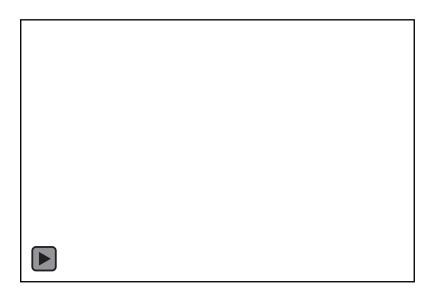
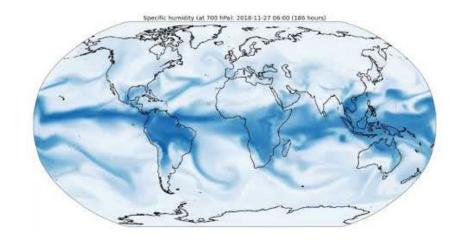
Data-driven Whitney forms for structure preserving models

Nat Trask University of Pennsylvania

Autoregressive models in state of the art Al4Science





GraphCast: Al model for faster and more accurate global weather forecasting

Dominant strategy: Physics-agnostic next token prediction of field data

Goal:

Construct a physics+geometry-based framework to guarantee
Physics + Uniform Stability

Objective and "Physics-by-Construction" philosophy

Model acceleration

Learn a cheap low-dimensional problem trained to give the same answer as an expensive one to get real-time models

Physics-informed

Multi-objective optimization

Numerical properties driven by

optimization error

VS.

$$\mathcal{L} = ||u - u_{ ext{data}}||^2 + ||\mathbf{L}[u] - b]||^2$$

Model discovery

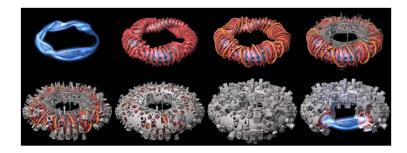
Governing physics are too complex to derive by pencil and paper, so use experiment instead (multiscale, multiphysics, epidemiology)

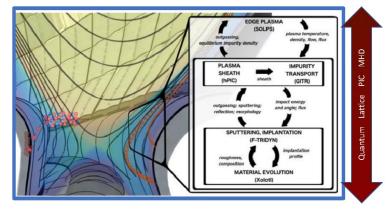
Strong physics

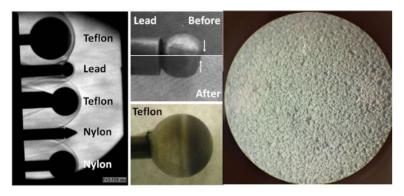
Equality constrained optimization
Physics in the architecture
Physics independent of sample complexity
or optimizer error
Comparably heavier software lift

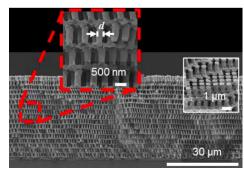
$$\mathcal{L} = ||u - u_{ ext{data}}||^2 \ ext{ such that } \mathbf{L}[u] = b$$

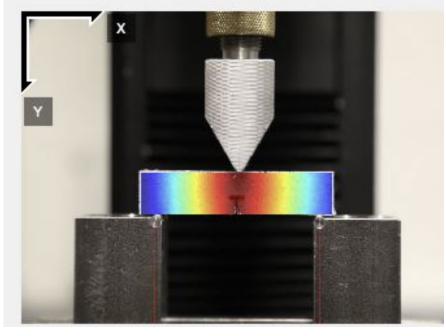
Structure-preservation requirements for data-driven models











Fusion reactor optimization

Commercialization of complex geometry reactor designs Need exact handoff of conserved fluxes, Hugoniot relations, Gauge symmetries

Hypersonic metamaterial design

Treat non-equilibrium physics in multiscale extreme physics processes

Need exact mass transfer, non-equilibrium chemistry, fluctuation/dissipation balance

Data-driven fracture

Homogenized mechanics for multiscale materials from experimental DIC Exactly balance strain, Griffiths fracture energy for rare events conditioned on mesoscale geometry

Technology

Company

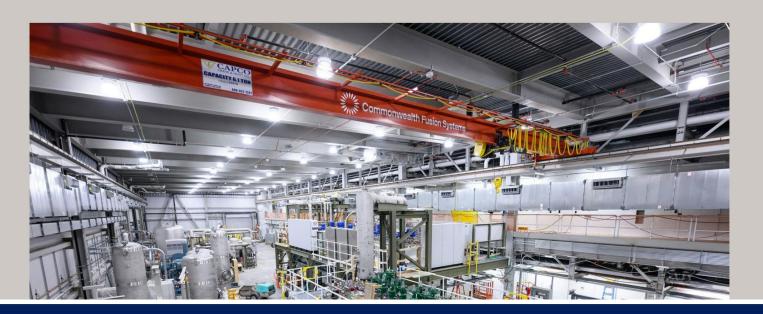
News & Media

Locations

Careers

08.28.2025

Commonwealth Fusion Systems Raises \$863 Million Series B2 Round to Accelerate the Commercialization of Fusion Energy

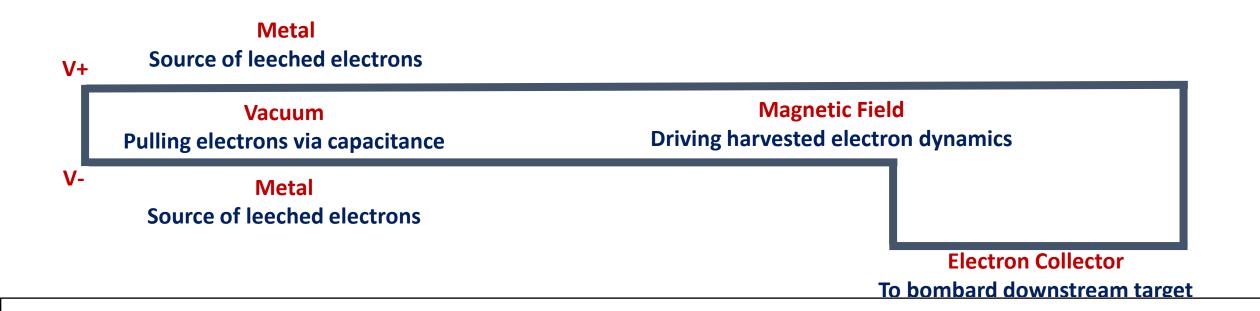


The Z-pinch pulsed power fusion facility at SNL

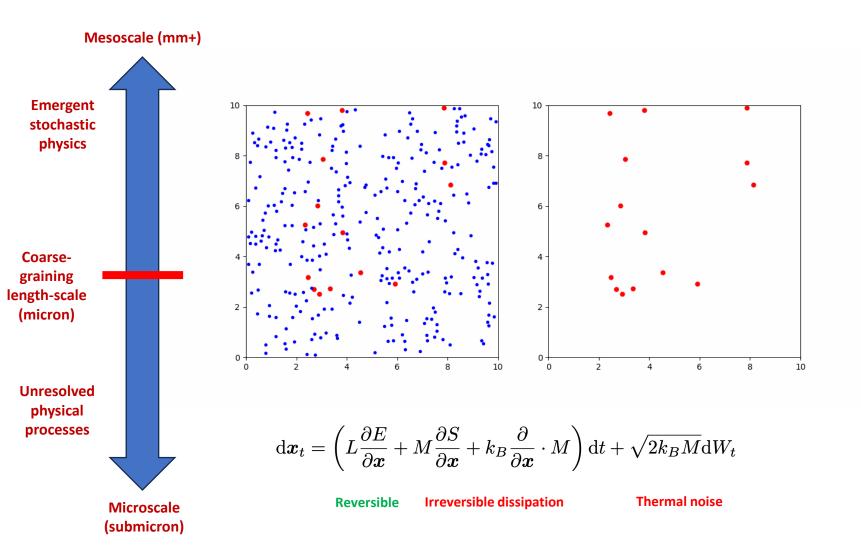
Z-Machine at SNL

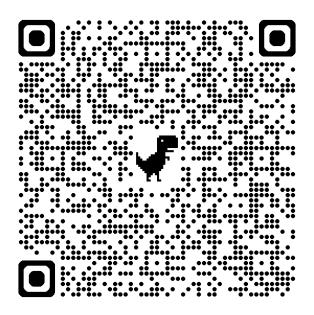
Pulsed power fusion facility for generating extreme environments

