thanks to the covector valued nature of stress, this defini-
tion provides a metric independent notion of power. In order to write
the differential momentum equation for a fluid in this language, we
need a further ingredient to calculate the net force of the stress on a
volume element, playing the role of the divergence of the Cartesian
version of the stress tensor s in (1). The key operator is the exterior
covariant derivative dr : X1ðMÞ # Xn&1ðMÞ! X1ðMÞ # XnðMÞ,
combining topological properties of the exterior derivative d and met-
ric properties of the Levi-Civita covariant differential r associated
with (M, g). Following Refs. 13 and 23, an implicit definition of dr as
the following identity on the space of top formsXnðMÞ is given as

ðdrtÞ _̂ v ¼ dðt _̂ vÞ &t _̂rv (8)

for any vector field v. Here rv 2 CðTMÞ # X1ðMÞ is the vector–val-
ued one–form representing the geometric analogous of the velocity
gradient in Euclidean space, and defined as rvðXÞ :¼ rXv for any
vector X, beingrX the covariant derivative in direction X.

In terms of the geometrically well-defined quantities above, the
momentum balance equation in convective form on a compact and
oriented Riemannian manifold takes the manifestly coordinate-
independent form13,14,21

_! þ d
"
1
2
?ð! ! ?!Þ

#
þ ivd! ¼ &

dp
?l
þ ?2drt

?l
: (9)

The left hand side of (9) is the differential form representation of the
material derivative of the velocity field while the right hand side enco-
des the way pressure and stress enter as force (covector) fields in the
equation.

When considering Newtonian fluids, t is composed as the sum
of a bulk stresstk and a shear stresstj, defined by

tk :¼ kðdivðvÞlvolÞ; (10)

tj :¼ jð?2lvgÞ; (11)

where lvol is the volume form induced by the Riemannian metric. The
bulk stress tk depends on the divergence of the velocity vector field
divðvÞ, defined as the function such that lvlvol ¼ divðvÞlvol holds
true. The shear stress tj is defined in order to model viscous stresses
whenever the transport of the metric under the flow of v is nonzero,
i.e., when v fails to be the generator of a rigid body motion. In fact
lvg extends the concept of rate of strain to Riemannian manifolds. As
a matter of fact, in term of components ðlvgÞij ¼ ri!j þrj!i, which
is the natural generalization on manifolds of the rate of strain in (3),
constructed by replacing ordinary derivatives with covariant

derivatives. It is interesting to notice that, contrarily to the bulk stress,
the shear stress does not admit a formulation using scalar valued dif-
ferential forms. In fact, being lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which is by
definition a totally antisymmetric tensor field. This is ultimately the
phenomenological reason why a geometric representation of
Navier–Stokes equations needs to be developed using (co)vector–val-
ued forms.

A computation of the above stress tensor components shows that
they encode precisely the same information as s in Cartesian coordi-
nates on a flat manifold, but are now defined on any Riemannian
manifold and are manifestly invariant with respect to the choice of
coordinates.

The continuity equation that supersedes (2) for the general case
of a Riemannian manifold and without coordinate assumptions takes
the simple geometric form7

_l ¼ &dð?l?!Þ; (12)

where it might aid the intuition to note that the right hand side is iden-
tical to minus the Lie derivativelvl. The barotropic equation of state,
which we assumed in (4) for definiteness, is already valid on any
Riemannian manifold.

IV. ENERGY IN THE FLUID AND ON-SHELL/OFF-SHELL
POWER BALANCE

The compressible Navier–Stokes momentum balance equation
(9) and continuity equation (12), together with the barotropic equa-
tion of state (4) we chose for definiteness, describe a system whose
energy loss due to viscosity is unavoidable, even if the domain bound-
aries would not allow for any exchange of matter or energy with the
environment. If such an exchange through the domain boundary is
additionally possible, the system may experience an additional loss or
gain of energy. In any case, the system does not obey conservation of
its mechanical energy which is expressed as function of the state varia-
bles ! and l as

Hð!; lÞ :¼
ð

M

1
2
?lð! ! ?!Þ þ Uð?lÞl

" #
(13)

composed of the sum of kinetic energy Kð!;lÞ ¼
Ð
M

1
2 ?lð! ! ?!Þ

and the potential energy. In this section we use the momentum and
continuity equations to compute the variation of the total energy in
the fluid domain _H , detecting the mechanisms which contribute to a
nonzero power flow in the system. Such a failure of the energy func-
tional to be a complete generator of the time evolution of a system is
the defining hallmark of a system that exchanges energy with its envi-
ronment. The description of such systems is trivially beyond the scope
of generalized Hamiltonian theory and requires a port-Hamiltonian
treatment instead.

