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2 Structure-Preserving Models of Continuum Mechanics

Want to build (numerical) models of physical system with same properties
as continuous equations:

Conservation laws: mass, momentum, energy, etc.
Involution constraints: ∇ ·B = 0, etc.
Entropy behaviour: conserved by reversible dynamics, generated by
irreversible dynamics (across shocks)

How can we do this?

Obtain equations using geometric mechanics (GM; variational/Lagrangian,
Hamiltonian, metriplectic, etc.) and discretize them using structure-preserving
(SP) spatial and temporal discretizations, based on exterior calculus!

This talk will illustrate this in the context of discrete exterior calculus as a
spatial discretization
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3

Intro to "Modern" DEC
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4 Where is DEC used?

Electrodynamics (Maxwell)
FDTD, Yee scheme = spacetime DEC

Low-Mach Fluids = Velocity-Based Formulations
Incompressible Flow, VVP Stokes: MAC scheme
GFD: Arakawa C-Grid, TRiSK (Dynamico/WAVETRISK, MPAS-O, ICON-IAP,
PAM)

Also: port-Hamiltonian, Cell method (Tonti)
Key here is all quantities are scalar-valued differential forms

What about high-Mach fluids = momentum-based formulations?

This requires the use of (vector) bundle-valued differential forms, main subject of
this talk!
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5 Structure-Preserving Spatial Discretizations

Structure preserving (ie. mimetic, compatible) = discrete version of
(scalar-valued) exterior calculus

Discrete analogues of key (exterior) calculus identities such as:
Annihilation/Exact Sequence: dd = 0

ex. ∇ ·∇×= 0, ∇×∇ = 0
Integration by Parts: ⟨α,dβ ⟩−⟨δ α,β ⟩= ⟨α,β ⟩dΩ

ex.
∫
Ωa∇ ·b+

∫
Ω ∇a ·b =

∫
∂Ωab · n̂

Hodge decomposition/deRham cohomology: α = dψ +δ φ +h, with dh = δ h = 0
ex. a = ∇ψ +∇×φ +h with ∇ ·h = ∇×h = 0
Spaces ψ, φ and h have the correct dimension (depending on topology of manifold)

How does DEC achieve these?
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6 Key ideas of DEC

Two grids in duality (straight and twisted , 1-1 relationship between k and
(n−k) cells on opposite grids
Discrete differential forms are integrated values over geometric entities, 1-1
relationship between k -form and (n−k)-forms on opposite grids (Hodge star)
Operators are either topological (exterior derivative, wedge product) or
metric (Hodge star, inner product), discretize accordingly + separately

Staggering Topological Metric
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7 Why use discrete exterior calculus (DEC)?
Useful Features of DEC (compared to FEEC)

Distinguishes between straight and twisted forms (especially important for
electrodynamics and electromagnetic fluids)
Pointwise limiting is easier (strong connections with existing staggered
finite-volume methods)
Explicit (no linear systems unless physical system needs them)

New-ish Developments in DEC at SNL
Consistent treatment of boundaries + arbitrary boundary conditions

Inflow/outflow, slip and no-slip, etc.

High-order Hodge stars on structured, uniform grids
Structure-presering, high-resolution, oscillation-limiting, property-preserving
(SPHROL-PP) Lie derivatives for arbitrary SVDFs
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8 SPHROL-PP Transport Operators
Structure-preserving: Lie derivative L and diamond ⋄ are discrete adjoints
High-resolution: resolve sharp gradients or discontinuities using as few grid
points as possible
Oscillation-limiting: reduce or eliminate unphysical numerical oscillations,
especially in regions of sharp gradients or discontinuities
Property-preserving: preserve solution properties ex. solution bounds
(invariant domain) such as positivity of densities

Usual SPHROL-PP Energy

SPHROL-PP eliminates spurious oscillations, reduces overshoots/undershoots, still conserves
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9 How exactly does a SPHROL-PP transport operator work?