A "gun" for harvesting electrons to bombard materials under test



Emergent stochastic physics from coarse-grained dynamics





Needs geometric dynamics beyond exterior calculus stuff I'll talk about today

QR code to preprint

Tool 1Whitney forms

Tool 2

Hybridizable domain decomposition

Tool 3

Conditional neural operators through cross-attention transformers

Model Class 1

Nonlinear boundary value problems

Model Class 2

Uniformly stable autoregressive dynamics

Mathematical preliminaries: partition of unity

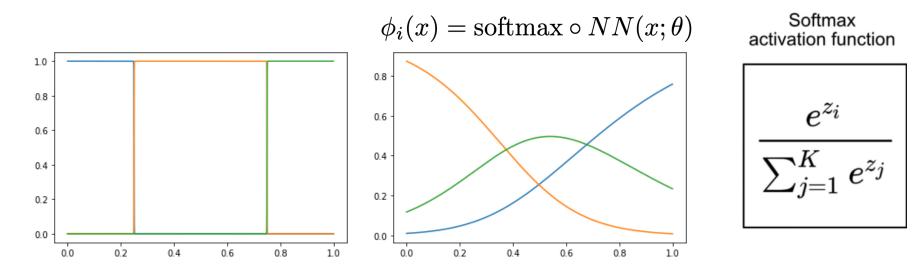
Definition: Partition of unity (POU)

A collection of functions $\{\phi_i\}_{i=1,...,N}$ satisfying

- $\phi_i > 0$
- $\sum_i \phi_i = 1$

Example:

Consider a partition of $\Omega \subset \mathbb{R}^d$ into disjoint cells $\Omega = \bigcup_i C_i$. Then the indicator functions $\phi_i(x) = \mathbb{1}_{C_i}(x)$ form a POU.



POU corresponding to Cartesian mesh vs categorical embedding architecture for logistic classification

Mathematical preliminaries: partition of unity

Theorem: Partitions of unity are closed under linear convex combinations

Let (ϕ_1, \ldots, ϕ_n) be a partition of unity:

$$\sum_{i=1}^{n} \phi_i(x) = 1, \quad \phi_i(x) \ge 0.$$

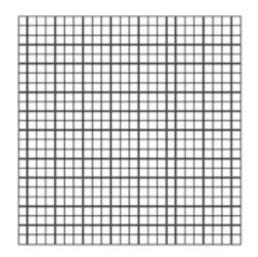
Let
$$W = (w_{ij})$$
 be an $m \times n$ matrix with $w_{ij} \ge 0, \sum_{j=1}^{n} w_{ij} = 1$.

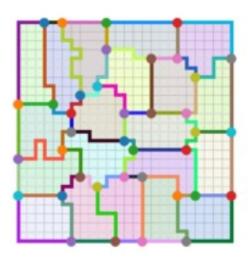
Define new functions:

$$\psi_i(x) = \sum_{j=1}^n w_{ij}\phi_j(x)$$

Then:

$$\sum_{i=1}^{n} \psi_i(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \phi_j(x) = \sum_{j=1}^{n} \phi_j(x) \left(\sum_{i=1}^{m} w_{ij} \right) = \sum_{j=1}^{n} \phi_j(x) = 1$$





Tool one: Data-driven Whitney forms

$$\mathcal{W}_{j_0\cdots j_k} = k! \sum_{i=0}^k (-1)^i \lambda_{j_i} \mathsf{d}\lambda_{j_0} \wedge \cdots \widehat{\mathsf{d}\lambda_{j_i}} \wedge \cdots \wedge \mathsf{d}\lambda_{j_k}$$

$$\mathcal{W}_0 = \operatorname{span} \{ \lambda_i \},$$

$$W_1 = \operatorname{span} \left\{ \lambda_i \nabla \lambda_j - \lambda_j \nabla \lambda_i \right\},\,$$

$$W_2 = \operatorname{span} \left\{ \lambda_i \nabla \lambda_j \times \nabla \lambda_k + \lambda_j \nabla \lambda_k \times \nabla \lambda_i + \lambda_k \nabla \lambda_i \times \nabla \lambda_j \right\}$$

$$\mathcal{W}_{3} = \operatorname{span} \left\{ \lambda_{i} \nabla \lambda_{j} \cdot (\nabla \lambda_{k} \times \nabla \lambda_{l}) - \lambda_{j} \nabla \lambda_{i} \cdot (\nabla \lambda_{k} \times \nabla \lambda_{l}) + \lambda_{k} \nabla \lambda_{i} \cdot (\nabla \lambda_{j} \times \nabla \lambda_{l}) - \lambda_{l} \nabla \lambda_{i} \cdot (\nabla \lambda_{j} \times \nabla \lambda_{k}) \right\}$$

Red: POU on cells/0-forms
Blue: Boundary of POUS/1-forms

In limit of disjoint partitions, we recover indicator functions and Dirac measures

$$\mathcal{W}_i = \lambda_i$$

$$\mathcal{W}_{ij} = \ \lambda_i
abla \lambda_j - \lambda_j
abla \lambda_i$$

Use ML to learn convex combination W and obtain data-driven de Rham complex

Candidate model form for learning well-posed boundary value problems

Theorem 2.1 (Gustafsson [39]). Consider the nonlinear system of equations

$$\mathbf{A}x + \epsilon \mathbf{F}(x) = b,\tag{7}$$

where $\epsilon > 0$ and F is a vector-valued nonlinear function with Lipschitz constant C_L

$$||\mathbf{F}(x) - \mathbf{F}(y)||_2 \le C_L ||x - y||_2.$$

Define $\tau = \epsilon C_L ||A^{-1}||$. If $\tau < 1$, then (7) has a unique solution.

Proof. See [39], Appendix A.3.

Corollary 2.2. Assume A is invertible and satisfies the Poincare-like inequality

$$||x||_2^2 \le C_p x^{\mathsf{T}} \mathbf{A} x \tag{8}$$

then $\tau \leq \epsilon C_p C_L$, and following Theorem 2.1, (7) has a solution if $\epsilon C_p C_L < 1$.

Proof. See Horn and Johnson [43] for a discussion of Loewner ordering and monotonicity of the matrix inverse. By Loewner ordering,

$$x^{\mathsf{T}}x \leq C_p x^{\mathsf{T}} \mathbf{A} x \implies x^{\mathsf{T}} \mathbf{A}^{-1} x \leq C_p x^{\mathsf{T}} x,$$

and we can bound $||\mathbf{A}^{-1}|| \leq C_p$.

