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Motivating example

H T

Φ

Problem
Find a continuous map Φ : H → T that collapses the red edges and
restricts to a diffeomorphism Φ|H̊ : H̊ → T̊ .

Observe: Φ−1 must be discontinuous at the vertices of T .
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A discontinuous function

λ1

λ2

0 0

1

0
0

0

ψ120 =
λ1λ2

λ2 + λ0

(λ0 + λ1 + λ2 = 1)

Along the edge λ1 = 0, ψ120 = 0.
Along the edge λ2 = 0, ψ120 = 0.
Along the edge λ0 = 0, ψ120 = λ1.
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Scalar-valued blow-up finite elements

bP1(T ) = span{ψ012, ψ120, ψ201, ψ102, ψ210, ψ021}

⊃ P1(T )

ψ012 =
λ0λ1

λ1 + λ2
, ψ021 =

λ0λ2

λ2 + λ1
,

ψ012 + ψ021 = λ0

ψ102 =
λ1λ0

λ0 + λ2
, ψ120 =

λ1λ2

λ2 + λ0
,

ψ102 + ψ120 = λ1

ψ201 =
λ2λ0

λ0 + λ1
, ψ210 =

λ2λ1

λ1 + λ0
.

ψ201 + ψ210 = λ2
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Scalar-valued blow-up finite elements

ψijk =
λiλj

λj + λk
=

λiλj
(λi + λj + λk)(λj + λk)

Key property

lim
λj′→0

lim
λk′→0

ψijk =

{
1 if j = j ′ and k = k ′,

0 otherwise.
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Mapping a triangle to a hexagon

x0

x1

x2

(0, 1, 2)
(1, 0, 2)

(2, 0, 1)

(2, 1, 0) (1, 2, 0)

(0, 2, 1)

H

λ0

λ1

λ2

ψ021

ψ012

ψ102

ψ120

ψ210ψ201

T

F

F (λ0, λ1, λ2) = (2, 1, 0)ψ012 + (1, 2, 0)ψ102 + (0, 2, 1)ψ120

+ (0, 1, 2)ψ210 + (1, 0, 2)ψ201 + (2, 0, 1)ψ021

=
∑
σ

(σ−1(0), σ−1(1), σ−1(2))ψσ(2)σ(1)σ(0).
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Mapping a triangle to a hexagon

F (λ0, λ1, λ2) =
∑
σ

(σ−1(0), σ−1(1), σ−1(2))ψσ(2)σ(1)σ(0).

Lemma ∑
σ

σ−1(i)ψσ(2)σ(1)σ(0) = λi
∑
j ̸=i

1
λi + λj

Theorem [Matúš 2003]

The map F : (λ0, λ1, λ2) 7−→ (x0, x1, x2) given by

xi = λi
∑
j ̸=i

1
λi + λj

is a diffeomorphism from T̊ to H̊.
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Higher dimensions

Pn = n-permutohedron

Φ

T n = n-simplex

Problem
Find a continuous map Φ : Pn → T n that collapses the red faces
and restricts to a diffeomorphism Φ|P̊n : P̊n → T̊ n.
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Scalar-valued blow-up finite elements in n dimensions

ψi0i1...in =
λi0λi1 · · ·λin−1∏n−1

j=0 (λij + λij+1 + · · ·+ λin)

Key property

lim
λi′1

→0
lim

λi′2
→0

· · · lim
λi′n

→0
ψi0i1...in =

{
1 if (i1, i2, . . . , in) = (i ′1, i

′
2, . . . , i

′
n),

0 otherwise.

Example (Dimension n = 3)

ψ0123 =
λ0λ1λ2

(λ0 + λ1 + λ2 + λ3)(λ1 + λ2 + λ3)(λ2 + λ3)
.

We have
lim
λ1→0

lim
λ2→0

lim
λ3→0

ψ0123 = 1,

whereas, e.g.,
lim
λ2→0

lim
λ1→0

lim
λ3→0

ψ0123 = 0.
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Scalar-valued blow-up finite elements in n = 3 dimensions

Mnemonic: ψijkl “equals” 1 at one blue point and 0 at the others.
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Mapping a simplex to a permutohedron

Pn = n-permutohedron

F

T n = n-simplex

Solution

F (λ0, λ1, . . . , λn) =
∑
σ

(σ−1(0), σ−1(1), . . . , σ−1(n))ψσ(n)σ(n−1)...σ(0).

Equivalently: Fi (λ0, λ1, . . . , λn) = λi
∑
j ̸=i

1
λi + λj

.

E. Gawlik, joint with Y. Berchenko-Kogan & J. McKee Blow-up Whitney forms



Blow-up elements in 2D Blow-up elements in nD Bochner Laplacian Blow-up Whitney forms Conclusion

Outline

1 Scalar-valued blow-up elements in 2D

2 Scalar-valued blow-up elements in nD

3 Application: Discretizing the Bochner Laplacian

4 Blow-up Whitney forms

5 Conclusion
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Finite elements for the Bochner Laplacian

Goal: Vector-valued finite elements for the Bochner Laplacian
(a.k.a. rough Laplacian or connection Laplacian)

∆ = −∇∗∇ = Tr∇∇.