Conscious of the fact that port-Hamiltonian theory does not rep-
resent yet a consolidated framework in physics and dynamical system
theory, we introduce some terminology which aims at helping the
reader in understanding the basics of port-based thinking. This termi-
nology is not standard in the port-Hamiltonian literature, but we
believe it is extremely useful to understand the role of the key geomet-
ric object characterizing a pH system, called Stokes Dirac Structure
(SDS), for nonpractitioner readers. Consider the energy functional
(13), dependent on the state variables ! and l, also called energy
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exterior covariant derivative

Remark 1. The previous identification stems upon the fact that a
TM-valued zero-form is just a section of the bundle TM, i.e., a vector
field, and the space CðTMÞ # X0ðMÞ is to be understood as the tensor
product of modules over the ring X0ðMÞ. In other words
CðTMÞ # X0ðMÞ :¼ fu1 # u2 j p1 % u1 ¼ p2 % u2g, where p1 and p2

are the projection maps over the bundles characterizing the two legs of
the vector-valued form. This is the technical meaning for symbol # in
the space of vector valued forms in this paper.

We can immediately give a physical interpretation of the power
generated by stress on a surface as

Pt ¼
ð

S
t _̂ v: (7)

Notice that thanks to the covector valued nature of stress, this defini-
tion provides a metric independent notion of power. In order to write
the differential momentum equation for a fluid in this language, we
need a further ingredient to calculate the net force of the stress on a
volume element, playing the role of the divergence of the Cartesian
version of the stress tensor s in (1). The key operator is the exterior
covariant derivative dr : X1ðMÞ # Xn&1ðMÞ! X1ðMÞ # XnðMÞ,
combining topological properties of the exterior derivative d and met-
ric properties of the Levi-Civita covariant differential r associated
with (M, g). Following Refs. 13 and 23, an implicit definition of dr as
the following identity on the space of top formsXnðMÞ is given as

ðdrtÞ _̂ v ¼ dðt _̂ vÞ &t _̂rv (8)

for any vector field v. Here rv 2 CðTMÞ # X1ðMÞ is the vector–val-
ued one–form representing the geometric analogous of the velocity
gradient in Euclidean space, and defined as rvðXÞ :¼ rXv for any
vector X, beingrX the covariant derivative in direction X.

In terms of the geometrically well-defined quantities above, the
momentum balance equation in convective form on a compact and
oriented Riemannian manifold takes the manifestly coordinate-
independent form13,14,21

_! þ d
"
1
2
?ð! ! ?!Þ

#
þ ivd! ¼ &

dp
?l
þ ?2drt

?l
: (9)

The left hand side of (9) is the differential form representation of the
material derivative of the velocity field while the right hand side enco-
des the way pressure and stress enter as force (covector) fields in the
equation.

When considering Newtonian fluids, t is composed as the sum
of a bulk stresstk and a shear stresstj, defined by

tk :¼ kðdivðvÞlvolÞ; (10)

tj :¼ jð?2lvgÞ; (11)

where lvol is the volume form induced by the Riemannian metric. The
bulk stress tk depends on the divergence of the velocity vector field
divðvÞ, defined as the function such that lvlvol ¼ divðvÞlvol holds
true. The shear stress tj is defined in order to model viscous stresses
whenever the transport of the metric under the flow of v is nonzero,
i.e., when v fails to be the generator of a rigid body motion. In fact
lvg extends the concept of rate of strain to Riemannian manifolds. As
a matter of fact, in term of components ðlvgÞij ¼ ri!j þrj!i, which
is the natural generalization on manifolds of the rate of strain in (3),
constructed by replacing ordinary derivatives with covariant

derivatives. It is interesting to notice that, contrarily to the bulk stress,
the shear stress does not admit a formulation using scalar valued dif-
ferential forms. In fact, being lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which is by
definition a totally antisymmetric tensor field. This is ultimately the
phenomenological reason why a geometric representation of
Navier–Stokes equations needs to be developed using (co)vector–val-
ued forms.

A computation of the above stress tensor components shows that
they encode precisely the same information as s in Cartesian coordi-
nates on a flat manifold, but are now defined on any Riemannian
manifold and are manifestly invariant with respect to the choice of
coordinates.

The continuity equation that supersedes (2) for the general case
of a Riemannian manifold and without coordinate assumptions takes
the simple geometric form7

_l ¼ &dð?l?!Þ; (12)

where it might aid the intuition to note that the right hand side is iden-
tical to minus the Lie derivativelvl. The barotropic equation of state,
which we assumed in (4) for definiteness, is already valid on any
Riemannian manifold.