FEEC provides building blocks to construct our linear "anchor"

Theorem 2.3. Denote by $\delta_{i,jk} = \delta_{ij} - \delta_{ik}$ the graph gradient operator mapping $\mathbb{R}^N \to \mathbb{R}^{N \times N}$, and \mathbf{M}_i the mass matrix associated with \mathcal{W}_i . Then the following identities hold, for $q, u \in \mathcal{W}_0$ and $v, J \in \mathcal{W}_1$.

$$(v, \nabla u) = \hat{v}^{\mathsf{T}} \mathbf{M}_1 \delta \hat{u}$$

$$-(J, \nabla q) = \hat{q}^{\mathsf{T}} \delta^{\mathsf{T}} \mathbf{M}_1 \hat{J}$$

Consider the Poisson equation in mixed form, namely, find $(u, J) \in W_0 \times W_1$ such that for any $(q, v) \in W_0 \times W_1$

$$(J, v) + (\nabla u, v) = 0$$

$$(J, \nabla q) = \langle J, q \rangle + (f, q).$$

If $J \cdot \hat{n}|_{\partial\Omega} = 0$, the resulting system of equations

$$\mathbf{L}\hat{u} := \delta^{\mathsf{T}} \mathbf{M}_1 \delta \hat{u} = \mathbf{M}_0 \hat{f}$$

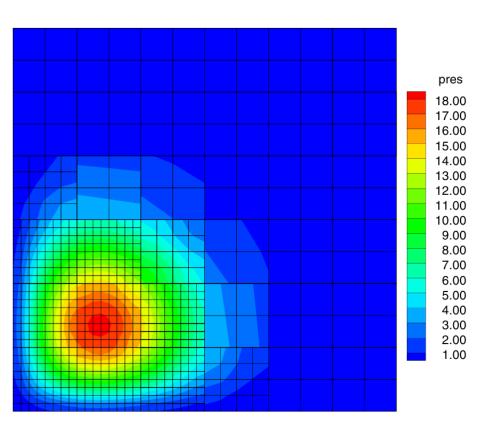
has a unique solution modulo a constant vector in the null-space, and the stiffness matrix L corresponding to the discretized Hodge Laplacian is symmetric positive definite with a Poincare inequality

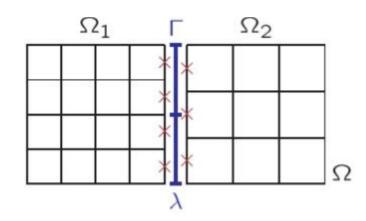
$$\hat{u}^{\mathsf{T}} \mathbf{M}_0 \hat{u} \leq C_p(h) \hat{u}^{\mathsf{T}} \mathbf{L} \hat{u}.$$

Tool two: Mortar methods

$$\mathbf{u} + K \nabla p = 0$$

$$\nabla \cdot \mathbf{u} = f$$





$$(K^{-1}\mathbf{u}_h,\mathbf{v})_{\Omega_i}-(p_h,
abla\cdot\mathbf{v})_{\Omega_i}+\langle\lambda_h,\mathbf{v}\cdot\mathbf{n}_i
angle_{\Gamma_i}=0 \quad orall \mathbf{v}\in\mathbf{V}_h(\Omega_i), \ (
abla\cdot\mathbf{u}_h,q)_{\Omega_i}=(f,q)_{\Omega_i} \quad orall q\in Q_h(\Omega_i), \ \sum_i\langle\mathbf{u}_h\cdot\mathbf{n}_i,\mu
angle_{\Gamma_i}=0 \quad orall \mu\in\Lambda_h,$$

- $\mathbf{V}_h(\Omega_i)$ is the Raviart-Thomas space on Ω_i ,
- $Q_h(\Omega_i)$ is the space of piecewise constants on Ω_i ,
- Λ_h is the mortar space on interfaces (typically piecewise polynomials),
- \mathbf{n}_i is the outward unit normal to $\partial \Omega_i$.

Michel Bernadou and Pierre-Arnaud Raviart, An analysis of some mortar finite element methods, RAIRO Analyse Numérique, 1976.

Arbogast, Todd, et al. "A multiscale mortar mixed finite element method." Multiscale Modeling & Simulation 6.1 (2007): 319-346.

New idea: A fully implicit family of nonlinear dynamics with a mortar shooting method

$$\mathbf{V}_{h}^{i} = \mathcal{Q}_{h}^{i} \otimes \mathcal{V}_{h}^{i} \otimes \mathcal{M}_{h}^{i}, \text{ where } \mathcal{Q}_{h}^{i} \subseteq \mathbf{L}^{2}(\Omega_{i}), \mathcal{V}_{h}^{i} \subseteq \mathbf{H}^{1}(\Omega_{i}), \text{ and } \mathcal{M}_{h}^{i} \subset \mathbf{L}^{2}(\partial\Omega_{i})$$

$$(J, v) + (u, \frac{d}{dt}v) = \lambda_{i+1}v_{i+1} - \lambda_{i}v_{i}$$

$$(\frac{d}{dt}J, q) - (\mathcal{N}[u, J], q) = 0$$

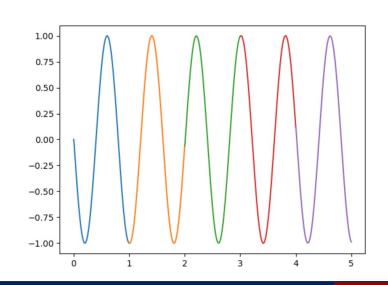
$$\lambda_{i} = u_{i}^{0}$$

$$J(t_{i}) = J_{i}^{0},$$

An example rollout
Selecting N to recover the harmonic oscillator

$$u_t = J,$$

$$J_t = -\omega^2 u$$



The mortar method naturally generates summation by parts structures

Summation by parts

A discrete counterpart to integration-by-parts generating a telescoping sum

$$\sum_{i=0}^N lpha_{i+1} - lpha_i = lpha_N - lpha_0$$

Lemma 2.2 (Discrete summation by parts formula). For piecewise constant $u \in \mathcal{M}_h^i$ and continuous $P1\ J, v \in \mathcal{V}_h^i$ on the interval $[t_k, t_{k+1}]$,

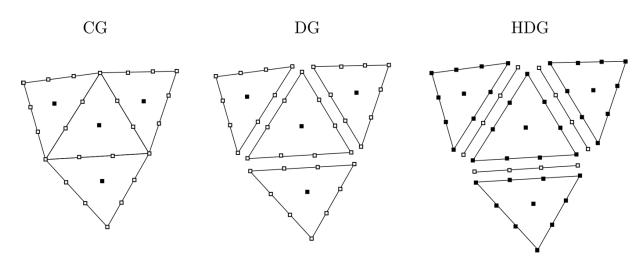
$$\int_{t_k}^{t_{k+1}} Jv \, dt + u_k \big(v(t_{k+1}) - v(t_k) \big) = u_{k+1} v(t_{k+1}) - u_k v(t_k). \tag{4}$$

Summing these identities over all fine elements k = 0, ..., M-1 in a given subdomain Ω_i yields

$$\sum_{k=0}^{M-1} \left[\int_{t_k}^{t_{k+1}} Jv \, dt + u_k \left(v(t_{k+1}) - v(t_k) \right) \right] = u(t_{i+1}^-) v(t_{i+1}^-) - u(t_i^+) v(t_i^+). \tag{5}$$

Will allow us to consistently transfer energy across domains

Mortar methods are an example of a hybridizable scheme

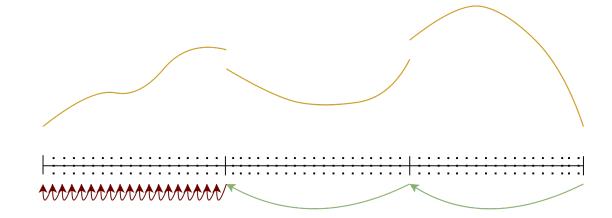


Traditionally useful for hardware utilization In machine learning contexts, we don't need to propagate through the entire time series

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

$$S\lambda := BA^{-1}B^T\lambda = BA^{-1}f - g$$
$$u = A^{-1}(f - B^T\lambda)$$

Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems



Authors: Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov AUTHORS INFO & AFFILIATIONS

What classes of dynamics can this hybridizable architecture catch

Broadly, y'' = F(y)