When applied to vector fields on a surface Γ ⊂ R3, this is the
usual surface vector Laplacian ∆Γ.
Note: Bochner Laplacian ̸= Hodge Laplacian.
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Finite elements for the Bochner Laplacian

Well-known difficulty: H1-conforming vector fields on
triangulated surfaces are difficult to construct.
Reason: Any piecewise smooth, tangentially and normally
continuous vector field must vanish at (generic) vertices.
The angle defect is the source of the problem.

α

α > π
2

Idea: Use finite elements that incorporate “rapid rotations”
near the vertices.

E. Gawlik, joint with Y. Berchenko-Kogan & J. McKee Blow-up Whitney forms



Blow-up elements in 2D Blow-up elements in nD Bochner Laplacian Blow-up Whitney forms Conclusion

Vector-valued blow-up finite elements

Recall: ψijk =
λiλj

λj + λk
=: ψij

Local finite element space on a
triangle T :

bP1(T ) =
{ 2∑

i ,j=0
i ̸=j

ψij(aijτ ij + bijnij) | aij , bij ∈ R
}

Global finite element space on a triangulation T :

bP1(T ) = {u | u|T ∈ bP1(T )∀T , Ju · nK = Ju · τ K = 0 ∀e}

4 DOFs per edge: 2 aij ’s (1 per endpoint) and 2 bij ’s (1 per
endpoint).
W 1,p-conforming for all p < 2.
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Numerical experiment

Eigenvalue problem for the surface vector Laplacian:

−∆Γu = λu

Discretization: Find uh ∈ bP1(T ) and λh ∈ R such that∫
Γh

⟨∇Γhuh,∇Γhvh⟩ωε = λh

∫
Γh

⟨uh, vh⟩ωε, ∀vh ∈ bP1(T ),

where ωε = modified volume form on Γh.
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Numerical experiment

Eigenvalues of the vector Laplacian on the unit sphere:

The exact eigenvalues are λ = 1, 5, 11, 19, . . . with multiplicities
6, 10, 14, 18, . . . .
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Numerical experiment

λ = 11:

λ = 19:
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Numerical experiment

Remark: This discretization is intrinsic. Vertex coordinates play no
role in the calculation; only edge lengths do.
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Analysis of convergence
Analysis still in progress, but one encouraging result:

Proposition
Consider the following discretization of −∆u = λu on a flat
domain Ω ⊂ Rn: Find uh ∈ Vh = P1(T ) and λh ∈ R such that

aε(uh, vh) = λhmε(uh, vh), ∀vh ∈ Vh,

where

mε(u, v) =
∑
T∈Th

∫
Tε

uv dx , aε(u, v) =
∑
T∈Th

∫
Tε

∇u · ∇v dx ,

Tε = {λ ∈ T | λi + λj ≥ ε for each i ̸= j},

and ε > 0 is fixed. Then for each i = 1, 2, . . . , dimVh, we have

min
j

|λ(j)h − λ(i)| ≤ Ch.
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A differential complex

The space bP1 can be generalized to differential forms on
n-simplices, leading to a differential complex

bP−
1 Λ0(T n)

d→ bP−
1 Λ1(T n)

d→ bP−
1 Λ2(T n)

d→ · · · d→ bP−
1 Λn(T n)

that was studied by [Brasselet, Goresky, & MacPherson 1991].

These differential forms are called shadow forms / blow-up
Whitney forms.

In our paper [Berchenko-Kogan & G. 2025], we construct:
Degrees of freedom (DOFs) for these spaces.
A combinatorial procedure for computing bases dual to these
DOFs (via a surprising link with Poisson processes).
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Blow-up Whitney forms in 2D
Spaces:

0-forms:
{

λ0λ1

λ1 + λ2
,
λ0λ2

λ2 + λ1
,
λ1λ0

λ0 + λ2
,
λ1λ2

λ2 + λ0
,
λ2λ0

λ0 + λ1
,
λ2λ1

λ1 + λ0

}
1-forms:

{
φ01, φ12, φ20,

p2{01}φ01

(λ0 + λ1)2
,
p0{12}φ12

(λ1 + λ2)2
,
p1{20}φ20

(λ2 + λ0)2

}
2-forms: {φ012}

where
φij = λidλj − λjdλi ,

φijk = λidλj ∧ dλk + λjdλk ∧ dλi + λkdλi ∧ dλj ,

pi{jk} = λi (1 + λj + λk).

Degrees of freedom:

0-forms: “Evaluation” at the 6 edge endpoints.
1-forms: Integration over the 3 original edges and 3 “tiny edges”.
2-forms: Integration over T .
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Degrees of freedom
Integration over a “tiny edge” means:

Change from (λ0, λ1, λ2) to (r , θ) :=
(
λ1 + λ2,

λ2
λ1+λ2

)
.

Take the limit as r → 0.
Integrate with respect to θ.

λ1

λ2
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Degrees of freedom

Observe: Each degree of freedom is associated with a k-face of the
hexagon.
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Blow-up Whitney forms in 3D
In 3D, each degree of freedom is associated with a k-face of the
permutohedron P3.

