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Autoregressive models in state of the art Al4Science

)

GraphCast: Al model for faster and
- more accurate global weather

%=/ [heWell

Dominant strategy: Physics-agnostic next token prediction of field data

Goal:

Construct a physics+geometry-based framework to guarantee
Physics + Uniform Stability






Objective and “Physics-by-Construction” philosophy

Model acceleration
Learn a cheap low-dimensional problem
trained to give the same answer as an
expensive one to get real-time models

Physics-informed
Multi-objective optimization
Numerical properties driven by
optimization error

L =|lu — udatal|* + |[L[u] - B]||*

Model discovery
Governing physics are too complex to derive
by pencil and paper, so use experiment
instead
(multiscale, multiphysics, epidemiology)

Strong physics
Equality constrained optimization
Physics in the architecture
Physics independent of sample complexity
or optimizer error
Comparably heavier software lift

VSI

L= Hu — udata”z

such that L|u| = b



Structure-preservation requirements for data-driven models

SPUTTERING, IMPLANTATION
(F-TRIDYN)
implantation
roughness, profie
composition
MATERIAL EVOLUTION
(Xolotl)

Quantum Lattice PIC MHD

Fusion reactor optimization Hypersonic metamaterial design Data-driven fracture
Commercialization of complex Treat non-equilibrium physics in multiscale Homogenized mechanics for multiscale
geometry reactor designs extreme physics processes materials from experimental DIC
Need exact handoff of conserved Need exact mass transfer, non-equilibrium ~ Exactly balance strain, Griffiths fracture

fluxes, Hugoniot relations, chemistry, fluctuation/dissipation balance energy for rare events conditioned on

Gauge symmetries mesoscale geometry




Company News & Media

Technology

Commonwealth Fusion Systems

N7
NS

Commonwealth Fusion Systems Raises

$863 Million Series B2 Round to
Accelerate the Commercialization of

Fusion Energy




The Z-pinch pulsed power fusion facility at SNL

Z-Machine at SNL
Pulsed power fusion facility for generating extreme environments



A “gun” for harvesting electrons to bombard materials under test

Metal
V+ Source of leeched electrons

Magnetic Field
Driving harvested electron dynamics

Vacuum
Pulling electrons via capacitance

Metal
Source of leeched electrons

Electron Collector

To bombard downstream target







Emergent stochastic physics from coarse-grained dynamics
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Tool 1 Tool 2

Whitney forms Hybridizable domain Conditional neural operators
decomposition through cross-attention
transformers

Model Class 1 Model Class 2

Nonlinear boundary value Uniformly stable autoregressive
problems dynamics



Mathematical preliminaries: partition of unity

Definition: Partition of unity (POU)
A collection of functions {¢;},_,  y satisfying

e ¢, >0
° > ipi=1

Example:

Consider a partition of Q2 C R? into disjoint cells Q = J, C;. Then the indicator
functions ¢;(z) = 1¢, (x) form a POU.

) _ . Softmax
¢’t (x) = softmax o NN(x’ 9) activation function
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POU corresponding to Cartesian mesh vs categorical embedding
architecture for logistic classification




Mathematical preliminaries: partition of unity

Theorem: Partitions of unity are closed under linear convex combinations

Let (¢1,..., ¢r) be a partition of unity:
n
Zfbi(:{:) =1, ¢;(x)>0.
i=1
n
Let W = (w;;) be an m x n matrix with w;; > 0, Z w;; = 1.
j=1

Define new functions:

n

i(x) = Z w;P;(x)
=
Then:

T

Z“{/),,;(:I:) — Z 'U"ij@j(fff) = | (/)j(-’f:) (Zti'z‘j) = Z(pj(_f;;) =1
1

1=1 1=1 j=1 Jj=1




Tool one: Data-driven Whitney forms

H(grad) —— H(curl) VX, H(div) —Y— L2
W{] 4o > Wl @ > Wg @ > Wg

1=0 B
W, = span { Ai}j Red: POU on cells/0-forms D/VZ —_ A'IJ

Blue: Boundary of POUS/1-forms
Wi = span { AiVA; — ,\jv,\i},

In limit of disjoint partitions, we WZJ —
Wy = span { VA X VA + VA X YA+ VA X VA | i esensand |y oy ) O,
1 J J 1