Conservation of energy independent of rollouts for linear and nonlinear systems

Theorem 2.3 (Discrete conservation of Hamiltonian for arbitrary number of rollouts). Consider the rollout of Equation 6 over N subdomains. Then the following discrete Hamiltonian is preserved, independent of the number of subdomains.

$$\left[\frac{1}{2}|J|^2 + \frac{\epsilon}{2}|\pi^*u|^2 - \lambda\pi^*u\right]_{t_N} = \left[\frac{1}{2}|J|^2 + \frac{\epsilon}{2}|\pi^*u|^2 - \lambda\pi^*u\right]_{t_0}.$$
 (8)

Theorem 2.4. For the modified nonlinear forcing $\mathcal{N} = V'(u)$, we do not obtain the same telescoping structure, but instead preserve the discrete energy

$$\left[\frac{1}{2}|J|^2\right]_{t_0}^{t_N} + \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} V'(u_k) \left(u_{k+1} - u_k\right) = 0$$
(10)

Discrete Stieltjes integral

Recovers ∫ V' du in continuum limit

Discrete stability principle for introduction of abstract dissipative operators

To treat dissipation, we consider the addition of an abstract bilinear for $a: \mathcal{Q}_h^i \times \mathcal{Q}_h^i \to \mathbb{R}$, which we require to induce a norm $||\cdot||_a$ as follows

$$a(\pi J, \pi J) := ||J||_a^2. \tag{15}$$

As an example, the bilinear form associated with a linear dissipative oscillator $a(J, v) = \beta(J, v)$, $\beta > 0$, satisfies this property. Incorporating alongside our nonlinear Hamiltonian system we obtain

$$(J, v) + (u, \frac{d}{dt}v) = \lambda_{i+1}v_{i+1} - \lambda_i v_i$$

$$(\frac{d}{dt}J, q) + a(\pi J, q) - (u, q) = 0,$$
(16)

The additional term provides the following stability results.

Theorem 2.5. Define the discrete energy at the end of the ith rollout as

$$\mathcal{E}_{i} = \left[\frac{1}{2} |J|^{2} + V(\pi^{*}u) - \lambda \pi^{*}u \right]_{t=t_{i}}$$
(17)

Then the energy in the system at the N^{th} rollout is bounded by the initial energy.

$$\mathcal{E}_N \le \mathcal{E}_0 \tag{18}$$

Uniform stability of gradients independent of number of rollouts

To analyze the stability of backpropagation through multiple rollouts, consider the sequence of states $Y_k = (\lambda_k, J_k)$ at subdomain boundaries and the map

$$Y_{k+1} = \Phi(Y_k; \theta)$$

defined implicitly by solving (22) on Ω_k . Differentiating with respect to θ yields

$$\frac{\partial Y_{k+1}}{\partial \theta} = J_k \frac{\partial Y_k}{\partial \theta} + R_k,$$

where $J_k = \frac{\partial \Phi(Y_k; \theta)}{\partial Y}$ is the local Jacobian and $R_k = \frac{\partial \Phi(Y_k; \theta)}{\partial \theta}$. Iterating this recurrence,

$$\frac{\partial Y_N}{\partial \theta} = J_{N-1} \cdots J_0 \frac{\partial Y_0}{\partial \theta} + \sum_{k=0}^{N-1} \left(\prod_{j=k+1}^{N-1} J_j \right) R_k.$$

The first term vanishes because Y_0 is fixed and therefore independent of θ . If $||J_k|| \le L < 1$ for all k then following a geometric series argument

$$\left\| \frac{\partial Y_N}{\partial \theta} \right\| \le \frac{\max_k \|R_k\|}{1 - L},$$

Uniform stability of gradients independent of number of rollouts

$$\mathcal{A} = \underbrace{\begin{bmatrix} \mathbf{M}_{\mathcal{V}} & \boldsymbol{\delta}^{\mathsf{T}} & -\frac{\partial B_{1}}{\partial \lambda_{i+1}} \\ \boldsymbol{\delta} & 0 & 0 \\ 0 & 0 & I \end{bmatrix}}_{\mathcal{A}_{0}} + h \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ \partial_{\hat{J}} \widehat{\mathcal{N}} & \partial_{\hat{u}} \widehat{\mathcal{N}} & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\mathcal{D}},$$

Lemma 3.1 (Bounded inverse of the local Jacobian). Let $\mathcal{A} = \mathcal{A}_0 + \mathcal{D}$ be given by (23) with $\mathcal{Q}_h = \operatorname{dg} \mathbf{P}_0$ and $\mathcal{V}_h = \mathbf{P}_1$. Assume:

- 1. The $(dg\mathbf{P}_0/\mathbf{P}_1)$ -pair satisfies a discrete inf-sup condition, so that $\|\mathcal{A}_0^{-1}\| \leq C$ uniformly in h.
- 2. The partial derivatives of $\widehat{\mathcal{N}}$ with respect to $(\widehat{u}, \widehat{J})$ are uniformly bounded by a constant L. Then

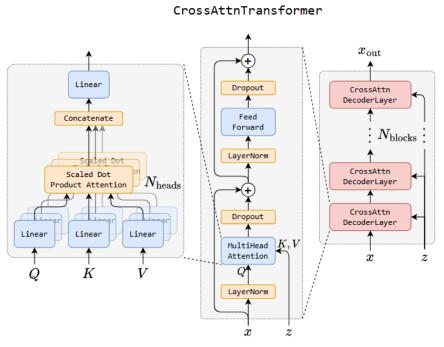
$$\|\mathcal{A}_0^{-1}\mathcal{D}\| \le ChL,$$

and for sufficiently small h this norm is less than 1. Consequently,

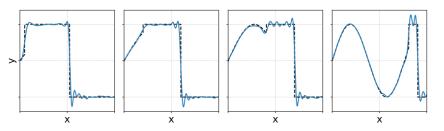
$$\mathcal{A}^{-1} = \sum_{k=0}^{\infty} (-\mathcal{A}_0^{-1} \mathcal{D})^k \mathcal{A}_0^{-1}, \qquad \|\mathcal{A}^{-1}\| \le \frac{\|\mathcal{A}_0^{-1}\|}{1 - ChL},$$

and the bound is uniform in the number of subdomains.

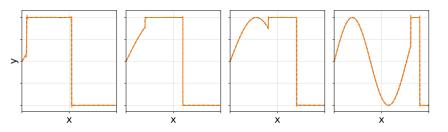
Tool three: a cross-attention transformer for operator inference conditioned on Z



(a) The multi-head attention implementation uses the built-in PyTorch module torch.nn.MultiheadAttention. The middle block is one layer of our CrossAttnTransformer: a standard decoding transformer without a self-attention component. Layer normalization is applied only over the final (per-token) dimension. The feedforward network is a two-layer MLP that expands and contracts the embedding dimension by a factor of 2, with a dropout layer after its activation. The CrossAttnTransformer is simply $N_{\rm blocks}$ of these layers stacked in sequence, each conditioned upon the same z.

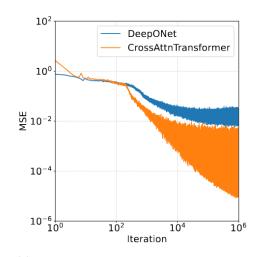


(a) Representative reconstructions for a vanilla DeepONet model (395,776 parameters).



(b) Representative reconstructions for proposed cross attention transformer (398,081 parameters).

$$f(x) = \begin{cases} \sin(z_1 x) & \text{if } x < z_2 \\ 1 & \text{if } z_2 \le x < z_2 + \frac{1 - z_2}{2} \\ -1 & \text{if } x \ge z_2 + \frac{1 - z_2}{2} \end{cases}$$



(c) Convergence during training for both, demonstrating a three order-of-magnitude reduction in loss in the infinite data limit.