Split Luα and α ⋄β into exterior derivative d and interior product i using
Cartan’s magic formula:

Luα = d iuα + iudα α ⋄β = dα△β +α△dβ (1)

SP = discrete d using discrete exterior derivatives, obtain discrete △ as
discrete adjoint of i
HROL = discretize i using flowed-out definition and (WENO-based)
reconstructions
PP = limit reconstructions using flux-corrected transport

Volume form version looks like "convential" schemes, k -form version is new
Has been done for arbitrary k -forms on unstructured grids

Have a similar operator for velocity self-advection term (∇×v
D ×F)
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10 A DEC scheme for (low-Mach) neutral fluids
Advected densities model: n densities Dk (k = 1, . . . ,n; ex. component masses
ρi , entropic variable density S = ρη) and velocity v

∂ v
∂ t +

∇×v
D ×F+∑k

Dk
D ∇Bk = 0

∂Dk
∂ t +∇ · (Dk

D F) = 0
→

∂ v
∂ t +QF+∑k D̃kD1Bk = 0

∂Dk
∂ t + D̃2D̃k F = 0

(2)

F =
δH

δv
Bk =

δH

δDk
Q =

1
2
[qe W+Wqe] (3)

Choice of Dk and H [v,Dk ] closes the model:
can get (thermal) shallow water, (moist)
compressible Euler, (moist) anelastic, etc.
Discrete H [v,Dk ] has Hodge stars/inner
products (and wedge products), independent
of topological properties
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11 Quick example from atmospheric modelling

Conservation to machine-precision with spatial and temporal discretization
(discrete gradients), including SPHROL-PP transport∗

*- energy-conserving time integrator is not property-preserving yet
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12

DEC for (tensor)-valued
differential forms
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13 BVDF DEC in Rn

Focus on tensor-valued forms (key for continuum mechanics)

In Rn, tensor bundles become vector spaces instead of vector bundles
Connection is trivial, global basis for bundles

Represent a tensor-valued k -form as r (size of tensor in components) scalars
attached to a k -cell

SVDFs are just special case with r = 1
BVDF DEC is essentially just component-wise version of SVDF DEC

Discrete exterior derivatives and Hodges stars both act on components
independently

Can formulate Lie derivatives and diamond operators exactly as in the SVDF
case
On general manifolds M, much more complicated construction is needed

Let’s see an application of this for compressible flow
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14 Lie-Poisson Hamiltonian Formulation for Neutral Fluids

Lie-Poisson Hamiltonian formulation for momentum m, advected densities Dk
∂ m
∂ t

+L δH
δm

m+∑
k

Dk ∇
δH
δDk

= 0 (4)

∂Dk

∂ t
+∇ · (Dk

δH
δm

) = 0 (5)

System is closed by specifying Dk and H[m,Dk ]: different choices yield (thermal)
shallow water, compressible Euler, etc.

To discretize, need a way to represent m and Dk , along with Lie derivatives
L δH

δm
m, ∇ · (Dk

δH
δm) and diamond operator Dk ∇

δH
δDk

Note: can extend to arbitrary advected quantities α noting that ∇ · (Dk
δH
δm) = L δH

δm
α

and Dk ∇
δH
δDk

= α ⋄ δH
δα
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15 DEC Spatial Discretization of LP Formulation

Dk is a twisted volume form, m is a covector-valued twisted volume form
Both live at dual grid cell centers = unstaggered scheme

Discretize Lie derivatives (and diamong operators) using structure-preserving,
high-resolution, oscillation-limiting, property-preserving (SPHROL-PP)
transport operators

Conserves total energy (locally) and (some) Casimirs

LP DEC scheme works well for smooth solutions ex. thermal shallow water;
fails for discontinuous solutions ie high-mach compressible Euler. Why?
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16 Why does LP DEC scheme fail for discontinuous solutions?

The model is wrong: entropy is generated across shocks!
Fix with a thermodyamically compatible viscous regularization

Closely related to ideas from Guermond, Brenner, Svard

∂ m
∂ t

+ · · ·+∇ · (εm∇m) = 0 (6)

∂ρ

∂ t
+ . . .∇ · (ερ∇ρ) = 0 (7)

∂S
∂ t

+ . . .∇ · (εS∇S) = Π≥ 0 (8)

with TΠ= εm∇m ·∇u+ερ∇ρ ·∇ δH
δρ

+ εS∇S ·∇ δH
δS ≥ 0 recalling T = δH

δS . Relies on

positive definiteness of Hessian δ2 H
δ2x and ε ’s.