Wy = Spa,n{ AiVA; - (VA x V) = AV - (VA x V)

Use ML to learn convex combination W
FARVA - (VA x V) — NV - (VA x v,\k)}

and obtain data-driven de Rham complex






Candidate model form for learning well-posed boundary value problems

Theorem 2.1 (Gustafsson [39]). Consider the nonlinear system of equations

Az + eF(x) = b, (7)
where ¢ > 0 and F is a vector-valued nonlinear function with Lipschitz constant C,

IF(z) — F@)l2 < Cllz — yll2

Define 7 = €CL||A7Y|. If 7 < 1, then (7) has a unique solution.
Proof. See [39], Appendix A.3. ]
Corollary 2.2. Assume A is invertible and satisfies the Poincare-like inequality

2|3 < CpoT As (8)
then ™ < €C,Cy,, and following Theorem 2.1, (7) has a solution if cC,Cy, < 1.

Proof. See Horn and Johnson [43] for a discussion of Loewner ordering and monotonicity of the matrix
inverse. By Loewner ordering,

e < CpxTAzx — 2TA 1z < CpzTz,

and we can bound |[A~L]| < C,. O]



FEEC provides building blocks to construct our linear “anchor”

Theorem 2.3. Denote by 0; jr. = 0ij — i the graph gradieni operator mapping RY — RYXN " and M;
the mass matriz associated with W;. Then the following identities hold, for q,u € Wy and v, J € Wj.

(v, Vu) = 0TM o1
—(J,Vq) = ¢T6TM,.J

Consider the Poisson equation in mized form, namely, find (u,J) € Wy x Wy such that for any

(g,v) € Wy x Wy
(J,v) + (Vu,v) =0

(J;Vq) =< J,q> +(f,q).

If J - i|aq = 0, the resulting system of equations
Li = 6TM16d = My f

has a unique solution modulo a constant vector in the null-space, and the stiffness matriz L corre-
sponding to the discretized Hodge Laplacian is symmetric positive definite with a Poincare inequality

u" Mot < Cp(h)u"Li.



Tool two: Mortar methods

u+ KVp
V-u

|
-

= f

2

A

(K tup,v)a, — (pr, V-v)a, + A, v-ny)r, =0 Vv € Vi (Q),
es (V * Up, Q)SL - (f: q)ﬂt vq S Qh(Qz)7
18.00 Z(uh . n,,;,y,>rz. =0 V[J/ c Ah,

17.00
16.00 7
15.00
14.00
13.00
12.00
11.00
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00 Michel Bernadou and Pierre-Arnaud Raviart, An analysis of some mortar finite element

1.00 methods, RAIRO Analyse Numérique, 1976.
Arbogast, Todd, et al. "A multiscale mortar mixed finite element method." Multiscale
Modeling & Simulation 6.1 (2007): 319-346.

V1, (€);) is the Raviart—Thomas space on €2,

Q1 (€2;) is the space of piecewise constants on €2;,

A}, is the mortar space on interfaces (typically piecewise polynomials),
n; is the outward unit normal to 0f2;.




New idea: A fully implicit family of nonlinear dynamics with a mortar shooting method
Vi = Qi @ Vi @ Mt where Q! C L2(;), Vi C HY(Q);), and Mi C L2(95)

d
(J,v) + (u, E’U) = Nit10Vit1 — A

d
(7.0) = Wlu. J],q) =0

0
)\3 = U,

J(t’i) — Jiov

0.75 A

An example rollout Ut = J‘; el
Selecting N to recover the 5 000
harmonic oscillator Jt — —wu 025

=0.50 1

—0.75 1

-1.00 A




The mortar method naturally generates summation by parts structures

. N
Summation by parts
| A d|§crete counterpart t(_) E a?H—l — C{,i — (IN — (_'}{0
integration-by-parts generating a .
telescoping sum 1=0