Conditional Neural Whitney Forms

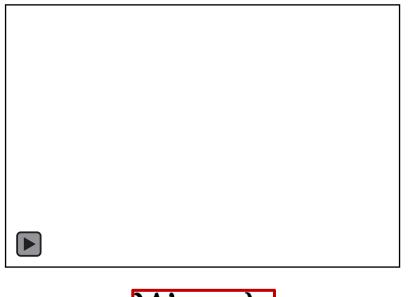
Real time FEM conditioned on sensors to build digital twins

Hybridizable Neural Operators

Structure preserving autoregressive forecasting

(paper in a couple weeks)

Structure preserving neural operators via finite element exterior calculus



$$\mathcal{W}_i = \lambda_i$$

$$\mathcal{W}_{ij} = \ \lambda_i
abla \lambda_j - \lambda_j
abla \lambda_i$$

Neural Whitney forms

Differentiable architecture parameterizing control volumes and their boundaries

$$abla \cdot \mathbf{w} = f$$

Conservation balance

Exact physics treatment

$$\mathbf{w} = -
abla u + \mathcal{N}[u, \mathbf{w}; heta]$$

Black-box generalized fluxes

Diffusion stabilized nonlinearity w/ uncertainty

$$\underset{\mathbf{A},\theta}{\operatorname{argmin}} ||\mathbf{u} - \mathbf{u}_{data}||^2 + \epsilon^2 ||\mathbf{w} - \mathbf{w}_{data}||^2$$
such that $a(\mathbf{u}, \mathbf{v}; \mathbf{A}) + N_{\mathbf{v}}[\mathbf{u}; \theta] = b(\mathbf{v})$

Equality constrained optimization

Guaranteed structure preservation independent of data size

Data-driven FEM

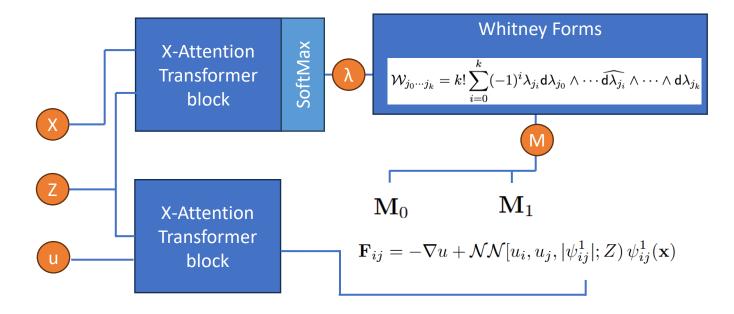
Simultaneously identify control volumes and integral balance laws whose solution matches data

Real-time DTs via Conditional Neural Whitney Forms

Massive strides in *conditional generative modeling*, generating images conditioned on a prompt (above)

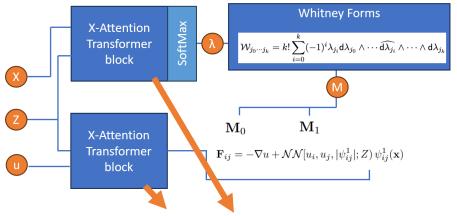
We extend the idea to sample from the space of finite element models conditioned on an input Z (sensor readings, parameterized geometry, or a latent variable)

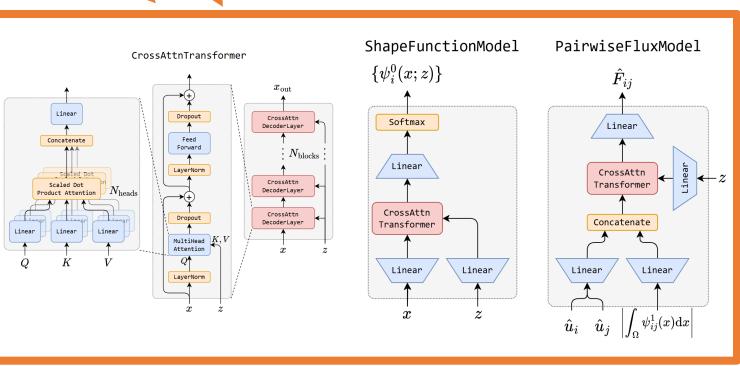
1000x faster than standard FEM model

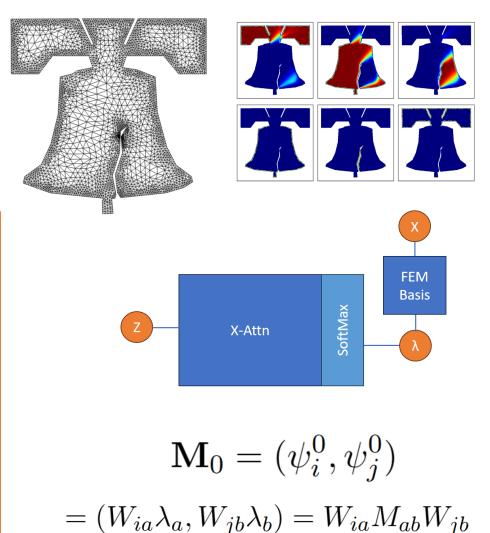


$$\underset{\mathbf{A},\theta}{\operatorname{argmin}} ||\mathbf{u} - \mathbf{u}_{data}||^2 + \epsilon^2 ||\mathbf{w} - \mathbf{w}_{data}||^2$$
such that $\delta_0^{\mathsf{T}} \mathbf{M}_1 \delta_0 \hat{u} + \delta_0^{\mathsf{T}} \mathbf{M}_1 \mathcal{N} \mathcal{N}[\hat{u}] = \mathbf{f}_{\theta}$

Under the hood – non-invasive cross-attention defines FEM space and physics

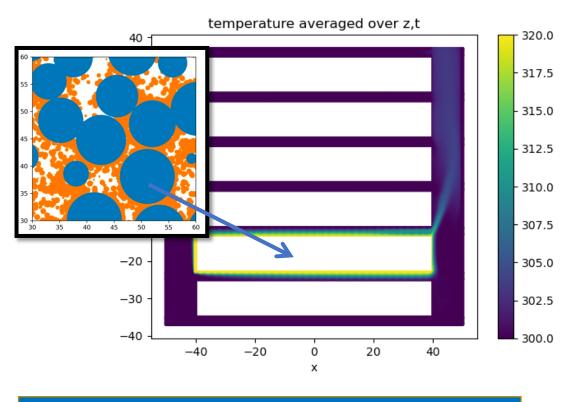






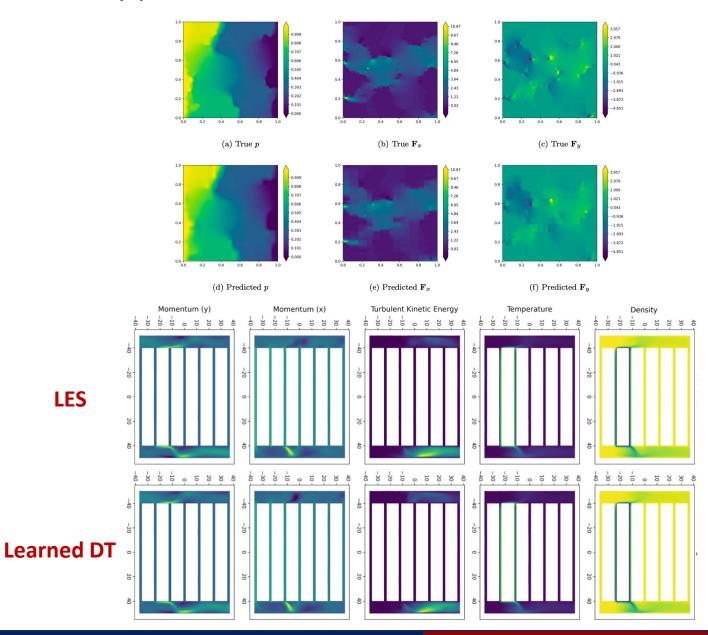
Modular digital twins bridging scales in Li-ion battery packs