September 3rd, 2025



17 Connections with entropy-stable schemes
Most (all?) entropy-stable schemes solve:

∂ m
∂ t

+∇ · (um)+∇p = 0 (9)

∂ρ

∂ t
+∇ · (ρ u) = 0 (10)

∂h
∂ t

+∇ · ((h+p)u) = 0 (11)

with a numerical fluxes that can be decomposed into inviscid and
regularization/viscous parts ex. for ρ they are:

∇ · (ρ u)≈ ∇ · (ρ u)+∇ · (ε∇ρ) (12)

for a flow and grid size dependent ε, and further imply an equation of the form
∂S
∂ t

+∇ · (S u)+∇ · (ε∇S) = Π≥ 0 (13)

The LP scheme with regularization just makes this process explicit!
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18 LP DEC Scheme Results- Sod Shock Tube and Toro Problem 5

Density ρ Velocity u Density ρ Velocity u

Regularized LP DEC scheme correctly captures shock location and magnitude, no
unphysical oscillations

Rusanov viscosity ε = 1
2 |∆x |smax with minbee limiter

7th order WENO reconstructions
2nd order Hodge stars
SPPRK3 time stepping
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19 LP DEC Scheme Results- Enfield123

Density ρ Temperature T

Density is good, but there is a temperature anomaly
Regularization is generating uphysical entropy!
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20

Ongoing/Future Work and
Conclusions
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21 Electromagnetic Fluids I- Continuous
Single component electromagnetic fluid with (elementary) charge q

∂ m
∂ t

+L δH
δm

m+ρ∇
δH
δρ

+S∇
δH
δS

+qρ
δH
δD

+qρ
δH
δm

×B = 0 (14)

∂ρ

∂ t
+∇ · (ρ δH

δm
) = 0 (15)

∂S
∂ t

+∇ · (S δH
δm

) = 0 (16)

∂D
∂ t

−∇× δH
δB

−qρ
δH
δm

= 0 (17)

∂B
∂ t

+∇× δH
δD

= 0 (18)

Involution constraints ∇ ·B = 0, ∇ ·D = qρ, connects ρ and D equations
B is straight 2-form, D is twisted 2-form
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22 Electromagnetic Fluids II- Discretization

Discretization (essentially) just combines neutral fluids scheme with Yee scheme!

qρ
δH
δm , qρ

δH
δm ×B and qρ

δH
δD are interior product terms that can be treated using

SPHROL-PP ideas

Key features of proposed scheme:
For any choice of Hodge stars (Hamiltonian), reconstruction and
property-preserving limiting

Conserves energy (locally) and some Casimirs
Gets involution constraints

Both B and D equations are strong form
Likely requires same (fluid) regularization as neutral fluids scheme
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23 Conclusions

GM-EC formulations + SP discretizations are a powerful tool for building
(numerical) models of physical systems with key properties: conservation
laws, involution constraints, entropy behaviour, etc.
Key examples for SVDFs using DEC:

FDTD/Yee scheme (electrodynamics)
MAC scheme (velocity-based incompressible fluids)
TRiSK scheme (velocity-based low-Mach fluids)

BVDF DEC developed, used for discretization of Lie-Poisson
(momentum-based) formulations

Works for smooth flows and (some) discontinuous flows
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24 Future Work

Implement and test LP DEC scheme for electromagnetic fluid models
Better (flow-adaptive) viscous regularization, alternative reconstructions:
active only at shocks? entropy-based viscosity? how to handle contact
discontinuities?
DEC Improvements

HO Hodge stars on unstructured and hierachical/AMR meshes
Hierarchical/AMR DEC
Extend BVDF DEC to manifolds
SPRHOL-PP transport for BVDFs

SciML DEC: learn Hodge stars (ie Hamiltonians) and reconstructions, use in
both full order and surrogate models
Extend ideas to solid mechanics and/or shock hydrodynamics
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25

Thanks for listening! Questions?
Very incomplete list of (biased) references (contact me for many more!):

Eldred2022 C. Eldred, W. Bauer. Understanding TRiSK from a discrete exterior calculus perspective, arxiv

Eldred2024a C. Eldred Extending discrete exterior calculus with boundaries, in preparation

Eldred2024b C. Eldred, M. Waruszewski, M. Norman, M. Taylor Structure-preserving, high-resolution, oscillation-limiting, property-preserving
(SPHROL-PP) transport operators in discrete exterior calculus, in preparation

Eldred2024c C. Eldred A discrete exterior calculus scheme for momentum-based formulations of neutral fluids, in preparation
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