Lemma 2.2 (Discrete summation by parts formula). For piecewise constant u € M}l and continuous
P1 J,v €V} on the interval [ty tri1],

tre+1
/ Judt + ug (v(tes1) — v(te)) = w10 (trr1) — ugv(te). (4)
12>
Summing these identities over all fine elements k =0,..., M — 1 in a given subdomain 2; yields
M-—1 tha1
Z {f Judt + ug (v(tg41) — ’U(tk))] =u(t vt ) — u(t )v(t)). (5)
k=0 -7tk

Will allow us to consistently transfer energy across domains



Mortar methods are an example of a hybridizable scheme

HDG
/A\\ / Traditionally useful for hardware utilization
In machine learning contexts, we don’t need

D-—___-D-_—u——__ﬂ . . .
v to propagate through the entire time series

ul  |f
Al

CG DG

A Bt
B 0

SA\:=BA 'B*AX=BA'f g4
u=A"'f—B"\) Y

Unified Hybridization of Discontinuous Galerkin, Mixed, and
Continuous Galerkin Methods for Second Order Elliptic Problems

Authors: Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov ~ AUTHORS INFO & AFFILIATIONS

Figure taken from Guosheng Fu’s slides (


http://staff.ustc.edu.cn/%7Eyxu/hdg.pdf

What classes of dynamics
can this hybridizable

architecture catch
Broadly, y”’ = F(y)




Conservation of energy independent of rollouts for linear and nonlinear systems

Theorem 2.3 (Discrete conservation of Hamiltonian for arbitrary number of rollouts). Consider
the rollout of Equation|6 over N subdomains. Then the following discrete Hamiltonian is preserved,
independent of the number of subdomains.

1 € ‘ 1 € ‘

[§|J2 - 5 [m*ul? — Ar*u| = §|J|2 + 5 T u|? — Artul| . (8)

L Lo

Theorem 2.4. For the modified nonlinear forcing N = V'(u), we do not obtain the same telescoping
structure, but instead preserve the discrete energy

—1M-1
1, .
[§|J|‘3] 4 Z Z V (ug) (ugy1 — ug) =0 (10)
Lo

=0 k=0

Discrete Stieltjes integral
Recovers [ V' duin
continuum limit



Discrete stability principle for introduction of abstract dissipative operators

To treat dissipation, we consider the addition of an abstract bilinear for a : Q; x Q; — R, which
we require to induce a norm || - ||, as follows

a(wd,wJ) = ||J|%. (15)

As an example, the bilinear form associated with a linear dissipative oscillator a(.J,v) = 8(J,v), 8 > 0,
satisfies this property. Incorporating alongside our nonlinear Hamiltonian system we obtain

1
(J,v) + (u, %U) = Aip1Vit1 — Aiv;
ar (16)

1
(;7-1, q) +a(rJ,q) — (u,q) =0,

The additional term provides the following stability results.

h

Theorem 2.5. Define the discrete energy at the end of the it rollout as

1, .
& = 5uH+vmﬂg—Awu (17)
t=t;

Then the energy in the system at the N rollout is bounded by the initial energy.

En <& (18)



Uniform stability of gradients independent of number of rollouts

To analyze the stability of backpropagation through multiple rollouts, consider the sequence o
states Yy = (Mg, Ji) at subdomain boundaries and the map

Yip1 = @(Yr;0)

defined implicitly by solving (22) on Q. Differentiating with respect to # yields

0Yk 1 —J ()Yk R
. — Jk aa k
00 06 ’
where Jp = d(b;;f;g is the local Jacobian and R = o0 {;‘;“;0 . Iterating this recurrence,
. . N-1 [/ N-1
NN _ P 1| R
N gy ST T ) e
oo 00 ' J
k=0 \j=k+1

The first term vanishes because Y} is fixed and therefore independent of 6. If ||Ji|| < L < 1 for all k
then following a geometric series argument

HdYN H deHRkH



Uniform stability of gradients independent of number of rollouts

i T _ 8B; ]

.
A=|6§ 0 0 |+h|0;N 0N 0],
0

Lemma 3.1 (Bounded inverse of the local Jacobian). Let A = Ay+D be given by with Qp = dgPy
and V, = P1. Assume:

1. The (dgPg/P1)-pair satisfies a discrete inf-sup condition, so that || Ay " || < C uniformly in h.
2. The partial derivatives Ofﬁ with respect to (i, j) are uniformly bounded by a constant L.