LES

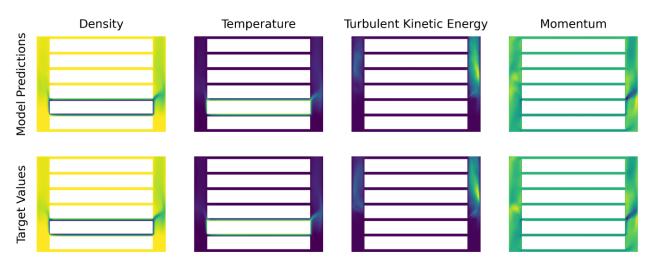


Replace a 5.89M finite element simulation of as-built battery with 8 data-driven elements w/ ~0.1% error, 10k CPU-hour LES simulation with << I sec data-driven RANS simulation

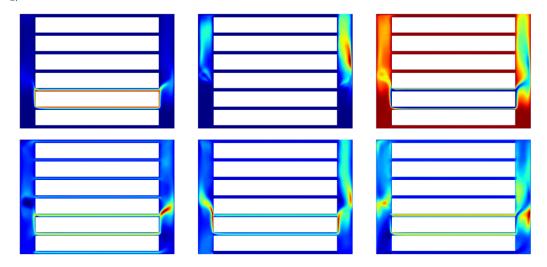
Structure preservation allows bidirectional and modular coupling from material to engineering scales



Real time RANS from LES – a 3.11 x 10^9 speedup

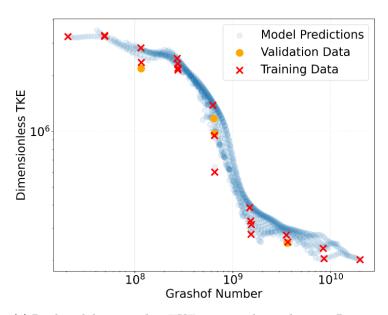


(a) The model predictions (left) and the targets (right), for all scalar fields, for the held-out validation example for which $\Delta T = 31.6$ K, $\mu = 6.7e4$ g/cm-s.



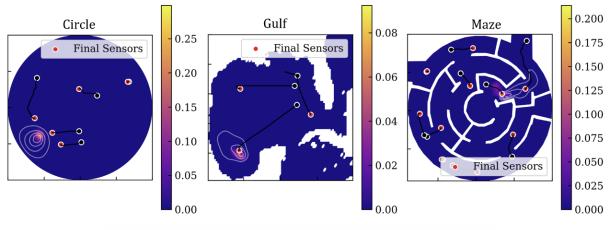
(b) The six learned shape functions for the training example shown in Figure 7a. All but one shape function are used to capture different aspects of the plume off the hot battery module (the second from the bottom of the rack). The shape functions used to enforce Dirichlet boundary conditions around each battery module, and for the surrounding wall, are not shown.

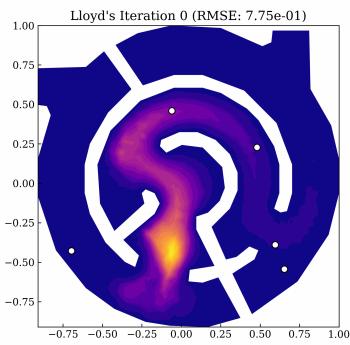
$$egin{aligned} \partial_t
ho +
abla \cdot F_1(
ho,T,k,M) &= 0 \ \partial_t T +
abla \cdot F_2(
ho,T,k,M) &= 0 \ \partial_t k +
abla \cdot F_3(
ho,T,k,M) &= 0 \ \partial_t M +
abla \cdot F_4(
ho,T,k,M) &= 0 \end{aligned}$$

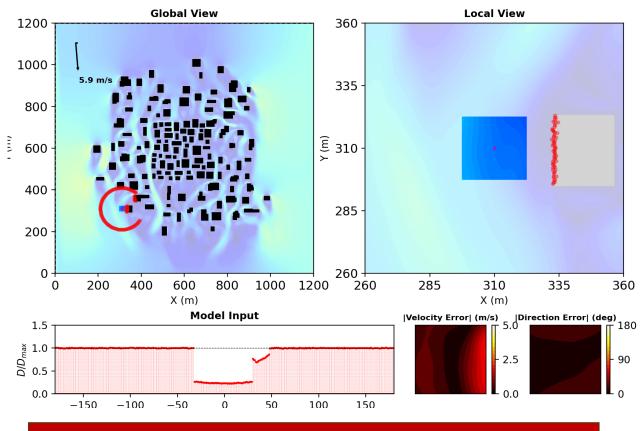


(a) Predicted dimensionless TKE integrated over domain. Despite training on only 20 LES, we capture the transition to turbulence at $Gr = 10^9$.

A platform for evaluating real-time physics on distributed sensor networks







Left: Control scheme to identify physical model for source location for a stationary (*left*) and moving (*right*) source.

Right: Collaboration with robotics lab at Upenn (**Folk**, Hsieh, Kumar) to build digital twins in an urban environment

Conditional Neural Whitney Forms

Real time FEM conditioned on sensors to build digital twins

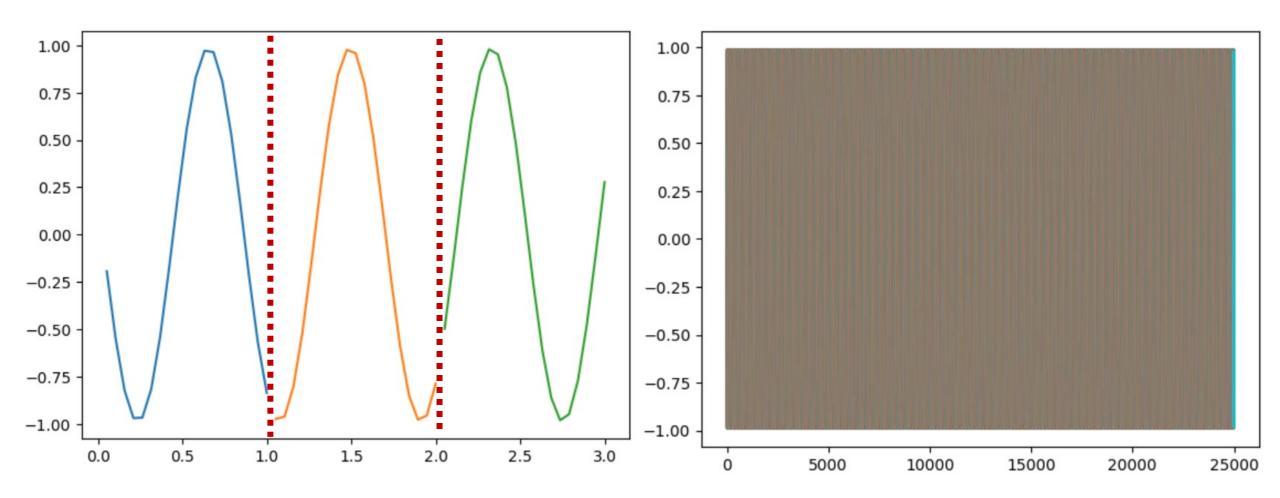


Hybridizable Neural Whitney Forms

Structure preserving autoregressive forecasting

$$(J, v) + (u, \frac{d}{dt}v) = \lambda_{i+1}v_{i+1} - \lambda_i v_i$$
$$(\frac{d}{dt}J, q) - (\mathcal{N}[u, J], q) = 0$$
$$\lambda_i = u_i^0$$
$$J(t_i) = J_i^0,$$

