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2 | Structure-Preserving Models of Continuum Mechanics @i

Want to build (numerical) models of physical system with same properties
as continuous equations:

m Conservation laws: mass, momentum, energy, etc.
m Involution constraints: V-B =0, etc.

m Entropy behaviour: conserved by reversible dynamics, generated by
irreversible dynamics (across shocks)

How can we do this?

m Obtain equations using geometric mechanics (GM; variational/Lagrangian,
Hamiltonian, metriplectic, etc.) and discretize them using structure-preserving
(SP) spatial and temporal discretizations, based on exterior calculus!

This talk will illustrate this in the context of discrete exterior calculus as a
spatial discretization I
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Intro to "Modern' DEC




4 1 Where is DEC used?

m Electrodynamics (Maxwell)
m FDTD, Yee scheme = spacetime DEC
m Low-Mach Fluids = Velocity-Based Formulations

m Incompressible Flow, VVP Stokes: MAC scheme

m GFD: Arakawa C-Grid, TRiSK (Dynamico/WAVETRISK, MPAS-O, ICON-IAP,
PAM)

m Also: port-Hamiltonian, Cell method (Tonti)
m Key here is all quantities are scalar-valued differential forms

What about high-Mach fluids = momentum-based formulations?

This requires the use of (vector) bundle-valued differential forms, main subject of
this talk!
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5 | Structure-Preserving Spatial Discretizations @i

Structure preserving (ie. mimetic, compatible) = discrete version of
(scalar-valued) exterior calculus

m Discrete analogues of key (exterior) calculus identities such as:

m Annihilation/Exact Sequence: dd =0
Bex.V.-Vx=0,VxV=0

m Integration by Parts: (a,dB) — (6 o, B) = (&, B) 4q
B ex. [paV-b+ [gVa-b= [;nab-R

m Hodge decomposition/deRham cohomology: o =dy+ 8¢ +h, withdh=6h=0
B ex.a=Vy+Vxo+hwithv-h=Vxh=0
B Spaces vy, ¢ and h have the correct dimension (depending on topology of manifold)

How does DEC achieve these?
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6

Key ideas of DEC

m Two grids in duality (straight and twisted , 1-1 relationship between k and
(n— k) cells on opposite grids

m Discrete differential forms are integrated values over geometric entities, 1-1
relationship between k-form and (n— k)-forms on opposite grids (Hodge star)

m Operators are either topological (exterior derivative, wedge product) or
metric (Hodge star, inner product), discretize accordingly + separately
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7| Why use discrete exterior calculus (DEC)? @i

Useful Features of DEC (compared to FEEC)

m Distinguishes between straight and twisted forms (especially important for
electrodynamics and electromagnetic fluids)

m Pointwise limiting is easier (strong connections with existing staggered
finite-volume methods)

m Explicit (no linear systems unless physical system needs them)
New-ish Developments in DEC at SNL

m Consistent treatment of boundaries + arbitrary boundary conditions
m Inflow/outflow, slip and no-slip, etc.

m High-order Hodge stars on structured, uniform grids

m Structure-presering, high-resolution, oscillation-limiting, property-preserving
(SPHROL-PP) Lie derivatives for arbitrary SVDFs
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s | SPHROL-PP Transport Operators

m Structure-preserving: Lie derivative .¥ and diamond ¢ are discrete adjoints

m High-resolution: resolve sharp gradients or discontinuities using as few grid
points as possible

m Oscillation-limiting: reduce or eliminate unphysical numerical oscillations,
especially in regions of sharp gradients or discontinuities

m Property-preserving: preserve solution properties ex. solution bounds
(invariant domain) such as positivity of densities

H B =
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Nsteps

Fractlonal Change in Energy

Usual SPHROL-PP Energy

SPHROL-PP eliminates spurious oscillations, reduces overshoots/undershoots, still conserves
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o | How exactly does a SPHROL-PP transport operator work? @i

m Split £, and a < f into exterior derivative d and interior product / using
Cartan’s magic formula:

LAa=diga+iydo aof =daAB+aAdp (1)

m SP = discrete d using discrete exterior derivatives, obtain discrete A as
discrete adjoint of

m HROL = discretize i using flowed-out definition and (WENO-based)
reconstructions

m PP = limit reconstructions using flux-corrected transport

Volume form version looks like "convential" schemes, k-form version is new
Has been done for arbitrary k-forms on unstructured grids

Have a similar operator for velocity self-advection term (Vg" x F)
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10 I A DEC scheme for (low-Mach) neutral fluids @i

Advected densities model: n densities Dy (k =1,...,n; ex. component masses

pi, entropic variable density S = pn) and velocity v
W VAV S F4 Y, 26VB =0 . ¥+ QF +Y DcD1Bx =0 2)
D1 v.(%F)=0 2Dk 4 D,DF=0
IREa Ea 1 e e
F_W BK—TDK Q—2[q W+Wq°] 3)

m Choice of D and JZ|v, D] closes the model:
can get (thermal) shallow water, (moist) Dy BY
compressible Euler, (moist) anelastic, etc.

m Discrete J7|v, Di] has Hodge stars/inner .
products (and wedge products), independent .
of topological properties |
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11 I Quick example from atmospheric modelling
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Conservation to machine-precision with spatial and temporal discretization
(discrete gradients), including SPHROL-PP transport*

*- energy-conserving time integrator is not property-preserving yet
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DEC for (tensor)-valued
differential forms




131 BVDF DEC in R" @i

Focus on tensor-valued forms (key for continuum mechanics)

m In R", tensor bundles become vector spaces instead of vector bundles
m Connection is trivial, global basis for bundles

m Represent a tensor-valued k-form as r (size of tensor in components) scalars
attached to a k-cell

m SVDFs are just special case with r =1
m BVDF DEC is essentially just component-wise version of SVDF DEC
m Discrete exterior derivatives and Hodges stars both act on components
independently
m Can formulate Lie derivatives and diamond operators exactly as in the SVDF
case

m On general manifolds M, much more complicated construction is needed

Let’s see an application of this for compressible flow I
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14 | Lie-Poisson Hamiltonian Formulation for Neutral Fluids @i

Lie-Poisson Hamiltonian formulation for momentum m, advected densities Dy

am oH

P13 +$5Hm+ZDkV6D =0 (4)
oDy SH,
ot TV Pkgm) =0 ©

System is closed by specifying Dy and H[m, D]|: different choices yield (thermal)
shallow water, compressible Euler, etc.

To discretize, need a way to represent m and Dy, along with Lie derivatives
,Z(,SLH m,V. (Dkg—g) and diamond operator Dkvg—DHk

Note: can extend to arbitrary advected quantities o noting that V- (Dk%) =ZLsma

om

_ SH
and DkVSD =aos

September 3rd, 2025



15 | DEC Spatial Discretization of LP Formulation @i

m Dy is a twisted volume form, m is a covector-valued twisted volume form
m Both live at dual grid cell centers = unstaggered scheme
m Discretize Lie derivatives (and diamong operators) using structure-preserving,
high-resolution, oscillation-limiting, property-preserving (SPHROL-PP)
transport operators

Conserves total energy (locally) and (some) Casimirs

LP DEC scheme works well for smooth solutions ex. thermal shallow water;
fails for discontinuous solutions ie high-mach compressible Euler. Why?
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16 I Why does LP DEC scheme fail for discontinuous solutions? [ﬁ

m The model is wrong: entropy is generated across shocks!
m Fix with a thermodyamically compatible viscous regularization
m Closely related to ideas from Guermond, Brenner, Svard

om

W+---+V-(sme) =0 (6)
d
a—’;+...v-(epvm - 0 (7)
%‘?+...V-(83VS) = N>0 (8)

with TT1 = emVm-Vu+¢,Vp -V%ﬁﬂ +&sVS- V&L > 0 recalling T = %% . Relies on

e . . 2 ap ,
positive definiteness of Hessian 552—{? and €’s.
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17 I Connections with entropy-stable schemes