Then
|4,'D| < ChL,

and for sufficiently small h this norm is less than 1. Consequently,

S - Ay
1 _ . 1k 1 L < H 0
A kz_:n( A[] D) AU ) HA ” = 1—-—ChL’

and the bound is uniform in the number of subdomains.



Tool three: a cross-attention transformer for operator inference conditioned on Z

CrossAttnTransformer

1

‘ Linear :'.I Dropout CrossAttn
‘t / HY ? i DecoderLayer
|I P . 4
Concatenate . —T—

l-l ‘ Feed

A HE Forward ©oA o o
I P : ? - S : N blocks © |
- . : LayerNorm o

Scaled Dot Pn i i ' CrossAttn e
Product Attention Nheads: i © DecoderLayer |
} e

CrossAttn

Dropout
P DecoderLayer

T

MultiHead K’V -.:f ..........................................
Attention i J x z

il

LayerNorm

%T

x 4

(a) The multi-head attention implementation uses the built-in
PyTorch module torch.nn.MultiheadAttention. The middle
block is one layer of our CrossAttnTransformer: a standard de-
coding transformer without a self-attention component. Layer
normalization is applied only over the final (per-token) dimen-
sion. The feedforward network is a two-layer MLP that expands
and contracts the embedding dimension by a factor of 2, with a
dropout layer after its activation. The CrossAttnTransformer
is simply Npiocks Of these layers stacked in sequence, each con-
ditioned upon the same z.

X

X

(a) Representative reconstructions for a vanilla DeepONet model (395,776 pa-

rameters).

(b) Representative reconstructions for proposed cross attention transformer
(398,081 parameters).

.
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Iteration

(c) Convergence during training for both,
demonstrating a three order-of-magnitude
reduction in loss in the infinite data limit.




Conditional Neural
Whitney Forms

Real time FEM
conditioned on sensors to build
digital twins




Structure preserving neural operators via finite element exterior calculus

V-w=Ff

Conservation balance
Exact physics treatment

o) w = —Vu + N[u,w; 0|

Black-box generalized fluxes
D/Vi — )\’IJ Diffusion stabilized nonlinearity w/ uncertainty

ijj =
MV — AV

: 2 2 2
argmin||u — Ugata||” + €°||W — Waata|| Data-driven FEM

such that a(u,v; A) + Ny[u; 0] = b(v) Simultaneously identify
Neural Whitney forms _ _ o control volumes and integral
Differentiable architecture Equality constrained optimization balance laws whose solution
parameterizing control Guaranteed structure preservation matches data

volumes and their independent of data size

boundaries









Real-time DTs via Conditional Neural Whitney Forms

StoryDALL-E

Whitney Forms

X-Attention

Transformer
block

AR-LDM (Ours)

#2. Wilma, Belly, and Barney are slanding in the living room. Wilma is talking.
#3. Fred and Wilma are driving in the car.
#4. Fred is driving the car while listening to Wilma who is the passenger.
Wilma looks angry while speaking to Fred as she has her arms crossed.
#5. The man in blue with a bow tie is sitting with his hands on a desk in the room.
He is talking and then shakes his head while talking.