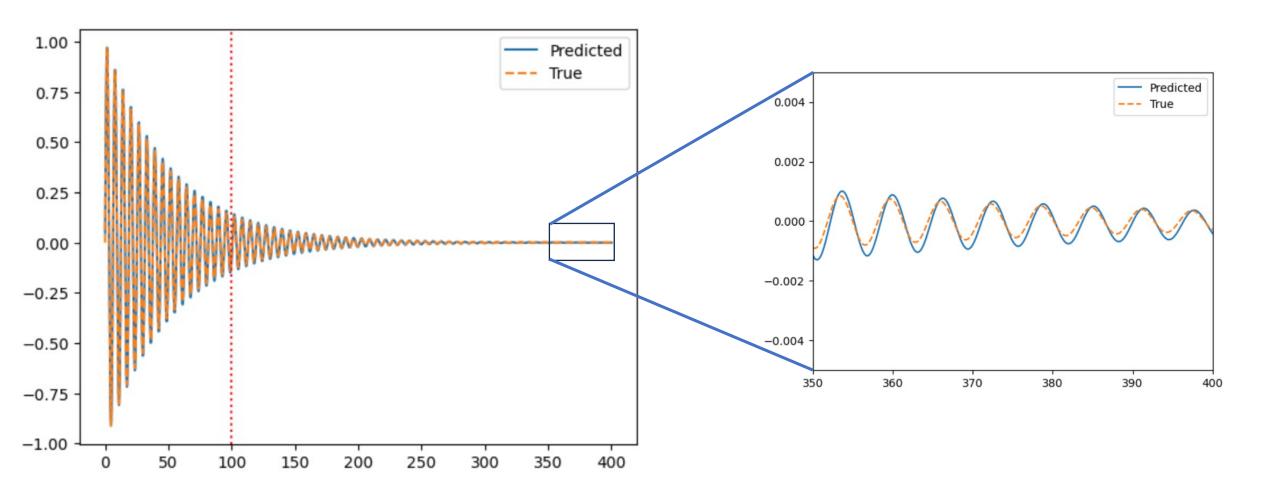
Recovering theory – Hamiltonian dynamics



Rollout of 20K+ periods from training on 2

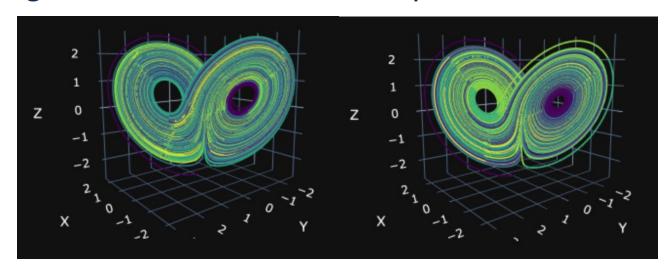
Theorem shows model can capture a Hamiltonian and forecast with energy independent on number of rollouts

Recovering theory – dissipative dynamics



Forecasting dissipative pendulum from short term observation
Surprisingly good

Autoregressive roll-outs – chaotic dynamics



Model prediction vs Training data

Lorenz trained on ~1

Lyaponuv period

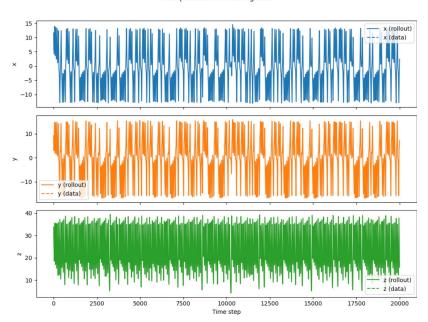
Not possible to capture

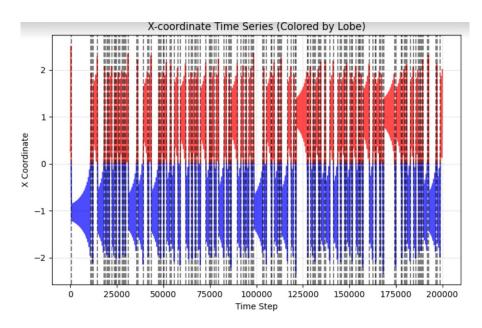
trajectories

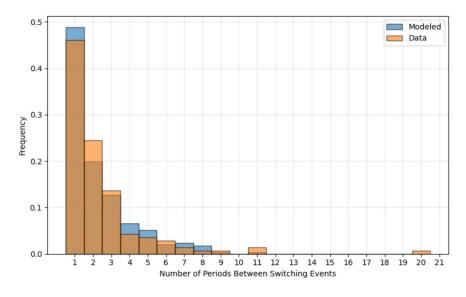
Capture attractor geometry

Capture statistics of

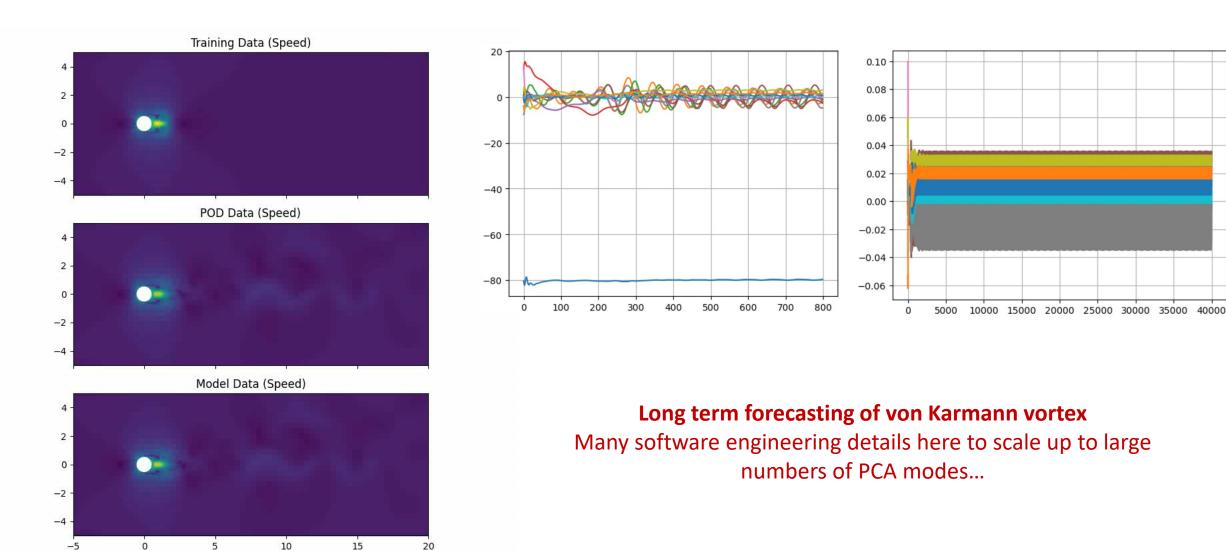
switching

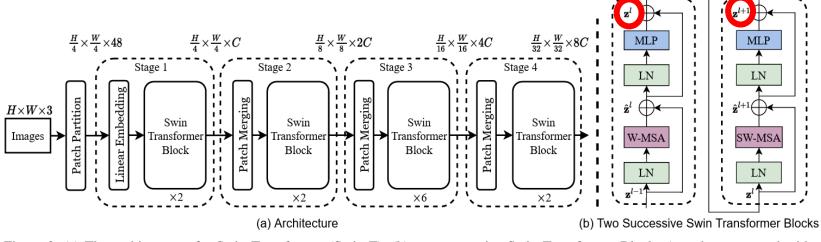






Autoregressive roll-outs – PCA modes of flow past a cylinder





0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 0 100 200 300 400 500 600 700 800