Number of degrees of freedom:

0-forms: 24
1-forms: 36 (12 big edges, 12 small edges, 12 tiny edges)
2-forms: 14 (4 big hexagons, 6 rectangles, 4 small hexagons)
3-forms: 1
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The exterior derivative

Proposition
Let F be a k-dimensional face of Pn, and let ψF be the
corresponding blow-up Whitney k-form. Then

dψF = ±
n−k∑
j=1

ψFj
,

where F1,F2, . . . ,Fn−k are the (k + 1)-dimensional faces incident
to F .
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The word “blow-up”
The blow-up Whitney forms are not smooth on T n, but their
pullbacks to Pn (the blow-up of T n) are smooth.

Φ

Analogy: The function f (x , y) = arctan(y/x) is not smooth on
[0,∞)× [0,∞), but its pullback to [0,∞)× [0, π/2] is smooth.

r

θ

π
2

(r , θ) 7−→ (x , y)

x

y
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Different ways to glue degrees of freedom

Single-valued
on edges,
multi-valued at
vertices

Single-valued
and constant
on edges,
multi-valued at
vertices

Continuous
Lagrange

Discontinuous
Lagrange
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A surprising link with Poisson processes

The formulas for the bases have probabilistic interpretations.

Example 1: The 0-form λ0λ1
λ1+λ2

.
Three radiation sources with rates λ0, λ1, λ2 that sum to 1.
Let t0, t1, t2 be the times when the respective sources produce
their first particle.
The probability that t0 ≤ t1 ≤ t2 is λ0λ1

λ1+λ2
.

Example 2: The 1-form p0{12}φ12

(λ1+λ2)2
, p0{12} = λ0(1 + λ1 + λ2).

Two radiation sources A and B with rates λ0 and λ1 + λ2 that
sum to 1.
Let tA be the time when source A produces its first particle.
Let tB be the time when source B produces its second particle.
The probability that tA ≤ tB is λ0(1 + λ1 + λ2).
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A surprising link with horse race betting

Recall: ψijkl =
λiλjλk

(λi + λj + λk + λl)(λj + λk + λl)(λk + λl)

=
λiλjλk

(1 − λi )(1 − λi − λj)
.
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In addition to win bets, racetracks offer numerous so-called exotic bets. These offer some of the 
highest advantage wagering opportunities. This results from the multiplicative effect on overall 
advantage of combining more than one advantage horse. For example, suppose that in a particular 
race there are two horses for which the model's estimate of the win probability is greater than the 
public's, though not enough so as to make them positive expectation win bets. 

c div p er 
1) .115 8.3 ,100 ,955 
2) ,060 16.6 ,050 ,996 

By the Harville formula (Harville 1973), the estimated probability of a 1,2 or 2.1 finish is 

C,,, = ( . l l 5  * .060)/(1 - .115) + (.060 * .115)/(1 - ,060) = ,0151 . 
The public's implied probability estimate is 

PI=, = (.lo0 * .050)/(1 - ,100) + (.050 * .lOO)/(l - ,050) = ,0108. 

Therefore (assuming a 17% track take) the public's rational quinella dividend should be 

qdiv z (1 - .17)/.0108 = 76.85 . 
Assuming that the estimated probability is correct the expected return of a bet on this combination is 

er = .0151 * 76.85 = 1.16. 

In the above example two horses which had expected returns of less than 1 as individual win bets, 
in combination produce a 16% advantage quinella bet. The same principle applies, only more so, for 
bets in which one must specify the finishing positions of more than two horses. In ultra-exotic bets 
such as the pick-six, even a handicapping model with only modest predictive ability can produce 
advantage bets. The situation may be roughly summarized by stating that for a bettor in possession of 
accurate probability estimates which differ from the public estimates; 'the more exotic (i.e. specific) 
the bet, the higher the advantage'. Place and show bets are not considered exotic in this sense as they 
are less specific than normal bets. The probability ditferences are 'watered down' in the place and 
show pools.2 Some professional players make only exotic wagers to capitalize on this effect. 

First, Second, and Third 

In exotic bets that involve specifying the finishing order of two or more horses in one race, a 
method is needed to estimate these probabilities. A popular approach is the Harville formula. 
(Handle, 1973): 

For three horses ( i, j, k ) with win probabilities ( R,, 
probability that they will finish in order as 

3 ) the Harville formula specifies the 

np jR ~ 

(1-7$)( l - R i - R j )  

- - 
R -  e 

This formula is significantly biased, and should not be used for betting purposes, as it will lead to 
serious errors in probability estimations if not corrected for in some way.' (Henery 1981, Stem 1990, 
Lo and Bacon-Shone 1992). Its principle deficiency is the fact that it does not recognize the 
increasing randomness of the contests for second and third place. The bias in the Harville formula is 
demonstrated in Tables 9 and 10 which show the formula's estimated probabilities for horses to finish 
second and third given that the identity of the horses finishing first (and second) are known. The data 
set used is the same as that which produced Table 1 above. 
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Thank you!
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