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Autoregressive models in state of the art AI4Science

Dominant strategy: Physics-agnostic next token prediction of field data

Goal:
Construct a physics+geometry-based framework to guarantee 

Physics + Uniform Stability
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Objective and “Physics-by-Construction” philosophy

Physics-informed
Multi-objective optimization

Numerical properties driven by
optimization error

Strong physics
Equality constrained optimization

Physics in the architecture
Physics independent of sample complexity

 or optimizer error
Comparably heavier software lift

vs.

Model acceleration
Learn a cheap low-dimensional problem 

trained to give the same answer as an 
expensive one to get real-time models

Model discovery
Governing physics are too complex to derive 

by pencil and paper, so use experiment 
instead

(multiscale, multiphysics, epidemiology)



4

Fusion reactor optimization
Commercialization of complex 

geometry reactor designs
Need exact handoff of conserved 

fluxes, Hugoniot relations, 
Gauge symmetries

Structure-preservation requirements for data-driven models

Hypersonic metamaterial design
Treat non-equilibrium physics in multiscale 

extreme physics processes
Need exact mass transfer, non-equilibrium 
chemistry, fluctuation/dissipation balance 

Data-driven fracture
Homogenized mechanics for multiscale 

materials from experimental DIC
Exactly balance strain, Griffiths fracture 
energy for rare events conditioned on 

mesoscale geometry
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The Z-pinch pulsed power fusion facility at SNL

Z-Machine at SNL
Pulsed power fusion facility for generating extreme environments
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A “gun” for harvesting electrons to bombard materials under test

Metal
Source of leeched electrons

Vacuum
Pulling electrons via capacitance

Electron Collector
To bombard downstream target

Metal
Source of leeched electronsV+

V-

Magnetic Field
Driving harvested electron dynamics






8

Emergent stochastic physics from coarse-grained dynamics

Emergent 
stochastic 

physics

Unresolved 
physical 

processes

Coarse-
graining 

length-scale
(micron)

Mesoscale (mm+)

Microscale
(submicron)

Reversible Irreversible dissipation Thermal noise

Needs geometric dynamics beyond 
exterior calculus stuff I’ll talk about 

today
QR code to preprint



Tool 1
Whitney forms
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Tool 2
Hybridizable domain 

decomposition

Tool 3
Conditional neural operators 

through cross-attention 
transformers

Model Class 1
Nonlinear boundary value 

problems

Model Class 2
Uniformly stable autoregressive 

dynamics
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Mathematical preliminaries: partition of unity

POU corresponding to Cartesian mesh vs categorical embedding 
architecture for logistic classification
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Mathematical preliminaries: partition of unity

Theorem: Partitions of unity are closed under linear convex combinations
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Tool one: Data-driven Whitney forms

Red: POU on cells/0-forms
Blue: Boundary of POUS/1-forms

In limit of disjoint partitions, we 
recover indicator functions and 

Dirac measures

Use ML to learn convex combination W 
and obtain data-driven de Rham complex
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Candidate model form for learning well-posed boundary value problems
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FEEC provides building blocks to construct our linear “anchor” 
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Tool two: Mortar methods

Michel Bernadou and Pierre-Arnaud Raviart, An analysis of some mortar finite element 
methods, RAIRO Analyse Numérique, 1976.
Arbogast, Todd, et al. "A multiscale mortar mixed finite element method." Multiscale 
Modeling & Simulation 6.1 (2007): 319-346.



16

New idea: A fully implicit family of nonlinear dynamics with a mortar shooting method

An example rollout
Selecting N to recover the 

harmonic oscillator
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The mortar method naturally generates summation by parts structures

Will allow us to consistently transfer energy across domains

Summation by parts
A discrete counterpart to 

integration-by-parts generating a 
telescoping sum



Mortar methods are an example of a hybridizable scheme

Figure taken from Guosheng Fu’s slides (http://staff.ustc.edu.cn/~yxu/hdg.pdf) 

Traditionally useful for hardware utilization
In machine learning contexts, we don’t need 
to propagate through the entire time series

http://staff.ustc.edu.cn/%7Eyxu/hdg.pdf


What classes of dynamics 
can this hybridizable 

architecture catch
Broadly, y’’ = F(y)
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Conservation of energy independent of rollouts for linear and nonlinear systems