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

$$(J, v) + (u, \frac{d}{dt}v) = \lambda_{i+1}v_{i+1} - \lambda_i v_i$$
$$(\frac{d}{dt}J, q) - (\mathcal{N}[u, J], q) = 0$$
$$\lambda_i = u_i^0$$
$$J(t_i) = J_i^0,$$

Swin transformer: Hierarchical vision transformer using shifted windows

Z Liu, Y Lin, Y Cao, H Hu, Y Wei, Z Zhang, S Lin, B Guo

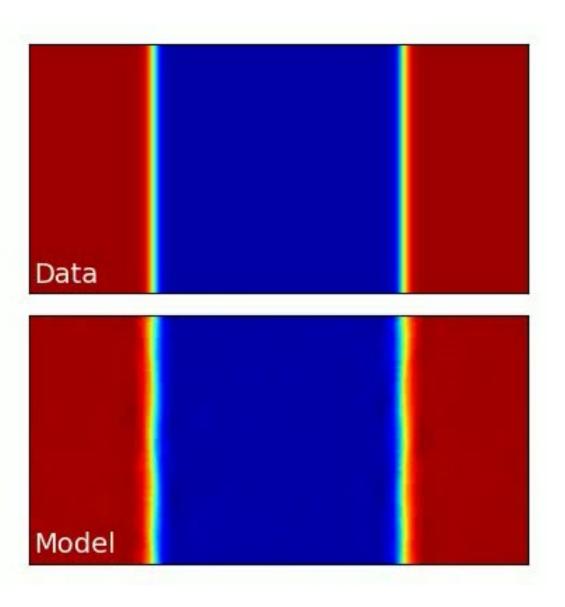
Proceedings of the IEEE/CVF international conference on ..., 2021 • openaccess.thecvf.com

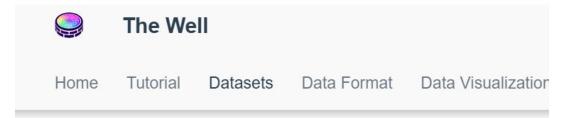
Abstract

This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The

SHOW MORE V

☆ Save 匆 Cite Cited by 35101 Related articles All 10 versions Import into BibTeX ≫





Periodic shear flow

One line description of the data: 2D periodic incompressible shear flow.

Longer description of the data: A shear flow is a type of fluid characterized by the continuous deformation of adjacent fluid layers sliding past each other with different velocities. This phenomenon is commonly observed in various natural and engineered systems, such as rivers, atmospheric boundary layers, and industrial processes involving fluid transport. The dataset explores a 2D periodic shearflow governed by incompressible Navier-Stokes equation.

Associated paper: Paper 1, Paper 2, Paper 3.

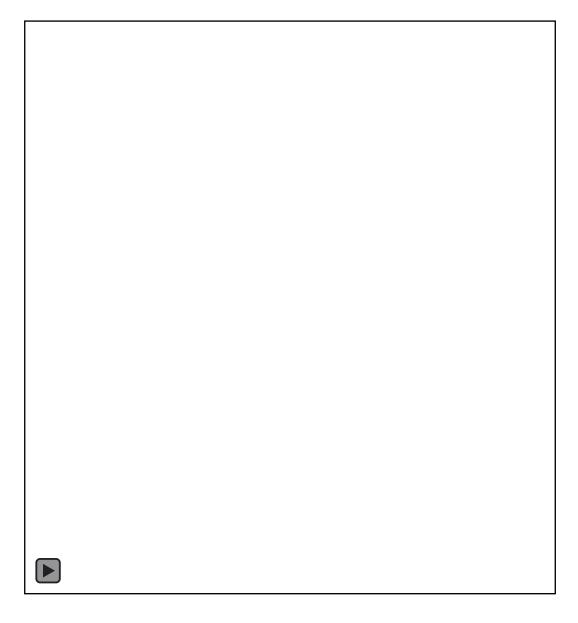
Data generated by: Rudy Morel, CCM, Flatiron Institute.

Code or software used to generate the data: Github repository, based on the software Dedalus.

Equation:

While we solve equations in the frequency domain, the original time-domain problem is

$$\frac{\partial u}{\partial t} + \nabla p - \nu \Delta u = -u \cdot \nabla u,$$
$$\frac{\partial s}{\partial t} - D\Delta s = -u \cdot \nabla s,$$



The Well

Home Tutorial

Datasets

Data Format

Data Visualization

Periodic shear flow

One line description of the data: 2D periodic incompressible shear flow.

Longer description of the data: A shear flow is a type of fluid characterized by the continuous deformation of adjacent fluid layers sliding past each other with different velocities. This phenomenon is commonly observed in various natural and engineered systems, such as rivers, atmospheric boundary layers, and industrial processes involving fluid transport. The dataset explores a 2D periodic shearflow governed by incompressible Navier-Stokes equation.

Associated paper: Paper 1, Paper 2, Paper 3.

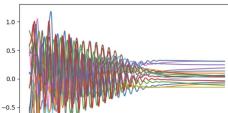
Data generated by: Rudy Morel, CCM, Flatiron Institute.

Code or software used to generate the data: Github repository, based on the software Dedalus.

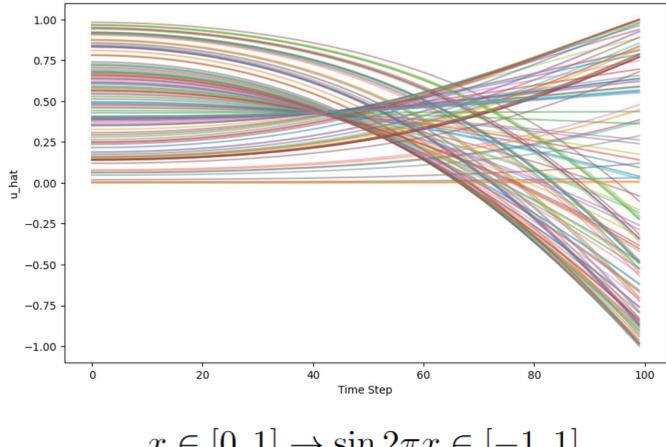
Equation:

While we solve equations in the frequency domain, the original time-domain problem is

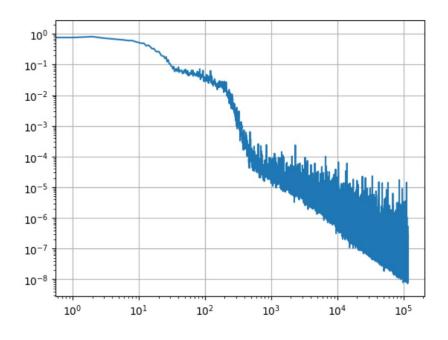
$$\frac{\partial u}{\partial t} + \nabla p - \nu \Delta u = -u \cdot \nabla u,$$
$$\frac{\partial s}{\partial t} - D\Delta s = -u \cdot \nabla s,$$



Al4Science/Science4Al – Regression flow maps

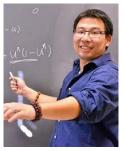


$$x \in [0, 1] \to \sin 2\pi x \in [-1, 1]$$



Supervised initial/final condition for conventional supervised learning Stability allows arbitrarily deep networks which access accuracy surpassing conventional MLPs, KANs, etc

We can have it all! Don't need to choose between black-box autoregressive methods and rigorous math/physics



Optimal Coverage, Colloids, Polymer melts

Pep Espanol – UNED Madrid

Metriplectic bracket discovery **Anthony Gruber - SNL Kookjin Lee - ASU**

Max Win, Quercus Hernandez - UPenn **Panos Stinis - PNNL**