IV. ENERGY IN THE FLUID AND ON-SHELL/OFF-SHELL
POWER BALANCE

The compressible Navier–Stokes momentum balance equation
(9) and continuity equation (12), together with the barotropic equa-
tion of state (4) we chose for definiteness, describe a system whose
energy loss due to viscosity is unavoidable, even if the domain bound-
aries would not allow for any exchange of matter or energy with the
environment. If such an exchange through the domain boundary is
additionally possible, the system may experience an additional loss or
gain of energy. In any case, the system does not obey conservation of
its mechanical energy which is expressed as function of the state varia-
bles ! and l as

Hð!; lÞ :¼
ð

M

1
2
?lð! ! ?!Þ þ Uð?lÞl

" #
(13)

composed of the sum of kinetic energy Kð!;lÞ ¼
Ð
M

1
2 ?lð! ! ?!Þ

and the potential energy. In this section we use the momentum and
continuity equations to compute the variation of the total energy in
the fluid domain _H , detecting the mechanisms which contribute to a
nonzero power flow in the system. Such a failure of the energy func-
tional to be a complete generator of the time evolution of a system is
the defining hallmark of a system that exchanges energy with its envi-
ronment. The description of such systems is trivially beyond the scope
of generalized Hamiltonian theory and requires a port-Hamiltonian
treatment instead.

Conscious of the fact that port-Hamiltonian theory does not rep-
resent yet a consolidated framework in physics and dynamical system
theory, we introduce some terminology which aims at helping the
reader in understanding the basics of port-based thinking. This termi-
nology is not standard in the port-Hamiltonian literature, but we
believe it is extremely useful to understand the role of the key geomet-
ric object characterizing a pH system, called Stokes Dirac Structure
(SDS), for nonpractitioner readers. Consider the energy functional
(13), dependent on the state variables ! and l, also called energy
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topological

geometrical

Valid in any curved space of any dimension and completely coordinate invariant 
NOTHING HIDES THE PHYSICS

Remark 1. The previous identification stems upon the fact that a
TM-valued zero-form is just a section of the bundle TM, i.e., a vector
field, and the space CðTMÞ # X0ðMÞ is to be understood as the tensor
product of modules over the ring X0ðMÞ. In other words
CðTMÞ # X0ðMÞ :¼ fu1 # u2 j p1 % u1 ¼ p2 % u2g, where p1 and p2

are the projection maps over the bundles characterizing the two legs of
the vector-valued form. This is the technical meaning for symbol # in
the space of vector valued forms in this paper.

We can immediately give a physical interpretation of the power
generated by stress on a surface as

Pt ¼
ð

S
t _̂ v: (7)

Notice that thanks to the covector valued nature of stress, this defini-
tion provides a metric independent notion of power. In order to write
the differential momentum equation for a fluid in this language, we
need a further ingredient to calculate the net force of the stress on a
volume element, playing the role of the divergence of the Cartesian
version of the stress tensor s in (1). The key operator is the exterior
covariant derivative dr : X1ðMÞ # Xn&1ðMÞ! X1ðMÞ # XnðMÞ,
combining topological properties of the exterior derivative d and met-
ric properties of the Levi-Civita covariant differential r associated
with (M, g). Following Refs. 13 and 23, an implicit definition of dr as
the following identity on the space of top formsXnðMÞ is given as

ðdrtÞ _̂ v ¼ dðt _̂ vÞ &t _̂rv (8)

for any vector field v. Here rv 2 CðTMÞ # X1ðMÞ is the vector–val-
ued one–form representing the geometric analogous of the velocity
gradient in Euclidean space, and defined as rvðXÞ :¼ rXv for any
vector X, beingrX the covariant derivative in direction X.

In terms of the geometrically well-defined quantities above, the
momentum balance equation in convective form on a compact and
oriented Riemannian manifold takes the manifestly coordinate-
independent form13,14,21

_! þ d
"
1
2
?ð! ! ?!Þ

#
þ ivd! ¼ &

dp
?l
þ ?2drt

?l
: (9)

The left hand side of (9) is the differential form representation of the
material derivative of the velocity field while the right hand side enco-
des the way pressure and stress enter as force (covector) fields in the
equation.

When considering Newtonian fluids, t is composed as the sum
of a bulk stresstk and a shear stresstj, defined by

tk :¼ kðdivðvÞlvolÞ; (10)

tj :¼ jð?2lvgÞ; (11)

where lvol is the volume form induced by the Riemannian metric. The
bulk stress tk depends on the divergence of the velocity vector field
divðvÞ, defined as the function such that lvlvol ¼ divðvÞlvol holds
true. The shear stress tj is defined in order to model viscous stresses
whenever the transport of the metric under the flow of v is nonzero,
i.e., when v fails to be the generator of a rigid body motion. In fact
lvg extends the concept of rate of strain to Riemannian manifolds. As
a matter of fact, in term of components ðlvgÞij ¼ ri!j þrj!i, which
is the natural generalization on manifolds of the rate of strain in (3),
constructed by replacing ordinary derivatives with covariant

derivatives. It is interesting to notice that, contrarily to the bulk stress,
the shear stress does not admit a formulation using scalar valued dif-
ferential forms. In fact, being lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which is by
definition a totally antisymmetric tensor field. This is ultimately the
phenomenological reason why a geometric representation of
Navier–Stokes equations needs to be developed using (co)vector–val-
ued forms.

A computation of the above stress tensor components shows that
they encode precisely the same information as s in Cartesian coordi-
nates on a flat manifold, but are now defined on any Riemannian
manifold and are manifestly invariant with respect to the choice of
coordinates.