X-Attention M, M,

Transformer
block

17

F;i = —Vu+ NNlu;, u;, \1/;1;13-\; Z) (j)zlj (x)
|

Massive strides in conditional generative modeling,

generating images conditioned on a prompt (above) ) ) )
argmin||u — Uggte|| + €°||w — Waatal|
We extend the idea to sample from the space of finite U oT " T A

element models conditioned on an input Z (sensor such that 50 M dgti + 50M1NN[U] = o
readings, parameterized geometry, or a latent variable)

1000x faster than standard FEM model

Left taken from: Synthesizing Coherent Story with Auto-Regressive Latent Diffusion Models

Xichen Pan?, Pengda QinZ, Yuhong Li2, Hui Xue2, Wenhu Chen



Under the hood — non-invasive cross-attention defines FEM space and physics

Whitney Forms
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CrossAttnTransformer

Linear

Concatenate

Scaled Dot
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0 0
My = (¢, a’(/)j
= (WiaAa, WipAp) = Wia My Wy,




Modular digital twins bridging scales in Li-ion battery packs

temperature averaged over z,t

Replace a 5.89M finite element simulation of as-built battery with
8 data-driven elements w/ ~0.1% error, | 0k CPU-hour LES
simulation with <<| sec data-driven RANS simulation

Structure preservation allows bidirectional and modular coupling
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Real time RANS from LES —a 3.11 x 1019 speedup

Density Temperature Turbulent Kinetic Energy Momentum

(%]
c
o
-ld ‘
| | |
°
3 0 \E =
: s T +V - Fo(p, T, k, M) =0
‘ 5 8ik +V - F3(p, T, k, M) = 0
o
=
A | 3 8, M +V - Fy(p, T, k, M) =0
E‘ | J |‘
1(2,) Tliegn;)cjlel ;)redictions (left) and the targets (right), for all scalar fields, for the held-out validation example for which AT = 31.6 x % Model Predictions
P DAes gemes: o Validation Data
$ x  Training Data
L
b4
\ \ ;
0 %
2 10°
l/ [ x‘
=]
g &
@ x %
£
[ 5 |
‘ ks
\ X
’ — ' 108 10°? 1010
' Grashof Number
. . . o . (a) Predicted dimensionless TKE integrated over domain. Despite
(b) The six learned shape functions for the training example shown in F1g;ure All but one shape function are used to capture .. o
- - training on only 20 LES, we capture the transition to turbulence
different aspects of the plume off the hot battery module (the second from the bottom of the rack). The shape functions used to at Gr — 109

enforce Dirichlet boundary conditions around each battery module, and for the surrounding wall, are not shown.



A platform for evaluating real-time physics on distributed sensor networks

Circle Gulf Maze 0.200
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Left: Control scheme to identify physical model for source location

UEY for a stationary (left) and moving (right) source.

-0.75

Right: Collaboration with robotics lab at Upenn (Folk, Hsieh, Kumar)
to build digital twins in an urban environment

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00




Hybridizable Neural
Whitney Forms

Structure preserving
autoregressive forecasting

d
(J,v) + (u, E?)) = Nit1Vit1 — AU
d

(=J.4) — (NTu, J],q) =0

/\?; = ?LQ

7

J(t‘i) — Jiﬂﬂ




Recovering theory — Hamiltonian dynamics

I o . 1.00 -
u ]
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Rollout of 20K+ periods from training on 2
Theorem shows model can capture a Hamiltonian and forecast
with energy independent on number of rollouts



Recovering theory — dissipative dynamics

1.00 A

—— Predicted
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Forecasting dissipative pendulum from short term observation
Surprisingly good



Autoregressive roll-outs — chaotic dynamics

X-coordinate Time Series (Colored by Lobe)
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Autoregressive roll-outs — PCA modes of flow past a cylinder

Training Data (Speed)

20

0.10
0.08 1
0.06

0.04 1 '

0024

0.00 -
POD Data (Speed)

e -0.02 1

—0.04 A

—80 T —0.06 11

0 00 200 300 400 500 600 700 80O 0 5000 10000 15000 20000 25000 30000 35000 40000

Model Data (Speed)
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Many software engineering details here to scale up to large
numbers of PCA modes...