Most (all?) entropy-stable schemes solve:

am
a—tJrV-(um)Jer = 0 (9)
ap B
W+V-(pu) =0 (10)
dh
a—t+V.((h+p)u) =0 (11)
with a numerical fluxes that can be decomposed into inviscid and

regularization/viscous parts ex. for p they are:

V-(pu)=V-(pu)+V-(eVp) (12)
for a flow and grid size dependent ¢, and further imply an equation of the form
aaerV-(Su)JrV-(sVS):I'I20 (13)

The LP scheme with regularization just makes this process explicit!
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18 | LP DEC Scheme Results- Sod Shock Tube and Toro Problenﬂ

Density p Velocity u Density p Velocity u
Regularized LP DEC scheme correctly captures shock location and magnitude, no
unphysical oscillations

m Rusanov viscosity € = 3| Ax|Smax With minbee limiter

m 7th order WENO reconstructions
m 2nd order Hodge stars
m SPPRKS time stepping I
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19 I LP DEC Scheme Results- Enfield123

Density p Temperature T

Density is good, but there is a temperature anomaly
Regularization is generating uphysical entropy!
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Ongoing/Future Work and
Conclusions




21 | Electromagnetic Fluids I- Continuous

Single component electromagnetic fluid with (elementary) charge g
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Involution constraints V-B =0, V-D = gp, connects p and D equations

B is straight 2-form, D is twisted 2-form
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2> | Electromagnetic Fluids II- Discretization @i

Discretization (essentially) just combines neutral fluids scheme with Yee scheme!

gp i, gpSH x B and gp3f are interior product terms that can be treated using
SPHROL-PP ideas

Key features of proposed scheme:
m For any choice of Hodge stars (Hamiltonian), reconstruction and
property-preserving limiting
m Conserves energy (locally) and some Casimirs
m Gets involution constraints

m Both B and D equations are strong form
m Likely requires same (fluid) regularization as neutral fluids scheme
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23 | Conclusions

m GM-EC formulations + SP discretizations are a powerful tool for building
(numerical) models of physical systems with key properties: conservation
laws, involution constraints, entropy behaviour, etc.

m Key examples for SVDFs using DEC:

m FDTD/Yee scheme (electrodynamics)

m MAC scheme (velocity-based incompressible fluids)
m TRiSK scheme (velocity-based low-Mach fluids)

m BVDF DEC developed, used for discretization of Lie-Poisson
(momentum-based) formulations

m Works for smooth flows and (some) discontinuous flows
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24 | Future Work

m Implement and test LP DEC scheme for electromagnetic fluid models

m Better (flow-adaptive) viscous regularization, alternative reconstructions:
active only at shocks? entropy-based viscosity? how to handle contact
discontinuities?

m DEC Improvements

m HO Hodge stars on unstructured and hierachical/AMR meshes
m Hierarchical/AMR DEC

m Extend BVDF DEC to manifolds

m SPRHOL-PP transport for BVDFs

m SciML DEC: learn Hodge stars (ie Hamiltonians) and reconstructions, use in
both full order and surrogate models

m Extend ideas to solid mechanics and/or shock hydrodynamics
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Thanks for listening! Questions?

Very incomplete list of (biased) references (contact me for many morel!):

Eldred2022 C. Eldred, W. Bauer. Understanding TRiSK from a discrete exterior calculus perspective, arxiv
Eldred2024a C. Eldred Extending discrete exterior calculus with boundaries, in preparation

Eldred2024b C. Eldred, M. Waruszewski, M. Norman, M. Taylor Structure-preserving, high-resolution, oscillation-limiting, property-preserving
(SPHROL-PP) transport operators in discrete exterior calculus, in preparation

Eldred2024c C. Eldred A discrete exterior calculus scheme for momentum-based formulations of neutral fluids, in preparation
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