The continuity equation that supersedes (2) for the general case
of a Riemannian manifold and without coordinate assumptions takes
the simple geometric form7

_l ¼ &dð?l?!Þ; (12)

where it might aid the intuition to note that the right hand side is iden-
tical to minus the Lie derivativelvl. The barotropic equation of state,
which we assumed in (4) for definiteness, is already valid on any
Riemannian manifold.

IV. ENERGY IN THE FLUID AND ON-SHELL/OFF-SHELL
POWER BALANCE

The compressible Navier–Stokes momentum balance equation
(9) and continuity equation (12), together with the barotropic equa-
tion of state (4) we chose for definiteness, describe a system whose
energy loss due to viscosity is unavoidable, even if the domain bound-
aries would not allow for any exchange of matter or energy with the
environment. If such an exchange through the domain boundary is
additionally possible, the system may experience an additional loss or
gain of energy. In any case, the system does not obey conservation of
its mechanical energy which is expressed as function of the state varia-
bles ! and l as

Hð!; lÞ :¼
ð

M

1
2
?lð! ! ?!Þ þ Uð?lÞl

" #
(13)

composed of the sum of kinetic energy Kð!;lÞ ¼
Ð
M

1
2 ?lð! ! ?!Þ

and the potential energy. In this section we use the momentum and
continuity equations to compute the variation of the total energy in
the fluid domain _H , detecting the mechanisms which contribute to a
nonzero power flow in the system. Such a failure of the energy func-
tional to be a complete generator of the time evolution of a system is
the defining hallmark of a system that exchanges energy with its envi-
ronment. The description of such systems is trivially beyond the scope
of generalized Hamiltonian theory and requires a port-Hamiltonian
treatment instead.

Conscious of the fact that port-Hamiltonian theory does not rep-
resent yet a consolidated framework in physics and dynamical system
theory, we introduce some terminology which aims at helping the
reader in understanding the basics of port-based thinking. This termi-
nology is not standard in the port-Hamiltonian literature, but we
believe it is extremely useful to understand the role of the key geomet-
ric object characterizing a pH system, called Stokes Dirac Structure
(SDS), for nonpractitioner readers. Consider the energy functional
(13), dependent on the state variables ! and l, also called energy
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rate of strain (symmetric!)

Remark 1. The previous identification stems upon the fact that a
TM-valued zero-form is just a section of the bundle TM, i.e., a vector
field, and the space CðTMÞ # X0ðMÞ is to be understood as the tensor
product of modules over the ring X0ðMÞ. In other words
CðTMÞ # X0ðMÞ :¼ fu1 # u2 j p1 % u1 ¼ p2 % u2g, where p1 and p2

are the projection maps over the bundles characterizing the two legs of
the vector-valued form. This is the technical meaning for symbol # in
the space of vector valued forms in this paper.

We can immediately give a physical interpretation of the power
generated by stress on a surface as

Pt ¼
ð

S
t _̂ v: (7)

Notice that thanks to the covector valued nature of stress, this defini-
tion provides a metric independent notion of power. In order to write
the differential momentum equation for a fluid in this language, we
need a further ingredient to calculate the net force of the stress on a
volume element, playing the role of the divergence of the Cartesian
version of the stress tensor s in (1). The key operator is the exterior
covariant derivative dr : X1ðMÞ # Xn&1ðMÞ! X1ðMÞ # XnðMÞ,
combining topological properties of the exterior derivative d and met-
ric properties of the Levi-Civita covariant differential r associated
with (M, g). Following Refs. 13 and 23, an implicit definition of dr as
the following identity on the space of top formsXnðMÞ is given as

ðdrtÞ _̂ v ¼ dðt _̂ vÞ &t _̂rv (8)

for any vector field v. Here rv 2 CðTMÞ # X1ðMÞ is the vector–val-
ued one–form representing the geometric analogous of the velocity
gradient in Euclidean space, and defined as rvðXÞ :¼ rXv for any
vector X, beingrX the covariant derivative in direction X.

In terms of the geometrically well-defined quantities above, the
momentum balance equation in convective form on a compact and
oriented Riemannian manifold takes the manifestly coordinate-
independent form13,14,21

_! þ d
"
1
2
?ð! ! ?!Þ

#
þ ivd! ¼ &

dp
?l
þ ?2drt

?l
: (9)

The left hand side of (9) is the differential form representation of the
material derivative of the velocity field while the right hand side enco-
des the way pressure and stress enter as force (covector) fields in the
equation.