Discrete Stieltjes integral
Recovers ∫ V’ du in 

continuum limit
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Discrete stability principle for introduction of abstract dissipative operators
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Uniform stability of gradients independent of number of rollouts
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Uniform stability of gradients independent of number of rollouts
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Tool three: a cross-attention transformer for operator inference conditioned on Z



Conditional Neural 
Whitney Forms

Real time FEM
conditioned on sensors to build 

digital twins
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Conservation balance
Exact physics treatment

Black-box generalized fluxes
Diffusion stabilized nonlinearity w/ uncertainty

Equality constrained optimization
Guaranteed structure preservation 

independent of data size

Neural Whitney forms
Differentiable architecture 

parameterizing control 
volumes and their 

boundaries

Structure preserving neural operators via finite element exterior calculus

Data-driven FEM
Simultaneously identify 

control volumes and integral 
balance laws whose solution 

matches data









Real-time DTs via Conditional Neural Whitney Forms

X-Attention
Transformer 

block
X

So
ft

M
ax

λ

Z

Whitney Forms

M

Left taken from: Synthesizing Coherent Story with Auto-Regressive Latent Diffusion Models
Xichen Pan1, Pengda Qin2, Yuhong Li2, Hui Xue2, Wenhu Chen

Massive strides in conditional generative modeling, 
generating images conditioned on a prompt (above)

We extend the idea to sample from the space of finite 
element models conditioned on an input Z (sensor 

readings, parameterized geometry, or a latent variable)
1000x faster than standard FEM model

X-Attention
Transformer 

blocku



Under the hood – non-invasive cross-attention defines FEM space and physics
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Modular digital twins bridging scales in Li-ion battery packs

Replace a 5.89M finite element simulation of as-built battery with 
8 data-driven elements w/ ~0.1% error, 10k CPU-hour LES 

simulation with <<1 sec data-driven RANS simulation

Structure preservation allows bidirectional and modular coupling 
from material to engineering scales

LES

Learned DT
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Real time RANS from LES – a 3.11 x 10^9 speedup



A platform for evaluating real-time physics on distributed sensor networks

Left: Control scheme to identify physical model for source location 
for a stationary (left) and moving (right) source.

Right: Collaboration with robotics lab at Upenn (Folk, Hsieh, Kumar) 
to build digital twins in an urban environment
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Hybridizable Neural 
Whitney Forms

Structure preserving 
autoregressive forecasting
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Recovering theory – Hamiltonian dynamics

Rollout of 20K+ periods from training on 2
Theorem shows model can capture a Hamiltonian and forecast 

with energy independent on number of rollouts
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Recovering theory – dissipative dynamics

Forecasting dissipative pendulum from short term observation
Surprisingly good 
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Autoregressive roll-outs – chaotic dynamics

Lorenz trained on ~1 
Lyaponuv period

Not possible to capture 
trajectories

Capture attractor geometry
Capture statistics of 

switching
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Autoregressive roll-outs – PCA modes of flow past a cylinder

Long term forecasting of von Karmann vortex
Many software engineering details here to scale up to large 

numbers of PCA modes…
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Integrating with vision transformers – end-to-end training of latent dynamics
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Integrating with vision transformers – end-to-end training of latent dynamics



39

Integrating with vision transformers – end-to-end training of latent dynamics
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Integrating with vision transformers – end-to-end training of latent dynamics
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AI4Science/Science4AI – Regression flow maps

Supervised initial/final condition for 
conventional supervised learning

Stability allows arbitrarily deep networks which 
access accuracy surpassing conventional

 MLPs, KANs, etc
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Optimal Coverage, Colloids, 
Polymer melts

Ben Shaffer, Ani Hsieh, Paulo Arratia – UPenn
Thomas O’Connor– CMU

Pep Espanol – UNED Madrid

Data-driven exterior calculus
Xiaozhe Hu – Tufts

Andy Huang, Jonas Actor- SNL
Brooks Kinch - UPenn

Metriplectic bracket discovery
Anthony Gruber – SNL

Kookjin Lee - ASU
Max Win, Quercus Hernandez - UPenn

Panos Stinis - PNNL

We can have it all!
Don’t need to choose between black-box autoregressive 

methods and rigorous math/physics

Autoregressive
Rollouts

Brooks Kinch - UPenn
Martine Dyring-Hansen – NTNU

Sunniva Meltzer - SINTEF
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