Integrating with vision transformers — end-to-end training of latent dynamics

| — Ao

1 y “\
O ©r

] [} 1
H W H H_ W H W H W L ' ) !
X7 x48 TxgxC 3 X5 x20 15 X 16 X4C 7 Xz *x8C | ! MLP vl MLP :

—— e e mmmmm, L memem-—-————- —_————————- N emememem———— - 1
’ Stage 1 S Stage 2 L Stage 3 N Stage 4 * : X p— , ! o~ '

1

niriasalinlasslintaaninlaan e il i ik

1 =] ] 1
mxwxs ] |2 vl i Tk P e b | e
E : 2 Swin :' ? Swin :: ? Swin :: ? Swin : ! : : : :
Images | & :‘; 5—) Transformer ::‘; 2 [ Transformer ' :; = P Transformer o = | Transformer > ' 1 [WoMSA ' : SW-MSA i
gl | Block |41 |5 Block |41 |5 Block |1} |5 Block [; ' ! vl :
A : 3 :l 1 1 [ LN f : LN 1
WD Umd R NS U0 S SR S ) NS— T e —— 1 N BT !
\ X2 ¢ N X2 AR X6 PUE %2 ’ ‘ ’

i ——— - i T - | S peep—— - o o owm o owm oa  w - ' A el s Bl
(a) Architecture (b) Two Successive Swin Transformer Blocks

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with . ; : : T . . ; ;
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively. 0 100 200 300 400 500 600 700 800

d
(J,v) + (u, &1))

AB-|— ]_ U’i—l— 1 T Az, ,UZ' Swin transformer Hierarchical vision transformer using shifted windows

Proceedlngs of the IEEEICVF |nternat|ona\ conferenoe on ..., 2021 - openaccess.thecvf.com

Abstract
J q ) ( N [’] le J ] . Q) p— 0 This paper presents a new vision Transformer, called Swin Transformer, that capably
-f- serves as a general-purpose backbone for computer vision. Challenges in adapting
Transformer from language to vision arise from differences between the two domains,

(d

O such as large variations in the scale of visual entities and the high resolution of pixels in
Ag = ?,LZ images compared to words in text. To address these differences, we propose a

J(tz) — JO’ SHOW MORE -

2 Y¢ Save 99 Cite Cited by 35101 Related articles All 10 versions Import into BibTeX 9

Signin



Integrating with vision transformers — end-to-end training of latent dynamics

The Well

Home Tutorial Datasets Data Format Data Visualizatior

Periodic shear flow

One line description of the data: 2D periodic incompressible shear flow.

Longer description of the data: A shear flow is a type of fluid characterized by the continuous
deformation of adjacent fluid layers sliding past each other with different velocities. This
phenomenon is commonly observed in various natural and engineered systems, such as rivers,
atmospheric boundary layers, and industrial processes involving fluid transport. The dataset
explores a 2D periodic shearflow governed by incompressible Navier-Stokes equation.

Associated paper: Paper 1, Paper 2, Paper 3.
Data generated by: Rudy Morel, CCM, Flatiron Institute.

Code or software used to generate the data: Github repository, based on the software
Dedalus.

Equation:

While we solve equations in the frequency domain, the original time-domain problem is
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Equation:
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Al4Science/Science4Al — Regression flow maps
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We can have it all!
Don’t need to choose between black-box autoregressive -
methods and rigorous math/physics ol

@ E.Z":.‘ZE:"Z-Z‘.-:::.

Data-driven exterior calculus Metriplectic bracket discovery Autoregressive Optimal Coverage, Colloids,
Xiaozhe Hu — Tufts Anthony Gruber — SNL Rollouts Polymer melts
Andy Huang, Jonas Actor- SNL Kookjin Lee - ASU Brooks Kinch - UPenn Ben Shaffer, Ani Hsieh, Paulo Arratia— UPenn
Brooks Kinch - UPenn Max Win, Quercus Hernandez - UPenn Martine Dyring-Hansen — NTNU Thomas 0’Connor- CMU
Panos Stinis - PNNL Sunniva Meltzer - SINTEF Pep Espanol — UNED Madrid
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