When considering Newtonian fluids, t is composed as the sum
of a bulk stresstk and a shear stresstj, defined by

tk :¼ kðdivðvÞlvolÞ; (10)

tj :¼ jð?2lvgÞ; (11)

where lvol is the volume form induced by the Riemannian metric. The
bulk stress tk depends on the divergence of the velocity vector field
divðvÞ, defined as the function such that lvlvol ¼ divðvÞlvol holds
true. The shear stress tj is defined in order to model viscous stresses
whenever the transport of the metric under the flow of v is nonzero,
i.e., when v fails to be the generator of a rigid body motion. In fact
lvg extends the concept of rate of strain to Riemannian manifolds. As
a matter of fact, in term of components ðlvgÞij ¼ ri!j þrj!i, which
is the natural generalization on manifolds of the rate of strain in (3),
constructed by replacing ordinary derivatives with covariant

derivatives. It is interesting to notice that, contrarily to the bulk stress,
the shear stress does not admit a formulation using scalar valued dif-
ferential forms. In fact, being lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which is by
definition a totally antisymmetric tensor field. This is ultimately the
phenomenological reason why a geometric representation of
Navier–Stokes equations needs to be developed using (co)vector–val-
ued forms.

A computation of the above stress tensor components shows that
they encode precisely the same information as s in Cartesian coordi-
nates on a flat manifold, but are now defined on any Riemannian
manifold and are manifestly invariant with respect to the choice of
coordinates.

The continuity equation that supersedes (2) for the general case
of a Riemannian manifold and without coordinate assumptions takes
the simple geometric form7

_l ¼ &dð?l?!Þ; (12)

where it might aid the intuition to note that the right hand side is iden-
tical to minus the Lie derivativelvl. The barotropic equation of state,
which we assumed in (4) for definiteness, is already valid on any
Riemannian manifold.

IV. ENERGY IN THE FLUID AND ON-SHELL/OFF-SHELL
POWER BALANCE

The compressible Navier–Stokes momentum balance equation
(9) and continuity equation (12), together with the barotropic equa-
tion of state (4) we chose for definiteness, describe a system whose
energy loss due to viscosity is unavoidable, even if the domain bound-
aries would not allow for any exchange of matter or energy with the
environment. If such an exchange through the domain boundary is
additionally possible, the system may experience an additional loss or
gain of energy. In any case, the system does not obey conservation of
its mechanical energy which is expressed as function of the state varia-
bles ! and l as

Hð!; lÞ :¼
ð

M

1
2
?lð! ! ?!Þ þ Uð?lÞl

" #
(13)

composed of the sum of kinetic energy Kð!;lÞ ¼
Ð
M

1
2 ?lð! ! ?!Þ

and the potential energy. In this section we use the momentum and
continuity equations to compute the variation of the total energy in
the fluid domain _H , detecting the mechanisms which contribute to a
nonzero power flow in the system. Such a failure of the energy func-
tional to be a complete generator of the time evolution of a system is
the defining hallmark of a system that exchanges energy with its envi-
ronment. The description of such systems is trivially beyond the scope
of generalized Hamiltonian theory and requires a port-Hamiltonian
treatment instead.

Conscious of the fact that port-Hamiltonian theory does not rep-
resent yet a consolidated framework in physics and dynamical system
theory, we introduce some terminology which aims at helping the
reader in understanding the basics of port-based thinking. This termi-
nology is not standard in the port-Hamiltonian literature, but we
believe it is extremely useful to understand the role of the key geomet-
ric object characterizing a pH system, called Stokes Dirac Structure
(SDS), for nonpractitioner readers. Consider the energy functional
(13), dependent on the state variables ! and l, also called energy
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Remark 1. The previous identification stems upon the fact that a
TM-valued zero-form is just a section of the bundle TM, i.e., a vector
field, and the space CðTMÞ # X0ðMÞ is to be understood as the tensor
product of modules over the ring X0ðMÞ. In other words
CðTMÞ # X0ðMÞ :¼ fu1 # u2 j p1 % u1 ¼ p2 % u2g, where p1 and p2

are the projection maps over the bundles characterizing the two legs of
the vector-valued form. This is the technical meaning for symbol # in
the space of vector valued forms in this paper.

We can immediately give a physical interpretation of the power
generated by stress on a surface as

Pt ¼
ð

S
t _̂ v: (7)
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gradient in Euclidean space, and defined as rvðXÞ :¼ rXv for any
vector X, beingrX the covariant derivative in direction X.
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oriented Riemannian manifold takes the manifestly coordinate-
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divðvÞ, defined as the function such that lvlvol ¼ divðvÞlvol holds
true. The shear stress tj is defined in order to model viscous stresses
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i.e., when v fails to be the generator of a rigid body motion. In fact
lvg extends the concept of rate of strain to Riemannian manifolds. As
a matter of fact, in term of components ðlvgÞij ¼ ri!j þrj!i, which
is the natural generalization on manifolds of the rate of strain in (3),
constructed by replacing ordinary derivatives with covariant

derivatives. It is interesting to notice that, contrarily to the bulk stress,
the shear stress does not admit a formulation using scalar valued dif-
ferential forms. In fact, being lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which is by
definition a totally antisymmetric tensor field. This is ultimately the
phenomenological reason why a geometric representation of
Navier–Stokes equations needs to be developed using (co)vector–val-
ued forms.

A computation of the above stress tensor components shows that
they encode precisely the same information as s in Cartesian coordi-
nates on a flat manifold, but are now defined on any Riemannian
manifold and are manifestly invariant with respect to the choice of
coordinates.

The continuity equation that supersedes (2) for the general case
of a Riemannian manifold and without coordinate assumptions takes
the simple geometric form7

_l ¼ &dð?l?!Þ; (12)

where it might aid the intuition to note that the right hand side is iden-
tical to minus the Lie derivativelvl. The barotropic equation of state,
which we assumed in (4) for definiteness, is already valid on any
Riemannian manifold.

IV. ENERGY IN THE FLUID AND ON-SHELL/OFF-SHELL
POWER BALANCE

The compressible Navier–Stokes momentum balance equation
(9) and continuity equation (12), together with the barotropic equa-
tion of state (4) we chose for definiteness, describe a system whose
energy loss due to viscosity is unavoidable, even if the domain bound-
aries would not allow for any exchange of matter or energy with the
environment. If such an exchange through the domain boundary is
additionally possible, the system may experience an additional loss or
gain of energy. In any case, the system does not obey conservation of
its mechanical energy which is expressed as function of the state varia-
bles ! and l as
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composed of the sum of kinetic energy Kð!;lÞ ¼
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and the potential energy. In this section we use the momentum and
continuity equations to compute the variation of the total energy in
the fluid domain _H , detecting the mechanisms which contribute to a
nonzero power flow in the system. Such a failure of the energy func-
tional to be a complete generator of the time evolution of a system is
the defining hallmark of a system that exchanges energy with its envi-
ronment. The description of such systems is trivially beyond the scope
of generalized Hamiltonian theory and requires a port-Hamiltonian
treatment instead.

Conscious of the fact that port-Hamiltonian theory does not rep-
resent yet a consolidated framework in physics and dynamical system
theory, we introduce some terminology which aims at helping the
reader in understanding the basics of port-based thinking. This termi-
nology is not standard in the port-Hamiltonian literature, but we
believe it is extremely useful to understand the role of the key geomet-
ric object characterizing a pH system, called Stokes Dirac Structure
(SDS), for nonpractitioner readers. Consider the energy functional
(13), dependent on the state variables ! and l, also called energy
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d∇ : Ω1(M)⊗Ωn−1(M)→ Ω1(M)⊗Ωn(M), combining topo-
logical properties of the exterior derivative d and metric prop-
erties of the Levi-Civita covariant differential ∇ associated to
(M,g). Following Refs. 11 and 20, an implicit definition of
d∇ as the following identity on the space of top forms Ωn(M)
is given as

(d∇T )∧̇v = d(T ∧̇v)−T ∧̇∇v, (8)

for any vector field v. Here ∇v ∈ Γ(T M)⊗ Ω1(M) is the
vector–valued one–form representing the geometric analo-
gous of the velocity gradient in Euclidean space, and defined
as ∇v(X) := ∇X v for any vector X , being ∇X the covariant
derivative in direction X .

In terms of the geometrically well-defined quantities above,
the momentum balance equation in convective form on a com-
pact and oriented Riemannian manifold takes the manifestly
coordinate-independent form11,12,18

ν̇ + d( 1
2 ! (ν ∧!ν))+ ιvdν =−

dp

!µ
+

!2d∇T

!µ
. (9)

The left hand side of (9) is the differential form representation
of the material derivative of the velocity field while the right
hand side encodes the way pressure and stress enter as force
(covector) fields in the equation.

When considering Newtonian fluids, T is composed as the
sum of a bulk stress Tλ and a shear stress Tκ , defined by

Tλ := λ (div(v)µvol), (10)

Tκ := κ(!2Lvg), (11)

where µvol is the volume form induced by the Riemannian
metric. The bulk stress Tλ depends on the divergence of
the velocity vector field div(v), defined as the function such
that Lvµvol = div(v)µvol holds true. The shear stress Tκ

is defined in order to model viscous stresses whenever the
transport of the metric under the flow of v is non-zero, i.e.,
when v fails to be the generator of a rigid body motion. In
fact Lvg extends the concept of rate of strain to Rieman-
nian manifolds. As a matter of fact, in term of components
(Lvg)i j = ∇iν j +∇ jνi, which is the natural generalisation on
manifolds of the rate of strain in (3), constructed by replacing
ordinary derivatives with covariant derivatives. It is interest-
ing to notice that, contrarily to the bulk stress, the shear stress
does not admit a formulation using scalar valued differential
forms. In fact, being Lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which
is by definition a totally antisymmetric tensor field. This is
ultimately the phenomenological reason why a geometric rep-
resentation of Navier–Stokes equations need to be developed
using (co)vector–valued forms.

A computation of the above stress tensor components
shows that they encode precisely the same information as τ in
Cartesian coordinates on a flat manifold, but are now defined
on any Riemannian manifold and are manifestly invariant with
respect to the choice of coordinates.

The continuity equation that supersedes (2) for the gen-
eral case of a Riemannian manifold and without coordinate

assumptions takes the simple geometric form7

µ̇ =−d(!µ !ν), (12)

where it might aid the intuition to note that the right hand side
is identical to minus the Lie derivative Lvµ . The barotropic
equation of state, which we assumed in (4) for definiteness, is
already valid on any Riemannian manifold.

IV. ENERGY IN THE FLUID AND
ON-SHELL/OFF-SHELL POWER BALANCE

The compressible Navier-Stokes momentum balance equa-
tion (9) and continuity equation (12), together with the the
barotropic equation of state (4) we chose for definiteness, de-
scribe a system whose energy loss due to viscosity is unavoid-
able, even if the domain boundaries would not allow for any
exchange of matter or energy with the environment. If such an
exchange through the domain boundary is additionally possi-
ble, the system may experience an additional loss or gain of
energy. In any case, the system does not obey conservation
of its mechanical energy which is expressed as function of the
state variables ν and µ as:

H(ν,µ) :=
∫

M

(
1
2 !µ(ν ∧!ν)+U(!µ)µ

)

. (13)

composed by the sum of kinetic energy K(ν,µ) =
∫

M
1
2 !

µ(ν ∧ !ν) and the potential energy. In this section we use
the momentum and continuity equations to compute the vari-
ation of the total energy in the fluid domain Ḣ, detecting the
mechanisms which contribute to a non zero power flow in the
system. Such a failure of the energy functional to be a com-
plete generator of the time evolution of a system is the defining
hallmark of a system that exchanges energy with its environ-
ment. The description of such systems is trivially beyond the
scope of generalised Hamiltonian theory and requires a port-
Hamiltonian treatment instead.

Conscious of the fact that port-Hamiltonian theory does not
represent yet a consolidated framework in physics and dy-
namical system theory, we introduce some terminology which
aims at helping the reader in understanding the basics of port-
based thinking. This terminology is not standard in the port-
Hamiltonian literature, but we believe it is extremely useful
to understand the role of the key geometric object character-
ising a pH system, called Stokes Dirac Structure (SDS), for
non practitioner readers. Consider the energy functional (13),
dependent on the state variables ν and µ , also called energy
variables in the port-Hamiltonian framework. The formal ex-
pression for the time derivative of this functional in case of
fixed spatial domain (i.e. M does not change in time) is

Ḣ =
∫

M
δνH ∧ ν̇ + δµH ∧ µ̇, (14)

where δ(·)H indicates the variational derivative of H with re-
spect to the energy variables, which correspond to differential
forms with a complementary degree with respect to the energy

Mass Continuity

Momentum Balance



Other intuitive reasons for natural use of t.v. forms

Traction force = surface integral of Stress

Stress = map from plane to force = force values 2-form

Rotating disc in fluid 
with no slip condition

The restriction of Scalar Forms on the boundary would NOT be able to express a 
tangential force inducing flow in the fluid



The most comprehensive  and 
insightful description of 

continuous media and the need 
for tensor value forms



Going to Discretisation 
Dual Field method



Intro to Mimetic (Topology Preserving)  Discretisation
In the context of Exterior Calculus

ωkPhysics

dΠ = Πd
Co-chain Property 

(FEEC)
Π Structure=Topology Preserving!⇒

Whitney Forms
⇒

dℐ = ℐ∂ (Conforming Operator property)
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Fig. 1. A 3-dimensional example of primal and dual mesh
elements. The corresponding circumcentric dual cells are
shaded.

The discrete exterior derivative or the coboundary

operator dk
: ⌦

k

d
(K) ! ⌦

k+1
d

(K) is defined by du-

ality to the boundary operator @k+1 : Ck+1(K;Z) !

Ck(K;Z), with respect to the natural pairing between

discrete forms and chains. For a discrete form ↵ 2 ⌦
k

d
(K)

and a chain ck+1 2 Ck+1(K;Z) we define dk
by

hdk
↵, ck+1i = h↵, (dk

)
t
ck+1i = h↵, @k+1ck+1i , (7)

where the boundary operator @k+1 is the incidence ma-
trix from the space of (k + 1)-simplices to the space of

k-simplices and is represented by a sparse Nk+1 ⇥ Nk

matrix containing only 0 or±1 elements Desbrun, Kanso

& Tong (2008). The important property of the bound-

ary operator is @k � @k+1 = 0. The exterior derivative

also satisfies dk+1
� dk

= 0, what is a discrete ana-

logue of the vector calculus identities curl�grad = 0 and

div � curl = 0.

Remark 1 The relation (7) can be regarded as a dis-
crete Stokes’ theorem, where the role of the exterior
derivative is being played by the coboundary operator and
the discrete analogue of integration is the evaluation of a
cochain.

3.2 Dual cell complex

An essential ingredient of discrete exterior calculus is

the dual complex of a manifold-like simplicial complex.

The main idea is to associate to each primal k-simplex

a dual (n � k)-cell. For example, in the 3-dimensional

case, consider a tetrahedral mesh with interior elements

shown in Fig. 1. We associate a dual 3-cell to each primal

vertex (0-simplex), a dual polygon (2-cell) to each primal

edge (1-simplex), a dual edge (1-cell) to each primal face

(2-simplex), and a dual vertex (0-cell) to each primal

tetrahedron (3-simplex).

In the 2-dimensional case, for illustration consider the

triangular mesh in Fig. 2. To the primal edge [vi, vj ]

we associate the dual edge [v̂i, v̂j ], where the vertices v̂i

and v̂j are the circumcenters
1
of the two neighbouring

triangles that share the common edge [vi, vj ]. The dual

edge of [vi, vj ] will be denoted by ?i[vi, vj ]. The dual of

1 The circumcenter of a k-simplex �k is given by the centre
of the k-circumsphere, which is the unique k-sphere that has
all k + 1 vertices of �k on its surface.

Fig. 2. A 2-dimensional simplicial complex K and its cir-
cumcentric dual cell complex ?K indicated by dashed lines.
The boundary of ?K is the dual of the boundary of K.

the vertex vr is its Voronoi region shown shaded. The

dual of the face [vm, vp, vn] is its circumcenter v̂r, while

the dual of the edge [vk, vl] is the (half-)edge [v̂k, v̂l] =

?i[vk, vl] orthogonal to [vk, vl] and restricted to |K|.

The just explained geometric duality is the so-called cir-
cumcentric or Voronoi duality

2
, which has an impor-

tant property that primal and dual cells are orthogonal

to each other. This feature dramatically simplifies the

discrete counterpart of the Hodge star, as will be shown

in the next subsection. For this reason we shall be deal-

ing with the circumcentric duality and require that the

simplicial complex is well-centred (the circumcenters of

all simplices of all dimensions lie in the interior of the

corresponding simplices).

Given a simplicial complexK, we define its interior dual
cell complex ?iK as the circumcentric dual ofK geomet-

rically restricted to |K|.

In a similar fashion, to each primal k-simplex living on

the geometric boundary of K, hereafter denoted by @K,

we can uniquely associate an (n � 1 � k)-cell living on

the dual of the boundary @K. The circumcentric dual of

@K is the boundary dual cell complex ?bK. For example,

considering Fig. 2, on the boundary, the dual of the edge

[vk, vl] is the dual vertex v̂k, while the boundary dual of

the primal vertex vk is the curvilinear edge ?bvk shown

bolded.

The dual cell complex ?K is defined as ?K = ?iK⇥?bK.

The dual mesh ?iK is a dual to K in sense of a graph

dual, and the dual of the boundary is equal to the bound-

ary of the dual, that is @(?K) = ?(@K) = ?bK. Because

2 In algebraic topology Munkres (1984) and computational
electromagnetics Bossavit (1998); Hiptmair (2002), another
popular choice of the geometric dualism is barycentric dual-
ity.
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Dual Fields Method
Both systems and use them along…

·ω = . . ⋆ ω . . .

·ω = . . ω̄ . . .
Primary System

·̄ω = . . (−1)lω . . .
Dual System

• One Initialisation 
• Use Each Other states 
•  Disappeared !⋆

Dual  
Field

Primary 
Field

ω̄ := ⋆ ω



Dual Field Method
It could be seen

• This tools brings to a spatial discretisation of PDE which 
outperforms any non-structure preserving method 

• This can be used together with symplectic time integration 
• It has open boundaries !

• Can then be used for model reduction, learning and Control !



Upcoming work: GR & QFT

• To solve a specific problem we need the right structures and 
abstractions


• I am finalizing a way to show how Gravity can appear from 
interaction of Quantum Fields and exterior calculus plays a crucial 
role.


• This has been an open problem for many years and is due to the fact 
that excellent scientists have not been using the right abstractions 
and mathematical tools.



Conclusions
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Conclusions

• Port-Based methods is a fantastic way to understanding the physics 
of continua (and flapping flights)

•To handle geometric strain new tools needed to be used which 
showed issues previously not known in the literature.

•Port-based thinking is the driving force behind all this.

• Such insights have brought to new challenges which are being 
tackled in theoretical physics (QFT and GR and their connection)



My Personal Advise
 I am convinced that the great breakthroughs can only be achieved by

• Deeply understanding the right mathematical structures needed to 
understand a problem: not too much, not too little structure

• Let the mathematics structure guide you along the way by 
understanding the operation that you can or you cannot do!

• Be critical on each step you do and ask you always why ?

• And yet, trust the signals your intuition and vision give you but 
always check with proper coordinate invariant mathematics



Epistemological growth is not about solving a problem,  
but understanding “why and how” to solve it.

Stefano Stramigioli


